Changes

MyWikiBiz, Author Your Legacy — Friday November 22, 2024
Jump to navigationJump to search
→‎1.3.10.3. Propositions and Sentences: fix notation for complement of a set
Line 2,731: Line 2,731:  
The ''negation'' of a sentence <math>s,\!</math> written as <math>^{\backprime\backprime} \, \underline{(} s \underline{)} \, ^{\prime\prime}</math> and read as <math>^{\backprime\backprime} \, \operatorname{not}\ s \, ^{\prime\prime},</math> is a sentence that is true when <math>s\!</math> is false and false when <math>s\!</math> is true.
 
The ''negation'' of a sentence <math>s,\!</math> written as <math>^{\backprime\backprime} \, \underline{(} s \underline{)} \, ^{\prime\prime}</math> and read as <math>^{\backprime\backprime} \, \operatorname{not}\ s \, ^{\prime\prime},</math> is a sentence that is true when <math>s\!</math> is false and false when <math>s\!</math> is true.
   −
The ''complement'' of a set <math>Q\!</math> with respect to the universe <math>X\!</math> is denoted by <math>^{\backprime\backprime} \, X\!-\!Q \, ^{\prime\prime},</math> or simply by <math>^{\backprime\backprime} \, {}^{_\sim}\!Q \, ^{\prime\prime}</math> when the universe <math>X\!</math> is determinate, and is defined as the set of elements in <math>X\!</math> that do not belong to <math>Q,\!</math> that is:
+
The ''complement'' of a set <math>Q\!</math> with respect to the universe <math>X\!</math> is denoted by <math>^{\backprime\backprime} \, X\!-\!Q \, ^{\prime\prime},</math> or simply by <math>^{\backprime\backprime} \, {}^{_\sim} Q \, ^{\prime\prime}</math> when the universe <math>X\!</math> is determinate, and is defined as the set of elements in <math>X\!</math> that do not belong to <math>Q,\!</math> that is:
    
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
Line 2,974: Line 2,974:  
\\
 
\\
 
\text{The fiber of}~ \underline{0} ~\text{under}~ f
 
\text{The fiber of}~ \underline{0} ~\text{under}~ f
& = & \lnot [| f |]
+
& = & {}^{_\sim} [| f |]
 
\\
 
\\
 
& = & f^{-1} (\underline{0})
 
& = & f^{-1} (\underline{0})
12,080

edits

Navigation menu