Changes

MyWikiBiz, Author Your Legacy — Friday November 22, 2024
Jump to navigationJump to search
Line 3,251: Line 3,251:  
<br>
 
<br>
   −
<pre>
+
In particular, one observes the following relations and formulas:
In particular, one can observe the following relations and formulas, all of a purely notational character:
     −
1.  If the sentence S denotes the proposition : U -> B, then [S] = P.
+
:{| cellpadding="4"
 +
| valign="top" | 1.
 +
| colspan="3" | Let the sentence <math>s\!</math> denote the proposition <math>q,\!</math>
 +
|-
 +
| &nbsp; || &nbsp; || where
 +
| <math>q : X \to \underline\mathbb{B}.</math>
 +
|-
 +
| &nbsp;
 +
| colspan="3" | Then we have the notational equivalence:
 +
|-
 +
| &nbsp; || &nbsp;
 +
| colspan="2" | <math>\downharpoonleft s \downharpoonright ~=~ q.</math>
 +
|-
 +
| valign="top" | 2.
 +
| colspan="3"  | Let the sentence <math>s\!</math> denote the proposition <math>q,\!</math>
 +
|-
 +
| &nbsp; || &nbsp; || where
 +
| <math>q : X \to \underline\mathbb{B}</math>
 +
|-
 +
| &nbsp; || &nbsp; || and
 +
| <math>[| q |] ~=~ q^{-1} (\underline{1}) ~=~ Q \subseteq X.</math>
 +
|-
 +
| &nbsp;
 +
| colspan="3" | Then we have the notational equivalences:
 +
|-
 +
| &nbsp; || &nbsp;
 +
| colspan="2" | <math>\downharpoonleft s \downharpoonright ~=~ q ~=~ f_Q ~=~ \upharpoonleft Q \upharpoonright.</math>
 +
|}
   −
2.  If the sentence S denotes the proposition P : U -> B
+
<pre>
such that |P| = P-1(1) = X c U, then [S] = P = fX = {X}.
+
3. X = {u C U : u C X}
 
  −
3. X = {u C U : u C X}
      
= |{X}| = {X}-1(1)
 
= |{X}| = {X}-1(1)
    
= |fX| = fX-1(1).
 
= |fX| = fX-1(1).
 +
 
4.  {X} = { {u C U : u C X} }
 
4.  {X} = { {u C U : u C X} }
  
12,080

edits

Navigation menu