MyWikiBiz, Author Your Legacy — Friday November 22, 2024
Jump to navigationJump to search
3 bytes removed
, 03:08, 14 December 2008
Line 542: |
Line 542: |
| | | |
| ===Measure for Measure=== | | ===Measure for Measure=== |
− |
| |
− | An acquaintance with the functions of the umpire operator can be gained from Tables 4 and 5, where the 2-dimensional case is worked out in full.
| |
| | | |
| Define two families of measures: | | Define two families of measures: |
Line 1,287: |
Line 1,285: |
| \operatorname{for~all}\ f. \\ | | \operatorname{for~all}\ f. \\ |
| \end{matrix}</math></center> | | \end{matrix}</math></center> |
| + | <br> |
| | | |
| Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others. | | Thus, <math>\alpha_0 = \beta_{15}\!</math> is a totally indiscriminate measure, one that accepts all propositions <math>f : \mathbb{B}^2 \to \mathbb{B},</math> whereas <math>\alpha_{15}\!</math> and <math>\beta_0\!</math> are measures that value the constant propositions <math>1 : \mathbb{B}^2 \to \mathbb{B}</math> and <math>0 : \mathbb{B}^2 \to \mathbb{B},</math> respectively, above all others. |
Line 1,292: |
Line 1,291: |
| Finally, in conformity with the use of the fiber notation to indicate sets of models, it is natural to use notations like: | | Finally, in conformity with the use of the fiber notation to indicate sets of models, it is natural to use notations like: |
| | | |
− | : <math>[| \alpha_i |] = (\alpha_i)^{-1}(1),\!</math>
| + | {| align="center" cellpadding="8" |
− | | + | | <math>[| \alpha_i |]\!</math> |
− | : <math>[| \beta_i |] = (\beta_i)^{-1}(1),\!</math>
| + | | <math>=\!</math> |
− | | + | | <math>(\alpha_i)^{-1}(1),\!</math> |
− | : <math>[| \Upsilon_p |] = (\Upsilon_p)^{-1}(1),\!</math>
| + | |- |
| + | | <math>[| \beta_i |]\!</math> |
| + | | <math>=\!</math> |
| + | | <math>(\beta_i)^{-1}(1),\!</math> |
| + | |- |
| + | | <math>[| \Upsilon_p |]\!</math> |
| + | | <math>=\!</math> |
| + | | <math>(\Upsilon_p)^{-1}(1),\!</math> |
| + | |} |
| | | |
| to denote sets of propositions that satisfy the umpires in question. | | to denote sets of propositions that satisfy the umpires in question. |