Changes

MyWikiBiz, Author Your Legacy — Friday November 29, 2024
Jump to navigationJump to search
→‎1.3.10.3. Propositions and Sentences: fold in changes from later version
Line 2,745: Line 2,745:  
|}
 
|}
   −
The ''relative complement'' of <math>X\!</math> in <math>Y,\!</math> for two sets <math>X, Y \subseteq U,</math> written as <math>^{\backprime\backprime} \, Y\!-\!X \, ^{\prime\prime},</math> is the set of elements in <math>Y\!</math> that are not in <math>X,\!</math> that is:
+
The ''relative complement'' of <math>P\!</math> in <math>Q,\!</math> for two sets <math>P, Q \subseteq X,</math> is denoted by <math>^{\backprime\backprime} \, Q\!-\!P \, ^{\prime\prime}</math> and defined as the set of elements in <math>Q\!</math> that do not belong to <math>P,\!</math> that is:
    
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
Y\!-\!X
+
Q\!-\!P
 
& = &
 
& = &
\{ \, u \in U : u \in Y\ \operatorname{and}\ \underline{(} u \in X \underline{)} \, \}.
+
\{ \, x \in X : x \in Q ~\operatorname{and}~ \underline{(} x \in P \underline{)} \, \}.
 
\\
 
\\
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
   −
The ''intersection'' of <math>X\!</math> and <math>Y,\!</math> for two sets <math>X, Y \subseteq U,</math> is denoted by <math>^{\backprime\backprime} \, X \cap Y \, ^{\prime\prime},</math> and defined as the set of elements in <math>U\!</math> that belong to both of <math>X\!</math> and <math>Y.\!</math>
+
The ''intersection'' of <math>P\!</math> and <math>Q,\!</math> for two sets <math>P, Q \subseteq X,</math> is denoted by <math>^{\backprime\backprime} \, P \cap Q \, ^{\prime\prime}</math> and defined as the set of elements in <math>X\!</math> that belong to both <math>P\!</math> and <math>Q.\!</math>
    
{| align="center" cellpadding="8" width="90%"
 
{| align="center" cellpadding="8" width="90%"
 
|
 
|
 
<math>\begin{array}{lll}
 
<math>\begin{array}{lll}
X \cap Y
+
P \cap Q
 
& = &
 
& = &
\{ \, u \in U : u \in X\ \operatorname{and}\ u \in Y \, \}.
+
\{ \, x \in X : x \in P ~\operatorname{and}~ x \in Q \, \}.
 
\\
 
\\
 
\end{array}</math>
 
\end{array}</math>
12,080

edits

Navigation menu