Line 38: |
Line 38: |
| For example, consider the case where <math>X = \mathbb{B}.</math> Then there are exactly four propositions <math>f : \mathbb{B} \to \mathbb{B},</math> and exactly sixteen higher order propositions that are based on this set, all bearing the type <math>m : (\mathbb{B} \to \mathbb{B}) \to \mathbb{B}.</math> | | For example, consider the case where <math>X = \mathbb{B}.</math> Then there are exactly four propositions <math>f : \mathbb{B} \to \mathbb{B},</math> and exactly sixteen higher order propositions that are based on this set, all bearing the type <math>m : (\mathbb{B} \to \mathbb{B}) \to \mathbb{B}.</math> |
| | | |
− | Table 1 lists the sixteen higher order propositions about propositions on one boolean variable, organized in the following fashion: Columns 1 and 2 form a truth table for the four <math>f : \mathbb{B} \to \mathbb{B},</math> turned on its side from the way that one is most likely accustomed to see truth tables, with the row leaders in Column 1 displaying the names of the functions <math>f_i,\!</math> for <math>i\!</math> = 1 to 4, while the entries in Column 2 give the values of each function for the argument values that are listed in the corresponding column head. Column 3 displays one of the more usual expressions for the proposition in question. The last sixteen columns are topped by a collection of conventional names for the higher order propositions, also known as the ''measures'' <math>m_j,\!</math> for <math>j\!</math> = 0 to 15, where the entries in the body of the Table record the values that each <math>m_j\!</math> assigns to each <math>f_i.\!</math> | + | Table 10 lists the sixteen higher order propositions about propositions on one boolean variable, organized in the following fashion: Columns 1 and 2 form a truth table for the four <math>f : \mathbb{B} \to \mathbb{B},</math> turned on its side from the way that one is most likely accustomed to see truth tables, with the row leaders in Column 1 displaying the names of the functions <math>f_i,\!</math> for <math>i\!</math> = 1 to 4, while the entries in Column 2 give the values of each function for the argument values that are listed in the corresponding column head. Column 3 displays one of the more usual expressions for the proposition in question. The last sixteen columns are topped by a collection of conventional names for the higher order propositions, also known as the ''measures'' <math>m_j,\!</math> for <math>j\!</math> = 0 to 15, where the entries in the body of the Table record the values that each <math>m_j\!</math> assigns to each <math>f_i.\!</math> |
| | | |
| {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:white; color:black; font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:white; color:black; font-weight:bold; text-align:center; width:96%" |
− | |+ '''Table 1. Higher Order Propositions (''n'' = 1)''' | + | |+ '''Table 10. Higher Order Propositions (''n'' = 1)''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
| | align="right" | <math>x:</math> | | | align="right" | <math>x:</math> |
Line 119: |
Line 119: |
| |}<br> | | |}<br> |
| | | |
− | I am going to put off explaining Table 2, that presents a sample of what I call ''interpretive categories'' for higher order propositions, until after we get beyond the 1-dimensional case, since these lower dimensional cases tend to be a bit ''condensed'' or ''degenerate'' in their structures, and a lot of what is going on here will almost automatically become clearer as soon as we get even two logical variables into the mix. | + | I am going to put off explaining Table 11, that presents a sample of what I call ''interpretive categories'' for higher order propositions, until after we get beyond the 1-dimensional case, since these lower dimensional cases tend to be a bit ''condensed'' or ''degenerate'' in their structures, and a lot of what is going on here will almost automatically become clearer as soon as we get even two logical variables into the mix. |
| | | |
| {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
− | |+ '''Table 2. Interpretive Categories for Higher Order Propositions (''n'' = 1)''' | + | |+ '''Table 11. Interpretive Categories for Higher Order Propositions (''n'' = 1)''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
| | Measure | | | Measure |
Line 289: |
Line 289: |
| To save a few words in the remainder of this discussion, I will use the terms ''measure'' and ''qualifier'' to refer to all types of higher order propositions and operators. To describe the present setting in picturesque terms, the propositions of <math>[u, v]\!</math> may be regarded as a gallery of sixteen venn diagrams, while the measures <math>m : (X \to \mathbb{B}) \to \mathbb{B}</math> are analogous to a body of judges or a panel of critical viewers, each of whom evaluates each of the pictures as a whole and reports the ones that find favor or not. In this way, each judge <math>m_j\!</math> partitions the gallery of pictures into two aesthetic portions, the pictures <math>m_j^{-1}(1)\!</math> that <math>m_j\!</math> likes and the pictures <math>m_j^{-1}(0)\!</math> that <math>m_j\!</math> dislikes. | | To save a few words in the remainder of this discussion, I will use the terms ''measure'' and ''qualifier'' to refer to all types of higher order propositions and operators. To describe the present setting in picturesque terms, the propositions of <math>[u, v]\!</math> may be regarded as a gallery of sixteen venn diagrams, while the measures <math>m : (X \to \mathbb{B}) \to \mathbb{B}</math> are analogous to a body of judges or a panel of critical viewers, each of whom evaluates each of the pictures as a whole and reports the ones that find favor or not. In this way, each judge <math>m_j\!</math> partitions the gallery of pictures into two aesthetic portions, the pictures <math>m_j^{-1}(1)\!</math> that <math>m_j\!</math> likes and the pictures <math>m_j^{-1}(0)\!</math> that <math>m_j\!</math> dislikes. |
| | | |
− | There are <math>2^{16} = 65536\!</math> measures of the type <math>m : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}.</math> Table 3 introduces the first 24 of these measures in the fashion of the higher order truth table that I used before. The column headed <math>m_j\!</math> shows the values of the measure <math>m_j\!</math> on each of the propositions <math>f_i : \mathbb{B}^2 \to \mathbb{B},</math> for <math>i\!</math> = 0 to 23, with blank entries in the Table being optional for values of zero. The arrangement of measures that continues according to the plan indicated here is referred to as the ''standard ordering'' of these measures. In this scheme of things, the index <math>j\!</math> of the measure <math>m_j\!</math> is the decimal equivalent of the bit string that is associated with <math>m_j\!</math>'s functional values, which can be obtained in turn by reading the <math>j^\mathrm{th}\!</math> column of binary digits in the Table as the corresponding range of boolean values, taking them up in the order from bottom to top. | + | There are <math>2^{16} = 65536\!</math> measures of the type <math>m : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}.</math> Table 12 introduces the first 24 of these measures in the fashion of the higher order truth table that I used before. The column headed <math>m_j\!</math> shows the values of the measure <math>m_j\!</math> on each of the propositions <math>f_i : \mathbb{B}^2 \to \mathbb{B},</math> for <math>i\!</math> = 0 to 23, with blank entries in the Table being optional for values of zero. The arrangement of measures that continues according to the plan indicated here is referred to as the ''standard ordering'' of these measures. In this scheme of things, the index <math>j\!</math> of the measure <math>m_j\!</math> is the decimal equivalent of the bit string that is associated with <math>m_j\!</math>'s functional values, which can be obtained in turn by reading the <math>j^\mathrm{th}\!</math> column of binary digits in the Table as the corresponding range of boolean values, taking them up in the order from bottom to top. |
| | | |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:white; color:black; font-weight:bold; text-align:center; width:96%" |
− | |+ '''Table 3. Higher Order Propositions (''n'' = 2)''' | + | |+ '''Table 12. Higher Order Propositions (''n'' = 2)''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
| | align="right" | <math>u:</math><br><math>v:</math> | | | align="right" | <math>u:</math><br><math>v:</math> |
Line 322: |
Line 322: |
| | <math>m_{23}</math> | | | <math>m_{23}</math> |
| |- | | |- |
− | | <math>f_0</math> || 0000 || <math>(~)</math> | + | | <math>f_0</math> |
− | | 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1 | + | | 0000 |
− | | 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1 | + | | <math>(~)</math> |
− | | 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1 | + | | 0 || style="background:black; color:white" | 1 |
| + | | 0 || style="background:black; color:white" | 1 |
| + | | 0 || style="background:black; color:white" | 1 |
| + | | 0 || style="background:black; color:white" | 1 |
| + | | 0 || style="background:black; color:white" | 1 |
| + | | 0 || style="background:black; color:white" | 1 |
| + | | 0 || style="background:black; color:white" | 1 |
| + | | 0 || style="background:black; color:white" | 1 |
| + | | 0 || style="background:black; color:white" | 1 |
| + | | 0 || style="background:black; color:white" | 1 |
| + | | 0 || style="background:black; color:white" | 1 |
| + | | 0 || style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_1</math> || 0001 || <math>(u)(v)\!</math> | + | | <math>f_1</math> |
− | | || || 1 || 1 || 0 || 0 || 1 || 1 | + | | 0001 |
− | | 0 || 0 || 1 || 1 || 0 || 0 || 1 || 1 | + | | <math>(u)(v)\!</math> |
− | | 0 || 0 || 1 || 1 || 0 || 0 || 1 || 1 | + | | 0 || 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | 0 || 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | 0 || 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | 0 || 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | 0 || 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | 0 || 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_2</math> || 0010 || <math>(u) v\!</math> | + | | <math>f_2</math> |
− | | || || || || 1 || 1 || 1 || 1 | + | | 0010 |
− | | 0 || 0 || 0 || 0 || 1 || 1 || 1 || 1 | + | | <math>(u) v\!</math> |
− | | 0 || 0 || 0 || 0 || 1 || 1 || 1 || 1 | + | | 0 || 0 || 0 || 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | 0 || 0 || 0 || 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | 0 || 0 || 0 || 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_3</math> || 0011 || <math>(u)\!</math> | + | | <math>f_3</math> |
− | | || || || || || || || | + | | 0011 |
− | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | + | | <math>(u)\!</math> |
− | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| |- | | |- |
− | | <math>f_4</math> || 0100 || <math>u (v)\!</math> | + | | <math>f_4</math> |
− | | || || || || || || || | + | | 0100 |
− | | || || || || || || || | + | | <math>u (v)\!</math> |
− | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_5</math> || 0101 || <math>(v)\!</math> | + | | <math>f_5</math> |
− | | || || || || || || || | + | | 0101 |
− | | || || || || || || || | + | | <math>(v)\!</math> |
− | | || || || || || || || | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| |- | | |- |
− | | <math>f_6</math> || 0110 || <math>(u, v)\!</math> | + | | <math>f_6</math> |
− | | || || || || || || || | + | | 0110 |
− | | || || || || || || || | + | | <math>(u, v)\!</math> |
− | | || || || || || || || | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| |- | | |- |
− | | <math>f_7</math> || 0111 || <math>(u v)\!</math> | + | | <math>f_7</math> |
− | | || || || || || || || | + | | 0111 |
− | | || || || || || || || | + | | <math>(u v)\!</math> |
− | | || || || || || || || | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| |- | | |- |
− | | <math>f_8</math> || 1000 || <math>u v\!</math> | + | | <math>f_8</math> |
− | | || || || || || || || | + | | 1000 |
− | | || || || || || || || | + | | <math>u v\!</math> |
− | | || || || || || || || | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| |- | | |- |
− | | <math>f_9</math> || 1001 || <math>((u, v))\!</math> | + | | <math>f_9</math> |
− | | || || || || || || || | + | | 1001 |
− | | || || || || || || || | + | | <math>((u, v))\!</math> |
− | | || || || || || || || | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| |- | | |- |
− | | <math>f_{10}</math> || 1010 || <math>v\!</math> | + | | <math>f_{10}</math> |
− | | || || || || || || || | + | | 1010 |
− | | || || || || || || || | + | | <math>v\!</math> |
− | | || || || || || || || | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| |- | | |- |
− | | <math>f_{11}</math> || 1011 || <math>(u (v))\!</math> | + | | <math>f_{11}</math> |
− | | || || || || || || || | + | | 1011 |
− | | || || || || || || || | + | | <math>(u (v))\!</math> |
− | | || || || || || || || | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| |- | | |- |
− | | <math>f_{12}</math> || 1100 || <math>u\!</math> | + | | <math>f_{12}</math> |
− | | || || || || || || || | + | | 1100 |
− | | || || || || || || || | + | | <math>u\!</math> |
− | | || || || || || || || | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| |- | | |- |
− | | <math>f_{13}</math> || 1101 || <math>((u) v)\!</math> | + | | <math>f_{13}</math> |
− | | || || || || || || || | + | | 1101 |
− | | || || || || || || || | + | | <math>((u) v)\!</math> |
− | | || || || || || || || | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| |- | | |- |
− | | <math>f_{14}</math> || 1110 || <math>((u)(v))\!</math> | + | | <math>f_{14}</math> |
− | | || || || || || || || | + | | 1110 |
− | | || || || || || || || | + | | <math>((u)(v))\!</math> |
− | | || || || || || || || | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| |- | | |- |
− | | <math>f_{15}</math> || 1111 || <math>((~))\!</math> | + | | <math>f_{15}</math> |
− | | || || || || || || || | + | | 1111 |
− | | || || || || || || || | + | | <math>((~))\!</math> |
− | | || || || || || || || | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 |
| |}<br> | | |}<br> |
| | | |
Line 500: |
Line 582: |
| | | |
| {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
− | |+ '''Table 4. Qualifiers of Implication Ordering: <math>\alpha_i f = \Upsilon (f_i \Rightarrow f)</math>''' | + | |+ '''Table 13. Qualifiers of Implication Ordering: <math>\alpha_i f = \Upsilon \langle f_i, f \rangle = \Upsilon \langle f_i \Rightarrow f \rangle</math>''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
| | align="right" | <math>u:</math><br><math>v:</math> | | | align="right" | <math>u:</math><br><math>v:</math> |
| | 1100<br>1010 | | | 1100<br>1010 |
| | <math>f\!</math> | | | <math>f\!</math> |
| + | | <math>\alpha_0</math> |
| + | | <math>\alpha_1</math> |
| + | | <math>\alpha_2</math> |
| + | | <math>\alpha_3</math> |
| + | | <math>\alpha_4</math> |
| + | | <math>\alpha_5</math> |
| + | | <math>\alpha_6</math> |
| + | | <math>\alpha_7</math> |
| + | | <math>\alpha_8</math> |
| + | | <math>\alpha_9</math> |
| + | | <math>\alpha_{10}</math> |
| + | | <math>\alpha_{11}</math> |
| + | | <math>\alpha_{12}</math> |
| + | | <math>\alpha_{13}</math> |
| + | | <math>\alpha_{14}</math> |
| | <math>\alpha_{15}</math> | | | <math>\alpha_{15}</math> |
− | | <math>\alpha_{14}</math>
| |
− | | <math>\alpha_{13}</math>
| |
− | | <math>\alpha_{12}</math>
| |
− | | <math>\alpha_{11}</math>
| |
− | | <math>\alpha_{10}</math>
| |
− | | <math>\alpha_9</math>
| |
− | | <math>\alpha_8</math>
| |
− | | <math>\alpha_7</math>
| |
− | | <math>\alpha_6</math>
| |
− | | <math>\alpha_5</math>
| |
− | | <math>\alpha_4</math>
| |
− | | <math>\alpha_3</math>
| |
− | | <math>\alpha_2</math>
| |
− | | <math>\alpha_1</math>
| |
− | | <math>\alpha_0</math>
| |
| |- | | |- |
− | | <math>f_0</math> || 0000 || <math>(~)</math> | + | | <math>f_0</math> |
− | | || || || || || || || | + | | 0000 |
− | | || || || || || || || 1 | + | | <math>(~)</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_1</math> || 0001 || <math>(u)(v)\!</math> | + | | <math>f_1</math> |
− | | || || || || || || || | + | | 0001 |
− | | || || || || || || 1 || 1 | + | | <math>(u)(v)\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_2</math> || 0010 || <math>(u) v\!</math> | + | | <math>f_2</math> |
− | | || || || || || || || | + | | 0010 |
− | | || || || || || 1 || || 1 | + | | <math>(u) v\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_3</math> || 0011 || <math>(u)\!</math> | + | | <math>f_3</math> |
− | | || || || || || || || | + | | 0011 |
− | | || || || || 1 || 1 || 1 || 1 | + | | <math>(u)\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_4</math> || 0100 || <math>u (v)\!</math> | + | | <math>f_4</math> |
− | | || || || || || || || | + | | 0100 |
− | | || || || 1 || || || || 1 | + | | <math>u (v)\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_5</math> || 0101 || <math>(v)\!</math> | + | | <math>f_5</math> |
− | | || || || || || || || | + | | 0101 |
− | | || || 1 || 1 || || || 1 || 1 | + | | <math>(v)\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_6</math> || 0110 || <math>(u, v)\!</math> | + | | <math>f_6</math> |
− | | || || || || || || || | + | | 0110 |
− | | || 1 || || 1 || || 1 || || 1 | + | | <math>(u, v)\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_7</math> || 0111 || <math>(u v)\!</math> | + | | <math>f_7</math> |
− | | || || || || || || || | + | | 0111 |
− | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | + | | <math>(u v)\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_8</math> || 1000 || <math>u v\!</math> | + | | <math>f_8</math> |
− | | || || || || || || || 1 | + | | 1000 |
− | | || || || || || || || 1 | + | | <math>u v\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_9</math> || 1001 || <math>((u, v))\!</math> | + | | <math>f_9</math> |
− | | || || || || || || 1 || 1 | + | | 1001 |
− | | || || || || || || 1 || 1 | + | | <math>((u, v))\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_{10}</math> || 1010 || <math>v\!</math> | + | | <math>f_{10}</math> |
− | | || || || || || 1 || || 1 | + | | 1010 |
− | | || || || || || 1 || || 1 | + | | <math>v\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_{11}</math> || 1011 || <math>(u (v))\!</math> | + | | <math>f_{11}</math> |
− | | || || || || 1 || 1 || 1 || 1 | + | | 1011 |
− | | || || || || 1 || 1 || 1 || 1 | + | | <math>(u (v))\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_{12}</math> || 1100 || <math>u\!</math> | + | | <math>f_{12}</math> |
− | | || || || 1 || || || || 1 | + | | 1100 |
− | | || || || 1 || || || || 1 | + | | <math>u\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_{13}</math> || 1101 || <math>((u) v)\!</math> | + | | <math>f_{13}</math> |
− | | || || 1 || 1 || || || 1 || 1 | + | | 1101 |
− | | || || 1 || 1 || || || 1 || 1 | + | | <math>((u) v)\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_{14}</math> || 1110 || <math>((u)(v))\!</math> | + | | <math>f_{14}</math> |
− | | || 1 || || 1 || || 1 || || 1 | + | | 1110 |
− | | || 1 || || 1 || || 1 || || 1 | + | | <math>((u)(v))\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_{15}</math> || 1111 || <math>((~))</math> | + | | <math>f_{15}</math> |
− | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | + | | 1111 |
− | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | + | | <math>((~))</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| |}<br> | | |}<br> |
| | | |
| {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
− | |+ '''Table 5. Qualifiers of Implication Ordering: <math>\beta_i f = \Upsilon (f \Rightarrow f_i)</math>''' | + | |+ '''Table 14. Qualifiers of Implication Ordering: <math>\beta_i f = \Upsilon \langle f, f_i \rangle = \Upsilon \langle f \Rightarrow f_i \rangle</math>''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
| | align="right" | <math>u:</math><br><math>v:</math> | | | align="right" | <math>u:</math><br><math>v:</math> |
Line 610: |
Line 948: |
| | <math>\beta_{15}</math> | | | <math>\beta_{15}</math> |
| |- | | |- |
− | | <math>f_0</math> || 0000 || <math>(~)</math> | + | | <math>f_0</math> |
− | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | + | | 0000 |
− | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | + | | <math>(~)</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_1</math> || 0001 || <math>(u)(v)\!</math> | + | | <math>f_1</math> |
− | | || 1 || || 1 || || 1 || || 1 | + | | 0001 |
− | | || 1 || || 1 || || 1 || || 1 | + | | <math>(u)(v)\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_2</math> || 0010 || <math>(u) v\!</math> | + | | <math>f_2</math> |
− | | || || 1 || 1 || || || 1 || 1 | + | | 0010 |
− | | || || 1 || 1 || || || 1 || 1 | + | | <math>(u) v\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_3</math> || 0011 || <math>(u)\!</math> | + | | <math>f_3</math> |
− | | || || || 1 || || || || 1 | + | | 0011 |
− | | || || || 1 || || || || 1 | + | | <math>(u)\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_4</math> || 0100 || <math>u (v)\!</math> | + | | <math>f_4</math> |
− | | || || || || 1 || 1 || 1 || 1 | + | | 0100 |
− | | || || || || 1 || 1 || 1 || 1 | + | | <math>u (v)\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_5</math> || 0101 || <math>(v)\!</math> | + | | <math>f_5</math> |
− | | || || || || || 1 || || 1 | + | | 0101 |
− | | || || || || || 1 || || 1 | + | | <math>(v)\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_6</math> || 0110 || <math>(u, v)\!</math> | + | | <math>f_6</math> |
− | | || || || || || || 1 || 1 | + | | 0110 |
− | | || || || || || || 1 || 1 | + | | <math>(u, v)\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_7</math> || 0111 || <math>(u v)\!</math> | + | | <math>f_7</math> |
− | | || || || || || || || 1 | + | | 0111 |
− | | || || || || || || || 1 | + | | <math>(u v)\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_8</math> || 1000 || <math>u v\!</math> | + | | <math>f_8</math> |
− | | || || || || || || || | + | | 1000 |
− | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | + | | <math>u v\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_9</math> || 1001 || <math>((u, v))\!</math> | + | | <math>f_9</math> |
− | | || || || || || || || | + | | 1001 |
− | | || 1 || || 1 || || 1 || || 1 | + | | <math>((u, v))\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_{10}</math> || 1010 || <math>v\!</math> | + | | <math>f_{10}</math> |
− | | || || || || || || || | + | | 1010 |
− | | || || 1 || 1 || || || 1 || 1 | + | | <math>v\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_{11}</math> || 1011 || <math>(u (v))\!</math> | + | | <math>f_{11}</math> |
− | | || || || || || || || | + | | 1011 |
− | | || || || 1 || || || || 1 | + | | <math>(u (v))\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_{12}</math> || 1100 || <math>u\!</math> | + | | <math>f_{12}</math> |
− | | || || || || || || || | + | | 1100 |
− | | || || || || 1 || 1 || 1 || 1 | + | | <math>u\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_{13}</math> || 1101 || <math>((u) v)\!</math> | + | | <math>f_{13}</math> |
− | | || || || || || || || | + | | 1101 |
− | | || || || || || 1 || || 1 | + | | <math>((u) v)\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_{14}</math> || 1110 || <math>((u)(v))\!</math> | + | | <math>f_{14}</math> |
− | | || || || || || || || | + | | 1110 |
− | | || || || || || || 1 || 1 | + | | <math>((u)(v))\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_{15}</math> || 1111 || <math>((~))\!</math> | + | | <math>f_{15}</math> |
− | | || || || || || || || | + | | 1111 |
− | | || || || || || || || 1 | + | | <math>((~))\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| |}<br> | | |}<br> |
| | | |
Line 757: |
Line 1,351: |
| \end{array}</math></center> | | \end{array}</math></center> |
| | | |
− | Intuitively, the <math>\ell_{ij}\!</math> operators may be thought of as qualifying propositions according to the elements of the universe of discourse that each proposition positively values. Taken together, these measures provide us with the means to express many useful observations about the propositions in <math>X^\circ = [u, v],</math> and so they mediate a subtext <math>[\ell_{00}, \ell_{01}, \ell_{10}, \ell_{11}]\!</math> that takes place within the higher order universe of discourse <math>X^{\circ 2} = [X^\circ] = [[u, v]].\!</math> Figure 6 summarizes the action of the <math>\ell_{ij}\!</math> operators on the <math>f_i\!</math> within <math>X^{\circ 2}.\!</math> | + | Intuitively, the <math>\ell_{ij}\!</math> operators may be thought of as qualifying propositions according to the elements of the universe of discourse that each proposition positively values. Taken together, these measures provide us with the means to express many useful observations about the propositions in <math>X^\circ = [u, v],</math> and so they mediate a subtext <math>[\ell_{00}, \ell_{01}, \ell_{10}, \ell_{11}]\!</math> that takes place within the higher order universe of discourse <math>X^{\circ 2} = [X^\circ] = [[u, v]].\!</math> Figure 15 summarizes the action of the <math>\ell_{ij}\!</math> operators on the <math>f_i\!</math> within <math>X^{\circ 2}.\!</math> |
| | | |
| <pre> | | <pre> |
Line 805: |
Line 1,399: |
| | | | | | | |
| o-----------------------------------------------------------o | | o-----------------------------------------------------------o |
− | Figure 6. Higher Order Universe of Discourse [L_ij] c [[u, v]] | + | Figure 15. Higher Order Universe of Discourse [L_ij] c [[u, v]] |
| </pre> | | </pre> |
| | | |
Line 817: |
Line 1,411: |
| | | |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; width:96%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; width:96%" |
− | |+ '''Table 7. Syllogistic Premisses as Higher Order Indicator Functions''' | + | |+ '''Table 16. Syllogistic Premisses as Higher Order Indicator Functions''' |
| | | | | |
| <math>\begin{array}{clcl} | | <math>\begin{array}{clcl} |
Line 839: |
Line 1,433: |
| |}<br> | | |}<br> |
| | | |
− | Tables 8 and 9 develop these ideas in more detail. | + | The following Tables develop these ideas in more detail. |
| + | |
| + | {| align="center" border="1" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| + | |+ '''Table 17. Simple Qualifiers of Propositions (Version 1)''' |
| + | |- style="background:ghostwhite" |
| + | | align="right" | <math>u:</math><br><math>v:</math> |
| + | | 1100<br>1010 |
| + | | <math>f\!</math> |
| + | | <math>(\ell_{11})</math><br><math>\text{No } u </math><br><math>\text{is } v </math> |
| + | | <math>(\ell_{10})</math><br><math>\text{No } u </math><br><math>\text{is }(v)</math> |
| + | | <math>(\ell_{01})</math><br><math>\text{No }(u)</math><br><math>\text{is } v </math> |
| + | | <math>(\ell_{00})</math><br><math>\text{No }(u)</math><br><math>\text{is }(v)</math> |
| + | | <math> \ell_{00} </math><br><math>\text{Some }(u)</math><br><math>\text{is }(v)</math> |
| + | | <math> \ell_{01} </math><br><math>\text{Some }(u)</math><br><math>\text{is } v </math> |
| + | | <math> \ell_{10} </math><br><math>\text{Some } u </math><br><math>\text{is }(v)</math> |
| + | | <math> \ell_{11} </math><br><math>\text{Some } u </math><br><math>\text{is } v </math> |
| + | |- |
| + | | <math>f_0</math> |
| + | | 0000 |
| + | | <math>(~)</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | |- |
| + | | <math>f_1</math> |
| + | | 0001 |
| + | | <math>(u)(v)\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | |- |
| + | | <math>f_2</math> |
| + | | 0010 |
| + | | <math>(u) v\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | |- |
| + | | <math>f_3</math> |
| + | | 0011 |
| + | | <math>(u)\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | |- |
| + | | <math>f_4</math> |
| + | | 0100 |
| + | | <math>u (v)\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | |- |
| + | | <math>f_5</math> |
| + | | 0101 |
| + | | <math>(v)\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | |- |
| + | | <math>f_6</math> |
| + | | 0110 |
| + | | <math>(u, v)\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | |- |
| + | | <math>f_7</math> |
| + | | 0111 |
| + | | <math>(u v)\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | |- |
| + | | <math>f_8</math> |
| + | | 1000 |
| + | | <math>u v\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | |- |
| + | | <math>f_9</math> |
| + | | 1001 |
| + | | <math>((u, v))\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | |- |
| + | | <math>f_{10}</math> |
| + | | 1010 |
| + | | <math>v\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | |- |
| + | | <math>f_{11}</math> |
| + | | 1011 |
| + | | <math>(u (v))\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | |- |
| + | | <math>f_{12}</math> |
| + | | 1100 |
| + | | <math>u\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | |- |
| + | | <math>f_{13}</math> |
| + | | 1101 |
| + | | <math>((u) v)\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | |- |
| + | | <math>f_{14}</math> |
| + | | 1110 |
| + | | <math>((u)(v))\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | |- |
| + | | <math>f_{15}</math> |
| + | | 1111 |
| + | | <math>((~))</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | |}<br> |
| | | |
| {| align="center" border="1" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
− | |+ '''Table 8. Simple Qualifiers of Propositions (''n'' = 2)''' | + | |+ '''Table 18. Simple Qualifiers of Propositions (Version 2)''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
| | align="right" | <math>u:</math><br><math>v:</math> | | | align="right" | <math>u:</math><br><math>v:</math> |
Line 856: |
Line 1,658: |
| | <math> \ell_{11} </math><br><math>\text{Some } u </math><br><math>\text{is } v </math> | | | <math> \ell_{11} </math><br><math>\text{Some } u </math><br><math>\text{is } v </math> |
| |- | | |- |
− | | <math>f_0</math> || 0000 || <math>(~)</math> | + | | <math>f_0</math> |
− | | 1 || 1 || 1 || 1 || 0 || 0 || 0 || 0 | + | | 0000 |
| + | | <math>(~)</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_1</math> || 0001 || <math>(u)(v)\!</math> | + | | <math>f_1</math> |
− | | 1 || 1 || 1 || 0 || 1 || 0 || 0 || 0 | + | | 0001 |
| + | | <math>(u)(v)\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_2</math> || 0010 || <math>(u) v\!</math> | + | | <math>f_2</math> |
− | | 1 || 1 || 0 || 1 || 0 || 1 || 0 || 0 | + | | 0010 |
| + | | <math>(u) v\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_3</math> || 0011 || <math>(u)\!</math> | + | | <math>f_4</math> |
− | | 1 || 1 || 0 || 0 || 1 || 1 || 0 || 0 | + | | 0100 |
| + | | <math>u (v)\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_4</math> || 0100 || <math>u (v)\!</math> | + | | <math>f_8</math> |
− | | 1 || 0 || 1 || 1 || 0 || 0 || 1 || 0 | + | | 1000 |
| + | | <math>u v\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_5</math> || 0101 || <math>(v)\!</math> | + | | <math>f_3</math> |
− | | 1 || 0 || 1 || 0 || 1 || 0 || 1 || 0 | + | | 0011 |
| + | | <math>(u)\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_6</math> || 0110 || <math>(u, v)\!</math> | + | | <math>f_{12}</math> |
− | | 1 || 0 || 0 || 1 || 0 || 1 || 1 || 0 | + | | 1100 |
| + | | <math>u\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_7</math> || 0111 || <math>(u v)\!</math> | + | | <math>f_6</math> |
− | | 1 || 0 || 0 || 0 || 1 || 1 || 1 || 0 | + | | 0110 |
| + | | <math>(u, v)\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_8</math> || 1000 || <math>u v\!</math> | + | | <math>f_9</math> |
− | | 0 || 1 || 1 || 1 || 0 || 0 || 0 || 1 | + | | 1001 |
| + | | <math>((u, v))\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_9</math> || 1001 || <math>((u, v))\!</math> | + | | <math>f_5</math> |
− | | 0 || 1 || 1 || 0 || 1 || 0 || 0 || 1 | + | | 0101 |
| + | | <math>(v)\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_{10}</math> || 1010 || <math>v\!</math> | + | | <math>f_{10}</math> |
− | | 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1 | + | | 1010 |
| + | | <math>v\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_{11}</math> || 1011 || <math>(u (v))\!</math> | + | | <math>f_7</math> |
− | | 0 || 1 || 0 || 0 || 1 || 1 || 0 || 1 | + | | 0111 |
| + | | <math>(u v)\!</math> |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| |- | | |- |
− | | <math>f_{12}</math> || 1100 || <math>u\!</math> | + | | <math>f_{11}</math> |
− | | 0 || 0 || 1 || 1 || 0 || 0 || 1 || 1 | + | | 1011 |
| + | | <math>(u (v))\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_{13}</math> || 1101 || <math>((u) v)\!</math> | + | | <math>f_{13}</math> |
− | | 0 || 0 || 1 || 0 || 1 || 0 || 1 || 1 | + | | 1101 |
| + | | <math>((u) v)\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_{14}</math> || 1110 || <math>((u)(v))\!</math> | + | | <math>f_{14}</math> |
− | | 0 || 0 || 0 || 1 || 0 || 1 || 1 || 1 | + | | 1110 |
| + | | <math>((u)(v))\!</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| |- | | |- |
− | | <math>f_{15}</math> || 1111 || <math>((~))</math> | + | | <math>f_{15}</math> |
− | | 0 || 0 || 0 || 0 || 1 || 1 || 1 || 1 | + | | 1111 |
| + | | <math>((~))</math> |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:white; color:black" | 0 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| + | | style="background:black; color:white" | 1 |
| |}<br> | | |}<br> |
| | | |
| {| align="center" border="1" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
− | |+ '''Table 9. Relation of Quantifiers to Higher Order Propositions''' | + | |+ '''Table 19. Relation of Quantifiers to Higher Order Propositions''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
| | <math>\text{Mnemonic}</math> | | | <math>\text{Mnemonic}</math> |