Changes

MyWikiBiz, Author Your Legacy — Wednesday October 15, 2025
Jump to navigationJump to search
Line 1: Line 1:  +
==Format Samples • Wiki Text==
 +
 +
===MathBB, MathBF, MathCal===
 +
 +
A set of logical features, <math>\mathcal{A} = \{ a_1, \ldots, a_n \},</math> affords a basis for generating an <math>n</math>-dimensional universe of discourse, written <math>A^\bullet = [ \mathcal{A} ] = [ a_1, \ldots, a_n ].</math>  It is useful to consider a universe of discourse as a categorical object that incorporates both the set of points <math>A = \langle a_1, \ldots, a_n \rangle</math> and the set of propositions <math>A^\uparrow = \{ f : A \to \mathbb{B} \}</math> that are implicit with the ordinary picture of a venn diagram on <math>n</math> features.  Accordingly, the universe of discourse <math>A^\bullet</math> may be regarded as an ordered pair <math>(A, A^\uparrow)</math> having the type <math>(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B})),</math> and this last type designation may be abbreviated as <math>\mathbb{B}^n\ +\!\to \mathbb{B},</math> or even more succinctly as <math>[ \mathbb{B}^n ].</math>  For convenience, the data type of a finite set on <math>n</math> elements may be indicated by either one of the equivalent notations, <math>[n]</math> or <math>\mathbf{n}.</math>
 +
 +
===MathFrak===
 +
 +
<p><math>\begin{array}{lccccccccccc}
 +
\mathfrak{M}
 +
& = & \{ & \mathfrak{m}_1 & , & \mathfrak{m}_2 & , & \mathfrak{m}_3 & , & \mathfrak{m}_4 & \}
 +
\\
 +
& = & \{ & \text{“ ”} & , & \text{“(”} & , & \text{“,”} & , & \text{“)”} & \}
 +
\\
 +
& = & \{ & \mathrm{blank} & , & \mathrm{links} & , & \mathrm{comma} & , & \mathrm{right} & \}
 +
\end{array}</math></p>
 +
 +
===TextTT===
 +
 +
For the initial case <math>k = 0,</math> the bound connective is an empty closure, an expression taking one of the forms <math>\texttt{()}, \texttt{( )}, \texttt{(  )}, \ldots</math> with any number of spaces between the parentheses, all of which have the same denotation among propositions.
 +
 +
For the generic case <math>k > 0,</math> the bound connective takes the form <math>\texttt{(} s_1 \texttt{,} \ldots \texttt{,} s_k \texttt{)}.</math>
 +
 +
==Format Samples &bull; Screenshots==
 +
 +
===MathJax Fail===
 +
 +
[[File:Format Samples &bull; MathJax Fail.png|640px]]
 +
 +
===MathML View===
 +
 +
[[File:Format Samples &bull; MathML View.png|640px]]
 +
 +
==Logic of Relatives==
 +
 +
<br>
 +
 +
{| align="center" cellspacing="6" width="90%"
 +
| align="center" |
 +
<pre>
 +
Table 3.  Relational Composition
 +
o---------o---------o---------o---------o
 +
|        #  !1!  |  !1!  |  !1!  |
 +
o=========o=========o=========o=========o
 +
|    L    #    X    |    Y    |        |
 +
o---------o---------o---------o---------o
 +
|    M    #        |    Y    |    Z    |
 +
o---------o---------o---------o---------o
 +
|  L o M  #    X    |        |    Z    |
 +
o---------o---------o---------o---------o
 +
</pre>
 +
|}
 +
 +
<br>
 +
 +
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 +
|+ <math>\text{Table 3.  Relational Composition}\!</math>
 +
|-
 +
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>L\!</math>
 +
| <math>X\!</math>
 +
| <math>Y\!</math>
 +
| &nbsp;
 +
|-
 +
| style="border-right:1px solid black" | <math>M\!</math>
 +
| &nbsp;
 +
| <math>Y\!</math>
 +
| <math>Z\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>L \circ M</math>
 +
| <math>X\!</math>
 +
| &nbsp;
 +
| <math>Z\!</math>
 +
|}
 +
 +
<br>
 +
 +
{| align="center" cellspacing="6" width="90%"
 +
| align="center" |
 +
<pre>
 +
Table 9.  Composite of Triadic and Dyadic Relations
 +
o---------o---------o---------o---------o---------o
 +
|        #  !1!  |  !1!  |  !1!  |  !1!  |
 +
o=========o=========o=========o=========o=========o
 +
|    G    #    T    |    U    |        |    V    |
 +
o---------o---------o---------o---------o---------o
 +
|    L    #        |    U    |    W    |        |
 +
o---------o---------o---------o---------o---------o
 +
|  G o L  #    T    |        |    W    |    V    |
 +
o---------o---------o---------o---------o---------o
 +
</pre>
 +
|}
 +
 +
<br>
 +
 +
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:75%"
 +
|+ <math>\text{Table 9.  Composite of Triadic and Dyadic Relations}\!</math>
 +
|-
 +
| style="border-right:1px solid black; border-bottom:1px solid black; width:20%" | &nbsp;
 +
| style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:20%" | <math>\mathit{1}\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>G\!</math>
 +
| <math>T\!</math>
 +
| <math>U\!</math>
 +
| &nbsp;
 +
| <math>V\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>L\!</math>
 +
| &nbsp;
 +
| <math>U\!</math>
 +
| <math>W\!</math>
 +
| &nbsp;
 +
|-
 +
| style="border-right:1px solid black" | <math>G \circ L</math>
 +
| <math>T\!</math>
 +
| &nbsp;
 +
| <math>W\!</math>
 +
| <math>V\!</math>
 +
|}
 +
 +
<br>
 +
 +
{| align="center" cellspacing="6" width="90%"
 +
| align="center" |
 +
<pre>
 +
Table 13.  Another Brand of Composition
 +
o---------o---------o---------o---------o
 +
|        #  !1!  |  !1!  |  !1!  |
 +
o=========o=========o=========o=========o
 +
|    G    #    X    |    Y    |    Z    |
 +
o---------o---------o---------o---------o
 +
|    T    #        |    Y    |    Z    |
 +
o---------o---------o---------o---------o
 +
|  G o T  #    X    |        |    Z    |
 +
o---------o---------o---------o---------o
 +
</pre>
 +
|}
 +
 +
<br>
 +
 +
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 +
|+ <math>\text{Table 13.  Another Brand of Composition}\!</math>
 +
|-
 +
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>G\!</math>
 +
| <math>X\!</math>
 +
| <math>Y\!</math>
 +
| <math>Z\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>T\!</math>
 +
| &nbsp;
 +
| <math>Y\!</math>
 +
| <math>Z\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>G \circ T</math>
 +
| <math>X\!</math>
 +
| &nbsp;
 +
| <math>Z\!</math>
 +
|}
 +
 +
<br>
 +
 +
{| align="center" cellspacing="6" width="90%"
 +
| align="center" |
 +
<pre>
 +
Table 15.  Conjunction Via Composition
 +
o---------o---------o---------o---------o
 +
|        #  !1!  |  !1!  |  !1!  |
 +
o=========o=========o=========o=========o
 +
|    L,  #    X    |    X    |    Y    |
 +
o---------o---------o---------o---------o
 +
|    S    #        |    X    |    Y    |
 +
o---------o---------o---------o---------o
 +
|  L , S  #    X    |        |    Y    |
 +
o---------o---------o---------o---------o
 +
</pre>
 +
|}
 +
 +
<br>
 +
 +
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 +
|+ <math>\text{Table 15.  Conjunction Via Composition}\!</math>
 +
|-
 +
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>L,\!</math>
 +
| <math>X\!</math>
 +
| <math>X\!</math>
 +
| <math>Y\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>S\!</math>
 +
| &nbsp;
 +
| <math>X\!</math>
 +
| <math>Y\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>L,\!S</math>
 +
| <math>X\!</math>
 +
| &nbsp;
 +
| <math>Y\!</math>
 +
|}
 +
 +
<br>
 +
 +
{| align="center" cellspacing="6" width="90%"
 +
| align="center" |
 +
<pre>
 +
Table 18.  Relational Composition P o Q
 +
o---------o---------o---------o---------o
 +
|        #  !1!  |  !1!  |  !1!  |
 +
o=========o=========o=========o=========o
 +
|    P    #    X    |    Y    |        |
 +
o---------o---------o---------o---------o
 +
|    Q    #        |    Y    |    Z    |
 +
o---------o---------o---------o---------o
 +
|  P o Q  #    X    |        |    Z    |
 +
o---------o---------o---------o---------o
 +
</pre>
 +
|}
 +
 +
<br>
 +
 +
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 +
|+ <math>\text{Table 18.  Relational Composition}~ P \circ Q</math>
 +
|-
 +
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>\mathit{1}\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>P\!</math>
 +
| <math>X\!</math>
 +
| <math>Y\!</math>
 +
| &nbsp;
 +
|-
 +
| style="border-right:1px solid black" | <math>Q\!</math>
 +
| &nbsp;
 +
| <math>Y\!</math>
 +
| <math>Z\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>P \circ Q</math>
 +
| <math>X\!</math>
 +
| &nbsp;
 +
| <math>Z\!</math>
 +
|}
 +
 +
<br>
 +
 +
{| align="center" cellspacing="6" width="90%"
 +
| align="center" |
 +
<pre>
 +
Table 20.  Arrow:  J(L(u, v)) = K(Ju, Jv)
 +
o---------o---------o---------o---------o
 +
|        #    J    |    J    |    J    |
 +
o=========o=========o=========o=========o
 +
|    K    #    X    |    X    |    X    |
 +
o---------o---------o---------o---------o
 +
|    L    #    Y    |    Y    |    Y    |
 +
o---------o---------o---------o---------o
 +
</pre>
 +
|}
 +
 +
<br>
 +
 +
{| align="center" cellpadding="10" cellspacing="0" style="border-left:1px solid black; border-top:1px solid black; border-right:1px solid black; border-bottom:1px solid black; text-align:center; width:60%"
 +
|+ <math>\text{Table 20.  Arrow Equation:}~~ J(L(u, v)) = K(Ju, Jv)</math>
 +
|-
 +
| style="border-right:1px solid black; border-bottom:1px solid black; width:25%" | &nbsp;
 +
| style="border-bottom:1px solid black; width:25%" | <math>J\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>J\!</math>
 +
| style="border-bottom:1px solid black; width:25%" | <math>J\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>K\!</math>
 +
| <math>X\!</math>
 +
| <math>X\!</math>
 +
| <math>X\!</math>
 +
|-
 +
| style="border-right:1px solid black" | <math>L\!</math>
 +
| <math>Y\!</math>
 +
| <math>Y\!</math>
 +
| <math>Y\!</math>
 +
|}
 +
 +
<br>
 +
 
==Grammar Stuff==
 
==Grammar Stuff==
   Line 44: Line 342:  
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:whitesmoke; width:100%"
 
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:whitesmoke; width:100%"
 
| width="20%" | <math>\operatorname{Sentence}</math>
 
| width="20%" | <math>\operatorname{Sentence}</math>
| width="20%" | <math>\xrightarrow[\operatorname{~~~~~~~~~~}]{\operatorname{Parse}}</math>
+
| width="20%" | <math>\xrightarrow[\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}]{\operatorname{Parse}}</math>
 
| width="20%" | <math>\operatorname{Graph}</math>
 
| width="20%" | <math>\operatorname{Graph}</math>
| width="20%" | <math>\xrightarrow[\operatorname{~~~~~~~~~~}]{\operatorname{Denotation}}</math>
+
| width="20%" | <math>\xrightarrow[\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}]{\operatorname{Denotation}}</math>
 
| width="20%" | <math>\operatorname{Proposition}</math>
 
| width="20%" | <math>\operatorname{Proposition}</math>
 
|}
 
|}
Line 53: Line 351:  
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 
| width="20%" | <math>s_j\!</math>
 
| width="20%" | <math>s_j\!</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>C_j\!</math>
 
| width="20%" | <math>C_j\!</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>q_j\!</math>
 
| width="20%" | <math>q_j\!</math>
 
|}
 
|}
Line 62: Line 360:  
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 
| width="20%" | <math>\operatorname{Conc}^0</math>
 
| width="20%" | <math>\operatorname{Conc}^0</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\operatorname{Node}^0</math>
 
| width="20%" | <math>\operatorname{Node}^0</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\underline{1}</math>
 
| width="20%" | <math>\underline{1}</math>
 
|-
 
|-
 
| width="20%" | <math>\operatorname{Conc}^k_j s_j</math>
 
| width="20%" | <math>\operatorname{Conc}^k_j s_j</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\operatorname{Node}^k_j C_j</math>
 
| width="20%" | <math>\operatorname{Node}^k_j C_j</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\operatorname{Conj}^k_j q_j</math>
 
| width="20%" | <math>\operatorname{Conj}^k_j q_j</math>
 
|}
 
|}
Line 77: Line 375:  
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 
{| align="center" border="0" cellpadding="8" cellspacing="0" width="100%"
 
| width="20%" | <math>\operatorname{Surc}^0</math>
 
| width="20%" | <math>\operatorname{Surc}^0</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\operatorname{Lobe}^0</math>
 
| width="20%" | <math>\operatorname{Lobe}^0</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\underline{0}</math>
 
| width="20%" | <math>\underline{0}</math>
 
|-
 
|-
 
| width="20%" | <math>\operatorname{Surc}^k_j s_j</math>
 
| width="20%" | <math>\operatorname{Surc}^k_j s_j</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\operatorname{Lobe}^k_j C_j</math>
 
| width="20%" | <math>\operatorname{Lobe}^k_j C_j</math>
| width="20%" | <math>\xrightarrow{\operatorname{~~~~~~~~~~}}</math>
+
| width="20%" | <math>\xrightarrow{\operatorname{11:02, 14 October 2025 (UTC)11:02, 14 October 2025 (UTC)}}</math>
 
| width="20%" | <math>\operatorname{Surj}^k_j q_j</math>
 
| width="20%" | <math>\operatorname{Surj}^k_j q_j</math>
 
|}
 
|}
Line 152: Line 450:  
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
 
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
 
|+ '''Table 15.  Boolean Functions on Zero Variables'''
 
|+ '''Table 15.  Boolean Functions on Zero Variables'''
|- style="background:ghostwhite"
+
|- style="background:whitesmoke"
 
| width="14%" | <math>F\!</math>
 
| width="14%" | <math>F\!</math>
 
| width="14%" | <math>F\!</math>
 
| width="14%" | <math>F\!</math>
Line 161: Line 459:  
| <math>F_0^{(0)}\!</math>
 
| <math>F_0^{(0)}\!</math>
 
| <math>\underline{0}</math>
 
| <math>\underline{0}</math>
| <math>\underline{(} ~ \underline{)}</math>
+
| <math>(~)</math>
 
|-
 
|-
 
| <math>\underline{1}</math>
 
| <math>\underline{1}</math>
 
| <math>F_1^{(0)}\!</math>
 
| <math>F_1^{(0)}\!</math>
 
| <math>\underline{1}</math>
 
| <math>\underline{1}</math>
| <math>\underline{((} ~ \underline{))}</math>
+
| <math>((~))</math>
 
|}
 
|}
   Line 173: Line 471:  
{| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%"
 
{| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:90%"
 
|+ '''Table 16.  Boolean Functions on One Variable'''
 
|+ '''Table 16.  Boolean Functions on One Variable'''
|- style="background:ghostwhite"
+
|- style="background:whitesmoke"
 
| width="14%" | <math>F\!</math>
 
| width="14%" | <math>F\!</math>
 
| width="14%" | <math>F\!</math>
 
| width="14%" | <math>F\!</math>
 
| colspan="2" | <math>F(x)\!</math>
 
| colspan="2" | <math>F(x)\!</math>
 
| width="24%" | <math>F\!</math>
 
| width="24%" | <math>F\!</math>
|- style="background:ghostwhite"
+
|- style="background:whitesmoke"
 
| width="14%" | &nbsp;
 
| width="14%" | &nbsp;
 
| width="14%" | &nbsp;
 
| width="14%" | &nbsp;
Line 189: Line 487:  
| <math>\underline{0}</math>
 
| <math>\underline{0}</math>
 
| <math>\underline{0}</math>
 
| <math>\underline{0}</math>
| <math>\underline{(} ~ \underline{)}</math>
+
| <math>(~)</math>
 
|-
 
|-
 
| <math>F_1^{(1)}\!</math>
 
| <math>F_1^{(1)}\!</math>
Line 195: Line 493:  
| <math>\underline{0}</math>
 
| <math>\underline{0}</math>
 
| <math>\underline{1}</math>
 
| <math>\underline{1}</math>
| <math>\underline{(} x \underline{)}</math>
+
| <math>(x)\!</math>
 
|-
 
|-
 
| <math>F_2^{(1)}\!</math>
 
| <math>F_2^{(1)}\!</math>
Line 207: Line 505:  
| <math>\underline{1}</math>
 
| <math>\underline{1}</math>
 
| <math>\underline{1}</math>
 
| <math>\underline{1}</math>
| <math>\underline{((} ~ \underline{))}</math>
+
| <math>((~))</math>
 
|}
 
|}
   Line 214: Line 512:  
{| align="center" border="1" cellpadding="4" cellspacing="0" style="text-align:center; width:90%"
 
{| align="center" border="1" cellpadding="4" cellspacing="0" style="text-align:center; width:90%"
 
|+ '''Table 17.  Boolean Functions on Two Variables'''
 
|+ '''Table 17.  Boolean Functions on Two Variables'''
|- style="background:ghostwhite"
+
|- style="background:whitesmoke"
 
| width="14%" | <math>F\!</math>
 
| width="14%" | <math>F\!</math>
 
| width="14%" | <math>F\!</math>
 
| width="14%" | <math>F\!</math>
 
| colspan="4" | <math>F(x, y)\!</math>
 
| colspan="4" | <math>F(x, y)\!</math>
 
| width="24%" | <math>F\!</math>
 
| width="24%" | <math>F\!</math>
|- style="background:ghostwhite"
+
|- style="background:whitesmoke"
 
| width="14%" | &nbsp;
 
| width="14%" | &nbsp;
 
| width="14%" | &nbsp;
 
| width="14%" | &nbsp;
12,096

edits

Navigation menu