Line 11: |
Line 11: |
| The ''[[boolean domain]]'' is the set <math>\mathbb{B} = \{ 0, 1 \}.</math> The plus sign <math>^{\backprime\backprime} + ^{\prime\prime},</math> used in the context of the boolean domain <math>\mathbb{B},</math> denotes addition mod 2. Interpreted for logic, this amounts to the same thing as the boolean operation of ''[[exclusive disjunction|exclusive or]]'' or ''not equal to''. | | The ''[[boolean domain]]'' is the set <math>\mathbb{B} = \{ 0, 1 \}.</math> The plus sign <math>^{\backprime\backprime} + ^{\prime\prime},</math> used in the context of the boolean domain <math>\mathbb{B},</math> denotes addition mod 2. Interpreted for logic, this amounts to the same thing as the boolean operation of ''[[exclusive disjunction|exclusive or]]'' or ''not equal to''. |
| | | |
− | The third cartesian power of <math>\mathbb{B}</math> is <math>\mathbb{B}^3 = \{ (x_1, x_2, x_3) : x_j \in \mathbb{B} ~\text{for}~ j = 1, 2, 3 \} = \mathbb{B} \times \mathbb{B} \times \mathbb{B}.</math> | + | The third cartesian power of <math>\mathbb{B}</math> is the set <math>\mathbb{B}^3 = \mathbb{B} \times \mathbb{B} \times \mathbb{B} = \{ (x_1, x_2, x_3) : x_j \in \mathbb{B} ~\text{for}~ j = 1, 2, 3 \}.</math> |
| | | |
| In what follows, the space <math>X \times Y \times Z</math> is isomorphic to <math>\mathbb{B} \times \mathbb{B} \times \mathbb{B} ~=~ \mathbb{B}^3.</math> | | In what follows, the space <math>X \times Y \times Z</math> is isomorphic to <math>\mathbb{B} \times \mathbb{B} \times \mathbb{B} ~=~ \mathbb{B}^3.</math> |
Line 33: |
Line 33: |
| The triples that make up the relations <math>L_0\!</math> and <math>L_1\!</math> are conveniently arranged in the form of ''[[relational database|relational data tables]]'', as follows: | | The triples that make up the relations <math>L_0\!</math> and <math>L_1\!</math> are conveniently arranged in the form of ''[[relational database|relational data tables]]'', as follows: |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%" | + | <br> |
− | |+ '''L'''<sub>0</sub> = {(''x'', ''y'', ''z'') ∈ '''B'''<sup>3</sup> : ''x'' + ''y'' + ''z'' = 0} | + | |
− | |- style="background:paleturquoise" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:60%" |
− | ! X !! Y !! Z | + | |+ <math>L_0 ~=~ \{ (x, y, z) \in \mathbb{B}^3 : x + y + z = 0 \}</math> |
| + | |- style="background:whitesmoke" |
| + | ! <math>X\!</math> !! <math>Y\!</math> !! <math>Z\!</math> |
| |- | | |- |
− | | '''0''' || '''0''' || '''0''' | + | | <math>0\!</math> || <math>0\!</math> || <math>0\!</math> |
| |- | | |- |
− | | '''0''' || '''1''' || '''1''' | + | | <math>0\!</math> || <math>1\!</math> || <math>1\!</math> |
| |- | | |- |
− | | '''1''' || '''0''' || '''1''' | + | | <math>1\!</math> || <math>0\!</math> || <math>1\!</math> |
| |- | | |- |
− | | '''1''' || '''1''' || '''0''' | + | | <math>1\!</math> || <math>1\!</math> || <math>0\!</math> |
| |} | | |} |
| + | |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:60%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:60%" |
− | |+ '''L'''<sub>1</sub> = {(''x'', ''y'', ''z'') ∈ '''B'''<sup>3</sup> : ''x'' + ''y'' + ''z'' = 1} | + | |+ <math>L_1 ~=~ \{ (x, y, z) \in \mathbb{B}^3 : x + y + z = 1 \}</math> |
− | |- style="background:paleturquoise" | + | |- style="background:whitesmoke" |
− | ! X !! Y !! Z | + | ! <math>X\!</math> !! <math>Y\!</math> !! <math>Z\!</math> |
| |- | | |- |
− | | '''0''' || '''0''' || '''1''' | + | | <math>0\!</math> || <math>0\!</math> || <math>1\!</math> |
| |- | | |- |
− | | '''0''' || '''1''' || '''0''' | + | | <math>0\!</math> || <math>1\!</math> || <math>0\!</math> |
| |- | | |- |
− | | '''1''' || '''0''' || '''0''' | + | | <math>1\!</math> || <math>0\!</math> || <math>0\!</math> |
| |- | | |- |
− | | '''1''' || '''1''' || '''1''' | + | | <math>1\!</math> || <math>1\!</math> || <math>1\!</math> |
| |} | | |} |
| + | |
| <br> | | <br> |
| | | |