Changes

MyWikiBiz, Author Your Legacy — Wednesday December 04, 2024
Jump to navigationJump to search
Line 324: Line 324:     
The first step is to define two sets of basic operations on strings of <math>\mathfrak{A}^*.</math>
 
The first step is to define two sets of basic operations on strings of <math>\mathfrak{A}^*.</math>
 +
 +
{| align="center" cellpadding="8" width="90%"
 +
|-
 +
| valign="top" | 1.
 +
| The ''concatenation'' of one string <math>s_1\!</math> is just the string <math>s_1.\!</math>
 +
|-
 +
| &nbsp;
 +
| The ''concatenation'' of two strings <math>s_1, s_2\!</math> is the string <math>s_1 \cdot s_2.\!</math>
 +
|-
 +
| &nbsp;
 +
| The ''concatenation'' of the <math>k\!</math> strings <math>s_j,\!</math> for <math>j = 1 \ldots k,\!</math> is the string of the form <math>s_1 \cdot \ldots \cdot s_k.\!</math>
 +
|-
 +
| valign="top" | 2.
 +
| The ''surcatenation'' of one string <math>s_1\!</math> is the string <math>^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot s_1 \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math>
 +
|-
 +
| &nbsp;
 +
| The ''surcatenation'' of two strings <math>s_1, s_2\!</math> is <math>^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot s_1 \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot s_2 \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math>
 +
|-
 +
| &nbsp;
 +
| The ''surcatenation'' of <math>k\!</math> strings <math>s_j,\!</math> for <math>j\!</math> = 1 to <math>k,\!</math> is the string of the form <math>^{\backprime\backprime} \, \operatorname{(} \, ^{\prime\prime} \, \cdot s_1 \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, \cdot \ldots \cdot \, ^{\backprime\backprime} \, \operatorname{,} \, ^{\prime\prime} \, s_k \cdot \, ^{\backprime\backprime} \, \operatorname{)} \, ^{\prime\prime}.</math>
 +
|}
    
<pre>
 
<pre>
1.  The "concatenation" of one string z_1 is just the string z_1.
  −
  −
    The "concatenation" of two strings z_1, z_2 is the string z_1 · z_2.
  −
  −
    The "concatenation" of the k strings z_j, for j = 1 to k,
  −
  −
    is the string of the form z_1 · ... · z_k.
  −
  −
2.  The "surcatenation" of one string z_1 is the string "-(" · z_1 · ")-".
  −
  −
    The "surcatenation" of two strings z_1, z_2 is "-(" · z_1 · "," · z_2 · ")-".
  −
  −
    The "surcatenation" of k strings z_j, for j = 1 to k,
  −
  −
    is the string of the form "-(" · z_1 · "," · ... · "," · z_k · ")-".
  −
   
These definitions can be made a little more succinct by
 
These definitions can be made a little more succinct by
 
defining the following sorts of generic operators on strings:
 
defining the following sorts of generic operators on strings:
12,080

edits

Navigation menu