MyWikiBiz, Author Your Legacy — Friday November 22, 2024
Jump to navigationJump to search
625 bytes added
, 04:16, 19 January 2009
Line 3,251: |
Line 3,251: |
| <br> | | <br> |
| | | |
− | <pre>
| + | In particular, one observes the following relations and formulas: |
− | In particular, one can observe the following relations and formulas, all of a purely notational character: | |
| | | |
− | 1. If the sentence S denotes the proposition P : U -> B, then [S] = P. | + | :{| cellpadding="4" |
| + | | valign="top" | 1. |
| + | | colspan="3" | Let the sentence <math>s\!</math> denote the proposition <math>q,\!</math> |
| + | |- |
| + | | || || where |
| + | | <math>q : X \to \underline\mathbb{B}.</math> |
| + | |- |
| + | | |
| + | | colspan="3" | Then we have the notational equivalence: |
| + | |- |
| + | | || |
| + | | colspan="2" | <math>\downharpoonleft s \downharpoonright ~=~ q.</math> |
| + | |- |
| + | | valign="top" | 2. |
| + | | colspan="3" | Let the sentence <math>s\!</math> denote the proposition <math>q,\!</math> |
| + | |- |
| + | | || || where |
| + | | <math>q : X \to \underline\mathbb{B}</math> |
| + | |- |
| + | | || || and |
| + | | <math>[| q |] ~=~ q^{-1} (\underline{1}) ~=~ Q \subseteq X.</math> |
| + | |- |
| + | | |
| + | | colspan="3" | Then we have the notational equivalences: |
| + | |- |
| + | | || |
| + | | colspan="2" | <math>\downharpoonleft s \downharpoonright ~=~ q ~=~ f_Q ~=~ \upharpoonleft Q \upharpoonright.</math> |
| + | |} |
| | | |
− | 2. If the sentence S denotes the proposition P : U -> B
| + | <pre> |
− | such that |P| = P-1(1) = X c U, then [S] = P = fX = {X}.
| + | 3. X = {u C U : u C X} |
− | | |
− | 3. X = {u C U : u C X} | |
| | | |
| = |{X}| = {X}-1(1) | | = |{X}| = {X}-1(1) |
| | | |
| = |fX| = fX-1(1). | | = |fX| = fX-1(1). |
| + | |
| 4. {X} = { {u C U : u C X} } | | 4. {X} = { {u C U : u C X} } |
| | | |