| Line 38: | Line 38: | 
|  | For example, consider the case where <math>X = \mathbb{B}.</math>  Then there are exactly four propositions <math>f : \mathbb{B} \to \mathbb{B},</math> and exactly sixteen higher order propositions that are based on this set, all bearing the type <math>m : (\mathbb{B} \to \mathbb{B}) \to \mathbb{B}.</math> |  | For example, consider the case where <math>X = \mathbb{B}.</math>  Then there are exactly four propositions <math>f : \mathbb{B} \to \mathbb{B},</math> and exactly sixteen higher order propositions that are based on this set, all bearing the type <math>m : (\mathbb{B} \to \mathbb{B}) \to \mathbb{B}.</math> | 
|  |  |  |  | 
| − | Table 1 lists the sixteen higher order propositions about propositions on one boolean variable, organized in the following fashion:  Columns 1 and 2 form a truth table for the four <math>f : \mathbb{B} \to \mathbb{B},</math> turned on its side from the way that one is most likely accustomed to see truth tables, with the row leaders in Column 1 displaying the names of the functions <math>f_i,\!</math> for <math>i\!</math> = 1 to 4, while the entries in Column 2 give the values of each function for the argument values that are listed in the corresponding column head.  Column 3 displays one of the more usual expressions for the proposition in question.  The last sixteen columns are topped by a collection of conventional names for the higher order propositions, also known as the ''measures'' <math>m_j,\!</math> for <math>j\!</math> = 0 to 15, where the entries in the body of the Table record the values that each <math>m_j\!</math> assigns to each <math>f_i.\!</math> | + | Table 10 lists the sixteen higher order propositions about propositions on one boolean variable, organized in the following fashion:  Columns 1 and 2 form a truth table for the four <math>f : \mathbb{B} \to \mathbb{B},</math> turned on its side from the way that one is most likely accustomed to see truth tables, with the row leaders in Column 1 displaying the names of the functions <math>f_i,\!</math> for <math>i\!</math> = 1 to 4, while the entries in Column 2 give the values of each function for the argument values that are listed in the corresponding column head.  Column 3 displays one of the more usual expressions for the proposition in question.  The last sixteen columns are topped by a collection of conventional names for the higher order propositions, also known as the ''measures'' <math>m_j,\!</math> for <math>j\!</math> = 0 to 15, where the entries in the body of the Table record the values that each <math>m_j\!</math> assigns to each <math>f_i.\!</math> | 
|  |  |  |  | 
|  | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:white; color:black; font-weight:bold; text-align:center; width:96%" |  | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:white; color:black; font-weight:bold; text-align:center; width:96%" | 
| − | |+ '''Table 1.  Higher Order Propositions (''n'' = 1)''' | + | |+ '''Table 10.  Higher Order Propositions (''n'' = 1)''' | 
|  | |- style="background:ghostwhite" |  | |- style="background:ghostwhite" | 
|  | | align="right" | <math>x:</math> |  | | align="right" | <math>x:</math> | 
| Line 119: | Line 119: | 
|  | |}<br> |  | |}<br> | 
|  |  |  |  | 
| − | I am going to put off explaining Table 2, that presents a sample of what I call ''interpretive categories'' for higher order propositions, until after we get beyond the 1-dimensional case, since these lower dimensional cases tend to be a bit ''condensed'' or ''degenerate'' in their structures, and a lot of what is going on here will almost automatically become clearer as soon as we get even two logical variables into the mix. | + | I am going to put off explaining Table 11, that presents a sample of what I call ''interpretive categories'' for higher order propositions, until after we get beyond the 1-dimensional case, since these lower dimensional cases tend to be a bit ''condensed'' or ''degenerate'' in their structures, and a lot of what is going on here will almost automatically become clearer as soon as we get even two logical variables into the mix. | 
|  |  |  |  | 
|  | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |  | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | 
| − | |+ '''Table 2.  Interpretive Categories for Higher Order Propositions (''n'' = 1)''' | + | |+ '''Table 11.  Interpretive Categories for Higher Order Propositions (''n'' = 1)''' | 
|  | |- style="background:ghostwhite" |  | |- style="background:ghostwhite" | 
|  | | Measure |  | | Measure | 
| Line 289: | Line 289: | 
|  | To save a few words in the remainder of this discussion, I will use the terms ''measure'' and ''qualifier'' to refer to all types of higher order propositions and operators.  To describe the present setting in picturesque terms, the propositions of <math>[u, v]\!</math> may be regarded as a gallery of sixteen venn diagrams, while the measures <math>m : (X \to \mathbb{B}) \to \mathbb{B}</math> are analogous to a body of judges or a panel of critical viewers, each of whom evaluates each of the pictures as a whole and reports the ones that find favor or not.  In this way, each judge <math>m_j\!</math> partitions the gallery of pictures into two aesthetic portions, the pictures <math>m_j^{-1}(1)\!</math> that <math>m_j\!</math> likes and the pictures <math>m_j^{-1}(0)\!</math> that <math>m_j\!</math> dislikes. |  | To save a few words in the remainder of this discussion, I will use the terms ''measure'' and ''qualifier'' to refer to all types of higher order propositions and operators.  To describe the present setting in picturesque terms, the propositions of <math>[u, v]\!</math> may be regarded as a gallery of sixteen venn diagrams, while the measures <math>m : (X \to \mathbb{B}) \to \mathbb{B}</math> are analogous to a body of judges or a panel of critical viewers, each of whom evaluates each of the pictures as a whole and reports the ones that find favor or not.  In this way, each judge <math>m_j\!</math> partitions the gallery of pictures into two aesthetic portions, the pictures <math>m_j^{-1}(1)\!</math> that <math>m_j\!</math> likes and the pictures <math>m_j^{-1}(0)\!</math> that <math>m_j\!</math> dislikes. | 
|  |  |  |  | 
| − | There are <math>2^{16} = 65536\!</math> measures of the type <math>m : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}.</math>  Table 3 introduces the first 24 of these measures in the fashion of the higher order truth table that I used before.  The column headed <math>m_j\!</math> shows the values of the measure <math>m_j\!</math> on each of the propositions <math>f_i : \mathbb{B}^2 \to \mathbb{B},</math> for <math>i\!</math> = 0 to 23, with blank entries in the Table being optional for values of zero.  The arrangement of measures that continues according to the plan indicated here is referred to as the ''standard ordering'' of these measures.  In this scheme of things, the index <math>j\!</math> of the measure <math>m_j\!</math> is the decimal equivalent of the bit string that is associated with <math>m_j\!</math>'s functional values, which can be obtained in turn by reading the <math>j^\mathrm{th}\!</math> column of binary digits in the Table as the corresponding range of boolean values, taking them up in the order from bottom to top. | + | There are <math>2^{16} = 65536\!</math> measures of the type <math>m : (\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}.</math>  Table 12 introduces the first 24 of these measures in the fashion of the higher order truth table that I used before.  The column headed <math>m_j\!</math> shows the values of the measure <math>m_j\!</math> on each of the propositions <math>f_i : \mathbb{B}^2 \to \mathbb{B},</math> for <math>i\!</math> = 0 to 23, with blank entries in the Table being optional for values of zero.  The arrangement of measures that continues according to the plan indicated here is referred to as the ''standard ordering'' of these measures.  In this scheme of things, the index <math>j\!</math> of the measure <math>m_j\!</math> is the decimal equivalent of the bit string that is associated with <math>m_j\!</math>'s functional values, which can be obtained in turn by reading the <math>j^\mathrm{th}\!</math> column of binary digits in the Table as the corresponding range of boolean values, taking them up in the order from bottom to top. | 
|  |  |  |  | 
| − | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:white; color:black; font-weight:bold; text-align:center; width:96%" | 
| − | |+ '''Table 3.  Higher Order Propositions (''n'' = 2)''' | + | |+ '''Table 12.  Higher Order Propositions (''n'' = 2)''' | 
|  | |- style="background:ghostwhite" |  | |- style="background:ghostwhite" | 
|  | | align="right" | <math>u:</math><br><math>v:</math> |  | | align="right" | <math>u:</math><br><math>v:</math> | 
| Line 322: | Line 322: | 
|  | | <math>m_{23}</math> |  | | <math>m_{23}</math> | 
|  | |- |  | |- | 
| − | | <math>f_0</math> || 0000|| <math>(~)</math> | + | | <math>f_0</math> | 
| − | | 0    || 1   ||0    || 1   ||0    || 1   ||0    || 1 | + | | 0000 | 
| − | | 0    || 1   ||0    || 1   ||0    || 1   ||0    || 1 | + | | <math>(~)</math> | 
| − | | 0    || 1   ||0    || 1   ||0    || 1   ||0    || 1 | + | | 0 || style="background:black; color:white" | 1 | 
|  | + | | 0 || style="background:black; color:white" | 1 | 
|  | + | | 0 || style="background:black; color:white" | 1 | 
|  | + | | 0 || style="background:black; color:white" | 1 | 
|  | + | | 0 || style="background:black; color:white" | 1 | 
|  | + | | 0 || style="background:black; color:white" | 1 | 
|  | + | | 0 || style="background:black; color:white" | 1 | 
|  | + | | 0 || style="background:black; color:white" | 1 | 
|  | + | | 0 || style="background:black; color:white" | 1 | 
|  | + | | 0 || style="background:black; color:white" | 1 | 
|  | + | | 0 || style="background:black; color:white" | 1 | 
|  | + | | 0 || style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_1</math> || 0001|| <math>(u)(v)\!</math> | + | | <math>f_1</math> | 
| − | | || || 1   || 1   || 0   || 0   || 1   || 1 | + | | 0001 | 
| − | | 0    || 0   || 1   || 1   || 0   || 0   || 1   || 1 | + | | <math>(u)(v)\!</math> | 
| − | | 0    || 0   || 1   || 1   || 0   || 0   || 1   || 1 | + | | 0 || 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | 0 || 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | 0 || 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | 0 || 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | 0 || 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | 0 || 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_2</math> || 0010|| <math>(u) v\!</math> | + | | <math>f_2</math> | 
| − | | || || || || 1   || 1   || 1   || 1 | + | | 0010 | 
| − | | 0    || 0   || 0   || 0   || 1   || 1   || 1   || 1 | + | | <math>(u) v\!</math> | 
| − | | 0    || 0   || 0   || 0   || 1   || 1   || 1   || 1 | + | | 0 || 0 || 0 || 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | 0 || 0 || 0 || 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | 0 || 0 || 0 || 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_3</math> || 0011|| <math>(u)\!</math> | + | | <math>f_3</math> | 
| − | | || || || || || || ||  | + | | 0011 | 
| − | | 1    || 1   || 1   || 1   || 1   || 1   || 1   || 1 | + | | <math>(u)\!</math> | 
| − | | 0    || 0   || 0   || 0   || 0   || 0   || 0   || 0 | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | |- |  | |- | 
| − | | <math>f_4</math> || 0100|| <math>u (v)\!</math> | + | | <math>f_4</math> | 
| − | | || || || || || || ||  | + | | 0100 | 
| − | | || || || || || || ||  | + | | <math>u (v)\!</math> | 
| − | | 1    || 1   || 1   || 1   || 1   || 1   || 1   || 1 | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_5</math> || 0101|| <math>(v)\!</math> | + | | <math>f_5</math> | 
| − | | || || || || || || ||  | + | | 0101 | 
| − | | || || || || || || ||  | + | | <math>(v)\!</math> | 
| − | | || || || || || || ||  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | |- |  | |- | 
| − | | <math>f_6</math> || 0110|| <math>(u, v)\!</math> | + | | <math>f_6</math> | 
| − | | || || || || || || ||  | + | | 0110 | 
| − | | || || || || || || ||  | + | | <math>(u, v)\!</math> | 
| − | | || || || || || || ||  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | |- |  | |- | 
| − | | <math>f_7</math> || 0111|| <math>(u v)\!</math> | + | | <math>f_7</math> | 
| − | | || || || || || || ||  | + | | 0111 | 
| − | | || || || || || || ||  | + | | <math>(u v)\!</math> | 
| − | | || || || || || || ||  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | |- |  | |- | 
| − | | <math>f_8</math> || 1000|| <math>u v\!</math> | + | | <math>f_8</math> | 
| − | | || || || || || || ||  | + | | 1000 | 
| − | | || || || || || || ||  | + | | <math>u v\!</math> | 
| − | | || || || || || || ||  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | |- |  | |- | 
| − | | <math>f_9</math> || 1001|| <math>((u, v))\!</math> | + | | <math>f_9</math> | 
| − | | || || || || || || ||  | + | | 1001 | 
| − | | || || || || || || ||  | + | | <math>((u, v))\!</math> | 
| − | | || || || || || || ||  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | |- |  | |- | 
| − | | <math>f_{10}</math> || 1010|| <math>v\!</math> | + | | <math>f_{10}</math> | 
| − | | || || || || || || ||  | + | | 1010 | 
| − | | || || || || || || ||  | + | | <math>v\!</math> | 
| − | | || || || || || || ||  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | |- |  | |- | 
| − | | <math>f_{11}</math> || 1011|| <math>(u (v))\!</math> | + | | <math>f_{11}</math> | 
| − | | || || || || || || ||  | + | | 1011 | 
| − | | || || || || || || ||  | + | | <math>(u (v))\!</math> | 
| − | | || || || || || || ||  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | |- |  | |- | 
| − | | <math>f_{12}</math> || 1100|| <math>u\!</math> | + | | <math>f_{12}</math> | 
| − | | || || || || || || ||  | + | | 1100 | 
| − | | || || || || || || ||  | + | | <math>u\!</math> | 
| − | | || || || || || || ||  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | |- |  | |- | 
| − | | <math>f_{13}</math> || 1101|| <math>((u) v)\!</math> | + | | <math>f_{13}</math> | 
| − | | || || || || || || ||  | + | | 1101 | 
| − | | || || || || || || ||  | + | | <math>((u) v)\!</math> | 
| − | | || || || || || || ||  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | |- |  | |- | 
| − | | <math>f_{14}</math> || 1110|| <math>((u)(v))\!</math> | + | | <math>f_{14}</math> | 
| − | | || || || || || || ||  | + | | 1110 | 
| − | | || || || || || || ||  | + | | <math>((u)(v))\!</math> | 
| − | | || || || || || || ||  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | |- |  | |- | 
| − | | <math>f_{15}</math> || 1111|| <math>((~))\!</math> | + | | <math>f_{15}</math> | 
| − | | || || || || || || ||  | + | | 1111 | 
| − | | || || || || || || ||  | + | | <math>((~))\!</math> | 
| − | | || || || || || || ||  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | + | | 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0 | 
|  | |}<br> |  | |}<br> | 
|  |  |  |  | 
| Line 500: | Line 582: | 
|  |  |  |  | 
|  | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |  | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | 
| − | |+ '''Table 4.  Qualifiers of Implication Ordering:  <math>\alpha_i f = \Upsilon(f_i \Rightarrow f)</math>''' | + | |+ '''Table 13.  Qualifiers of Implication Ordering:  <math>\alpha_i f = \Upsilon \langle f_i, f \rangle = \Upsilon \langle f_i \Rightarrow f \rangle</math>''' | 
|  | |- style="background:ghostwhite" |  | |- style="background:ghostwhite" | 
|  | | align="right" | <math>u:</math><br><math>v:</math> |  | | align="right" | <math>u:</math><br><math>v:</math> | 
|  | | 1100<br>1010 |  | | 1100<br>1010 | 
|  | | <math>f\!</math> |  | | <math>f\!</math> | 
|  | + | | <math>\alpha_0</math> | 
|  | + | | <math>\alpha_1</math> | 
|  | + | | <math>\alpha_2</math> | 
|  | + | | <math>\alpha_3</math> | 
|  | + | | <math>\alpha_4</math> | 
|  | + | | <math>\alpha_5</math> | 
|  | + | | <math>\alpha_6</math> | 
|  | + | | <math>\alpha_7</math> | 
|  | + | | <math>\alpha_8</math> | 
|  | + | | <math>\alpha_9</math> | 
|  | + | | <math>\alpha_{10}</math> | 
|  | + | | <math>\alpha_{11}</math> | 
|  | + | | <math>\alpha_{12}</math> | 
|  | + | | <math>\alpha_{13}</math> | 
|  | + | | <math>\alpha_{14}</math> | 
|  | | <math>\alpha_{15}</math> |  | | <math>\alpha_{15}</math> | 
| − | | <math>\alpha_{14}</math>
 |  | 
| − | | <math>\alpha_{13}</math>
 |  | 
| − | | <math>\alpha_{12}</math>
 |  | 
| − | | <math>\alpha_{11}</math>
 |  | 
| − | | <math>\alpha_{10}</math>
 |  | 
| − | | <math>\alpha_9</math>
 |  | 
| − | | <math>\alpha_8</math>
 |  | 
| − | | <math>\alpha_7</math>
 |  | 
| − | | <math>\alpha_6</math>
 |  | 
| − | | <math>\alpha_5</math>
 |  | 
| − | | <math>\alpha_4</math>
 |  | 
| − | | <math>\alpha_3</math>
 |  | 
| − | | <math>\alpha_2</math>
 |  | 
| − | | <math>\alpha_1</math>
 |  | 
| − | | <math>\alpha_0</math>
 |  | 
|  | |- |  | |- | 
| − | | <math>f_0</math> || 0000|| <math>(~)</math> | + | | <math>f_0</math> | 
| − | | || || || || || || ||  | + | | 0000 | 
| − | | || || || || || || ||1 | + | | <math>(~)</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_1</math> || 0001|| <math>(u)(v)\!</math> | + | | <math>f_1</math> | 
| − | | || || || || || || ||  | + | | 0001 | 
| − | | || || || || || ||1    ||1 | + | | <math>(u)(v)\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_2</math> || 0010|| <math>(u) v\!</math> | + | | <math>f_2</math> | 
| − | | || || || || || || ||  | + | | 0010 | 
| − | | || || || || ||1    || ||1 | + | | <math>(u) v\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_3</math> || 0011|| <math>(u)\!</math> | + | | <math>f_3</math> | 
| − | | || || || || || || ||  | + | | 0011 | 
| − | | || || || ||1    ||1    ||1    ||1 | + | | <math>(u)\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_4</math> || 0100|| <math>u (v)\!</math> | + | | <math>f_4</math> | 
| − | | || || || || || || ||  | + | | 0100 | 
| − | | || || ||1    || || || ||1 | + | | <math>u (v)\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_5</math> || 0101|| <math>(v)\!</math> | + | | <math>f_5</math> | 
| − | | || || || || || || ||  | + | | 0101 | 
| − | | || ||1    ||1    || || ||1    ||1 | + | | <math>(v)\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_6</math> || 0110|| <math>(u, v)\!</math> | + | | <math>f_6</math> | 
| − | | || || || || || || ||  | + | | 0110 | 
| − | | ||1    || ||1    || ||1    || ||1 | + | | <math>(u, v)\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_7</math> || 0111|| <math>(u v)\!</math> | + | | <math>f_7</math> | 
| − | | || || || || || || ||  | + | | 0111 | 
| − | | 1    ||1    ||1    ||1    ||1    ||1    ||1    ||1 | + | | <math>(u v)\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_8</math> || 1000|| <math>u v\!</math> | + | | <math>f_8</math> | 
| − | | || || || || || || || 1 | + | | 1000 | 
| − | | || || || || || || || 1 | + | | <math>u v\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_9</math> || 1001|| <math>((u, v))\!</math> | + | | <math>f_9</math> | 
| − | | || || || || || ||1    || 1 | + | | 1001 | 
| − | | || || || || || ||1    ||1 | + | | <math>((u, v))\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_{10}</math> || 1010|| <math>v\!</math> | + | | <math>f_{10}</math> | 
| − | | || || || || ||1    || || 1 | + | | 1010 | 
| − | | || || || || ||1    || || 1 | + | | <math>v\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_{11}</math> || 1011|| <math>(u (v))\!</math> | + | | <math>f_{11}</math> | 
| − | | || || || || 1   ||1    ||1    ||1 | + | | 1011 | 
| − | | || || || || 1   ||1    ||1    ||1 | + | | <math>(u (v))\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_{12}</math> || 1100|| <math>u\!</math> | + | | <math>f_{12}</math> | 
| − | | || || || 1   || || || || 1 | + | | 1100 | 
| − | | || || || 1   || || || || 1 | + | | <math>u\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_{13}</math> || 1101|| <math>((u) v)\!</math> | + | | <math>f_{13}</math> | 
| − | | || || 1   ||1    || || || 1   || 1 | + | | 1101 | 
| − | | || || 1   || 1   || || || 1   ||1 | + | | <math>((u) v)\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_{14}</math> || 1110|| <math>((u)(v))\!</math> | + | | <math>f_{14}</math> | 
| − | | ||1    || ||1    || ||1    || || 1 | + | | 1110 | 
| − | | || 1   || ||1    || ||1    || ||1 | + | | <math>((u)(v))\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_{15}</math> || 1111|| <math>((~))</math> | + | | <math>f_{15}</math> | 
| − | | 1    || 1   || 1   || 1   || 1   || 1   || 1   || 1 | + | | 1111 | 
| − | | 1    || 1   || 1   || 1   || 1   || 1   || 1   || 1 | + | | <math>((~))</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |}<br> |  | |}<br> | 
|  |  |  |  | 
|  | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |  | {| align="center" border="1" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | 
| − | |+ '''Table 5.  Qualifiers of Implication Ordering:  <math>\beta_i f = \Upsilon(f \Rightarrow f_i)</math>''' | + | |+ '''Table 14.  Qualifiers of Implication Ordering:  <math>\beta_i f = \Upsilon \langle f, f_i \rangle = \Upsilon \langle f \Rightarrow f_i \rangle</math>''' | 
|  | |- style="background:ghostwhite" |  | |- style="background:ghostwhite" | 
|  | | align="right" | <math>u:</math><br><math>v:</math> |  | | align="right" | <math>u:</math><br><math>v:</math> | 
| Line 610: | Line 948: | 
|  | | <math>\beta_{15}</math> |  | | <math>\beta_{15}</math> | 
|  | |- |  | |- | 
| − | | <math>f_0</math> || 0000|| <math>(~)</math> | + | | <math>f_0</math> | 
| − | | 1    || 1   || 1   || 1   || 1   || 1   || 1   || 1 | + | | 0000 | 
| − | | 1    || 1   || 1   || 1   || 1   || 1   || 1   || 1 | + | | <math>(~)</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_1</math> || 0001|| <math>(u)(v)\!</math> | + | | <math>f_1</math> | 
| − | | || 1   || ||1    || ||1    || || 1 | + | | 0001 | 
| − | | || 1   || ||1    || ||1    || || 1 | + | | <math>(u)(v)\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_2</math> || 0010|| <math>(u) v\!</math> | + | | <math>f_2</math> | 
| − | | || || 1   || 1   || || || 1   || 1 | + | | 0010 | 
| − | | || || 1   || 1   || || || 1   || 1 | + | | <math>(u) v\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_3</math> || 0011|| <math>(u)\!</math> | + | | <math>f_3</math> | 
| − | | || || || 1   || || || || 1 | + | | 0011 | 
| − | | || || || 1   || || || || 1 | + | | <math>(u)\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_4</math> || 0100|| <math>u (v)\!</math> | + | | <math>f_4</math> | 
| − | | || || || || 1   || 1   || 1   || 1 | + | | 0100 | 
| − | | || || || || 1   || 1   || 1   || 1 | + | | <math>u (v)\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_5</math> || 0101|| <math>(v)\!</math> | + | | <math>f_5</math> | 
| − | | || || || || || 1   || || 1 | + | | 0101 | 
| − | | || || || || || 1   || || 1 | + | | <math>(v)\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_6</math> || 0110|| <math>(u, v)\!</math> | + | | <math>f_6</math> | 
| − | | || || || || || || 1   || 1 | + | | 0110 | 
| − | | || || || || || || 1   || 1 | + | | <math>(u, v)\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_7</math> || 0111|| <math>(u v)\!</math> | + | | <math>f_7</math> | 
| − | | || || || || || || || 1 | + | | 0111 | 
| − | | || || || || || || || 1 | + | | <math>(u v)\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_8</math> || 1000|| <math>u v\!</math> | + | | <math>f_8</math> | 
| − | | || || || || || || ||  | + | | 1000 | 
| − | | 1    || 1   || 1   || 1   || 1   || 1   || 1   || 1 | + | | <math>u v\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_9</math> || 1001|| <math>((u, v))\!</math> | + | | <math>f_9</math> | 
| − | | || || || || || || ||  | + | | 1001 | 
| − | | || 1   || || 1   || ||1    || || 1 | + | | <math>((u, v))\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_{10}</math> || 1010|| <math>v\!</math> | + | | <math>f_{10}</math> | 
| − | | || || || || || || ||  | + | | 1010 | 
| − | | || || 1   || 1   || || || 1   || 1 | + | | <math>v\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_{11}</math> || 1011|| <math>(u (v))\!</math> | + | | <math>f_{11}</math> | 
| − | | || || || || || || ||  | + | | 1011 | 
| − | | || || || 1   || || || || 1 | + | | <math>(u (v))\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_{12}</math> || 1100|| <math>u\!</math> | + | | <math>f_{12}</math> | 
| − | | || || || || || || ||  | + | | 1100 | 
| − | | || || || || 1   || 1   || 1   || 1 | + | | <math>u\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_{13}</math> || 1101|| <math>((u) v)\!</math> | + | | <math>f_{13}</math> | 
| − | | || || || || || || ||  | + | | 1101 | 
| − | | || || || || || 1   || || 1 | + | | <math>((u) v)\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_{14}</math> || 1110|| <math>((u)(v))\!</math> | + | | <math>f_{14}</math> | 
| − | | || || || || || || ||  | + | | 1110 | 
| − | | || || || || || || 1   || 1 | + | | <math>((u)(v))\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_{15}</math> || 1111|| <math>((~))\!</math> | + | | <math>f_{15}</math> | 
| − | | || || || || || || ||  | + | | 1111 | 
| − | | || || || || || || || 1 | + | | <math>((~))\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |}<br> |  | |}<br> | 
|  |  |  |  | 
| Line 757: | Line 1,351: | 
|  | \end{array}</math></center> |  | \end{array}</math></center> | 
|  |  |  |  | 
| − | Intuitively, the <math>\ell_{ij}\!</math> operators may be thought of as qualifying propositions according to the elements of the universe of discourse that each proposition positively values.  Taken together, these measures provide us with the means to express many useful observations about the propositions in <math>X^\circ = [u, v],</math> and so they mediate a subtext <math>[\ell_{00}, \ell_{01}, \ell_{10}, \ell_{11}]\!</math> that takes place within the higher order universe of discourse <math>X^{\circ 2} = [X^\circ] = [[u, v]].\!</math>  Figure 6 summarizes the action of the <math>\ell_{ij}\!</math> operators on the <math>f_i\!</math> within <math>X^{\circ 2}.\!</math> | + | Intuitively, the <math>\ell_{ij}\!</math> operators may be thought of as qualifying propositions according to the elements of the universe of discourse that each proposition positively values.  Taken together, these measures provide us with the means to express many useful observations about the propositions in <math>X^\circ = [u, v],</math> and so they mediate a subtext <math>[\ell_{00}, \ell_{01}, \ell_{10}, \ell_{11}]\!</math> that takes place within the higher order universe of discourse <math>X^{\circ 2} = [X^\circ] = [[u, v]].\!</math>  Figure 15 summarizes the action of the <math>\ell_{ij}\!</math> operators on the <math>f_i\!</math> within <math>X^{\circ 2}.\!</math> | 
|  |  |  |  | 
|  | <pre> |  | <pre> | 
| Line 805: | Line 1,399: | 
|  | |                                                           | |  | |                                                           | | 
|  | o-----------------------------------------------------------o |  | o-----------------------------------------------------------o | 
| − | Figure 6.  Higher Order Universe of Discourse [L_ij] c [[u, v]] | + | Figure 15.  Higher Order Universe of Discourse [L_ij] c [[u, v]] | 
|  | </pre> |  | </pre> | 
|  |  |  |  | 
| Line 817: | Line 1,411: | 
|  |  |  |  | 
|  | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; width:96%" |  | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; width:96%" | 
| − | |+ '''Table 7.  Syllogistic Premisses as Higher Order Indicator Functions''' | + | |+ '''Table 16.  Syllogistic Premisses as Higher Order Indicator Functions''' | 
|  | | |  | | | 
|  | <math>\begin{array}{clcl} |  | <math>\begin{array}{clcl} | 
| Line 839: | Line 1,433: | 
|  | |}<br> |  | |}<br> | 
|  |  |  |  | 
| − | Tables 8 and 9 develop these ideas in more detail. | + | The following Tables develop these ideas in more detail. | 
|  | + |   | 
|  | + | {| align="center" border="1" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | 
|  | + | |+ '''Table 17.  Simple Qualifiers of Propositions (Version 1)''' | 
|  | + | |- style="background:ghostwhite" | 
|  | + | | align="right" | <math>u:</math><br><math>v:</math> | 
|  | + | | 1100<br>1010 | 
|  | + | | <math>f\!</math> | 
|  | + | | <math>(\ell_{11})</math><br><math>\text{No } u </math><br><math>\text{is } v </math> | 
|  | + | | <math>(\ell_{10})</math><br><math>\text{No } u </math><br><math>\text{is }(v)</math> | 
|  | + | | <math>(\ell_{01})</math><br><math>\text{No }(u)</math><br><math>\text{is } v </math> | 
|  | + | | <math>(\ell_{00})</math><br><math>\text{No }(u)</math><br><math>\text{is }(v)</math> | 
|  | + | | <math> \ell_{00} </math><br><math>\text{Some }(u)</math><br><math>\text{is }(v)</math> | 
|  | + | | <math> \ell_{01} </math><br><math>\text{Some }(u)</math><br><math>\text{is } v </math> | 
|  | + | | <math> \ell_{10} </math><br><math>\text{Some } u </math><br><math>\text{is }(v)</math> | 
|  | + | | <math> \ell_{11} </math><br><math>\text{Some } u </math><br><math>\text{is } v </math> | 
|  | + | |- | 
|  | + | | <math>f_0</math> | 
|  | + | | 0000 | 
|  | + | | <math>(~)</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | |- | 
|  | + | | <math>f_1</math> | 
|  | + | | 0001 | 
|  | + | | <math>(u)(v)\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | |- | 
|  | + | | <math>f_2</math> | 
|  | + | | 0010 | 
|  | + | | <math>(u) v\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | |- | 
|  | + | | <math>f_3</math> | 
|  | + | | 0011 | 
|  | + | | <math>(u)\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | |- | 
|  | + | | <math>f_4</math> | 
|  | + | | 0100 | 
|  | + | | <math>u (v)\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | |- | 
|  | + | | <math>f_5</math> | 
|  | + | | 0101 | 
|  | + | | <math>(v)\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | |- | 
|  | + | | <math>f_6</math> | 
|  | + | | 0110 | 
|  | + | | <math>(u, v)\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | |- | 
|  | + | | <math>f_7</math> | 
|  | + | | 0111 | 
|  | + | | <math>(u v)\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | |- | 
|  | + | | <math>f_8</math> | 
|  | + | | 1000 | 
|  | + | | <math>u v\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | |- | 
|  | + | | <math>f_9</math> | 
|  | + | | 1001 | 
|  | + | | <math>((u, v))\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | |- | 
|  | + | | <math>f_{10}</math> | 
|  | + | | 1010 | 
|  | + | | <math>v\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | |- | 
|  | + | | <math>f_{11}</math> | 
|  | + | | 1011 | 
|  | + | | <math>(u (v))\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | |- | 
|  | + | | <math>f_{12}</math> | 
|  | + | | 1100 | 
|  | + | | <math>u\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | |- | 
|  | + | | <math>f_{13}</math> | 
|  | + | | 1101 | 
|  | + | | <math>((u) v)\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | |- | 
|  | + | | <math>f_{14}</math> | 
|  | + | | 1110 | 
|  | + | | <math>((u)(v))\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | |- | 
|  | + | | <math>f_{15}</math> | 
|  | + | | 1111 | 
|  | + | | <math>((~))</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | |}<br> | 
|  |  |  |  | 
|  | {| align="center" border="1" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |  | {| align="center" border="1" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | 
| − | |+ '''Table 8.  Simple Qualifiers of Propositions (''n'' = 2)''' | + | |+ '''Table 18.  Simple Qualifiers of Propositions (Version 2)''' | 
|  | |- style="background:ghostwhite" |  | |- style="background:ghostwhite" | 
|  | | align="right" | <math>u:</math><br><math>v:</math> |  | | align="right" | <math>u:</math><br><math>v:</math> | 
| Line 856: | Line 1,658: | 
|  | | <math> \ell_{11} </math><br><math>\text{Some } u </math><br><math>\text{is } v </math> |  | | <math> \ell_{11} </math><br><math>\text{Some } u </math><br><math>\text{is } v </math> | 
|  | |- |  | |- | 
| − | | <math>f_0</math> || 0000|| <math>(~)</math> | + | | <math>f_0</math> | 
| − | | 1 || 1 || 1 || 1 || 0 || 0 || 0 || 0 | + | | 0000 | 
|  | + | | <math>(~)</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_1</math> || 0001|| <math>(u)(v)\!</math> | + | | <math>f_1</math> | 
| − | | 1 || 1 || 1 || 0 || 1 || 0 || 0 || 0 | + | | 0001 | 
|  | + | | <math>(u)(v)\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_2</math> || 0010|| <math>(u) v\!</math> | + | | <math>f_2</math> | 
| − | | 1 || 1 || 0 || 1 || 0 || 1 || 0 || 0 | + | | 0010 | 
|  | + | | <math>(u) v\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_3</math> || 0011 || <math>(u)\!</math> | + | | <math>f_4</math> | 
| − | | 1 || 1 || 0 ||0 || 1 ||1 || 0 || 0 | + | | 0100 | 
|  | + | | <math>u (v)\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_4</math> || 0100 || <math>u(v)\!</math> | + | | <math>f_8</math> | 
| − | | 1 ||0 || 1 || 1 || 0 || 0 ||1 ||0 | + | | 1000 | 
|  | + | | <math>u v\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_5</math> || 0101 || <math>(v)\!</math> | + | | <math>f_3</math> | 
| − | | 1 || 0 ||1 || 0 || 1 ||0 ||1 || 0 | + | | 0011 | 
|  | + | | <math>(u)\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_6</math> || 0110 || <math>(u, v)\!</math> | + | | <math>f_{12}</math> | 
| − | | 1 || 0 ||0 || 1 || 0 ||1 || 1 ||0 | + | | 1100 | 
|  | + | | <math>u\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_7</math> || 0111 || <math>(u v)\!</math> | + | | <math>f_6</math> | 
| − | | 1 || 0 || 0 || 0 ||1 || 1 || 1 || 0 | + | | 0110 | 
|  | + | | <math>(u, v)\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_8</math> || 1000 || <math>u v\!</math> | + | | <math>f_9</math> | 
| − | | 0 || 1 || 1 || 1 ||0 || 0 || 0 || 1 | + | | 1001 | 
|  | + | | <math>((u, v))\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_9</math> || 1001 || <math>((u, v))\!</math> | + | | <math>f_5</math> | 
| − | | 0 ||1 || 1 || 0 || 1 || 0 ||0 ||1 | + | | 0101 | 
|  | + | | <math>(v)\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_{10}</math> || 1010|| <math>v\!</math> | + | | <math>f_{10}</math> | 
| − | | 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1 | + | | 1010 | 
|  | + | | <math>v\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_{11}</math> || 1011 || <math>(u(v))\!</math> | + | | <math>f_7</math> | 
| − | | 0 ||1 || 0 || 0 || 1 || 1 ||0 ||1 | + | | 0111 | 
|  | + | | <math>(u v)\!</math> | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | |- |  | |- | 
| − | | <math>f_{12}</math> || 1100 || <math>u\!</math> | + | | <math>f_{11}</math> | 
| − | | 0 || 0 || 1 ||1 || 0 ||0 || 1 || 1 | + | | 1011 | 
|  | + | | <math>(u (v))\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_{13}</math> || 1101|| <math>((u) v)\!</math> | + | | <math>f_{13}</math> | 
| − | | 0 || 0 || 1 || 0 || 1 || 0 || 1 || 1 | + | | 1101 | 
|  | + | | <math>((u) v)\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_{14}</math> || 1110|| <math>((u)(v))\!</math> | + | | <math>f_{14}</math> | 
| − | | 0 || 0 || 0 || 1 || 0 || 1 || 1 || 1 | + | | 1110 | 
|  | + | | <math>((u)(v))\!</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |- |  | |- | 
| − | | <math>f_{15}</math> || 1111|| <math>((~))</math> | + | | <math>f_{15}</math> | 
| − | | 0 || 0 || 0 || 0 || 1 || 1 || 1 || 1 | + | | 1111 | 
|  | + | | <math>((~))</math> | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:white; color:black" | 0 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | + | | style="background:black; color:white" | 1 | 
|  | |}<br> |  | |}<br> | 
|  |  |  |  | 
|  | {| align="center" border="1" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |  | {| align="center" border="1" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | 
| − | |+ '''Table 9.  Relation of Quantifiers to Higher Order Propositions''' | + | |+ '''Table 19.  Relation of Quantifiers to Higher Order Propositions''' | 
|  | |- style="background:ghostwhite" |  | |- style="background:ghostwhite" | 
|  | | <math>\text{Mnemonic}</math> |  | | <math>\text{Mnemonic}</math> |