Line 432: |
Line 432: |
| | | |
| {| align="center" cellpadding="8" | | {| align="center" cellpadding="8" |
− | | <math>\Upsilon \langle p \rangle = 1 \quad \Leftrightarrow \quad p = 1.</math> | + | | <math>\Upsilon \langle u \rangle = 1 \quad \Leftrightarrow \quad u = 1.</math> |
| |} | | |} |
| | | |
Line 438: |
Line 438: |
| | | |
| {| align="center" cellpadding="8" | | {| align="center" cellpadding="8" |
− | | <math>\Upsilon \langle p, q \rangle = 1 \quad \Leftrightarrow \quad p \Rightarrow q.</math> | + | | <math>\Upsilon \langle u, v \rangle = 1 \quad \Leftrightarrow \quad u \Rightarrow v.</math> |
| |} | | |} |
| | | |
Line 462: |
Line 462: |
| |+ '''Table 1. Qualifiers of Implication Ordering: <math>\alpha_i f = \Upsilon \langle f_i, f \rangle = \Upsilon \langle f_i \Rightarrow f \rangle</math>''' | | |+ '''Table 1. Qualifiers of Implication Ordering: <math>\alpha_i f = \Upsilon \langle f_i, f \rangle = \Upsilon \langle f_i \Rightarrow f \rangle</math>''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
− | | align="right" | <math>p:</math><br><math>q:</math> | + | | align="right" | <math>u:</math><br><math>v:</math> |
| | 1100<br>1010 | | | 1100<br>1010 |
| | <math>f\!</math> | | | <math>f\!</math> |
Line 486: |
Line 486: |
| | || || || || || || || | | | || || || || || || || |
| |- | | |- |
− | | <math>f_1</math> || 0001 || <math>(p)(q)\!</math> | + | | <math>f_1</math> || 0001 || <math>(u)(v)\!</math> |
| | 1 || 1 || || || || || || | | | 1 || 1 || || || || || || |
| | || || || || || || || | | | || || || || || || || |
| |- | | |- |
− | | <math>f_2</math> || 0010 || <math>(p) q\!</math> | + | | <math>f_2</math> || 0010 || <math>(u) v\!</math> |
| | 1 || || 1 || || || || || | | | 1 || || 1 || || || || || |
| | || || || || || || || | | | || || || || || || || |
| |- | | |- |
− | | <math>f_3</math> || 0011 || <math>(p)\!</math> | + | | <math>f_3</math> || 0011 || <math>(u)\!</math> |
| | 1 || 1 || 1 || 1 || || || || | | | 1 || 1 || 1 || 1 || || || || |
| | || || || || || || || | | | || || || || || || || |
| |- | | |- |
− | | <math>f_4</math> || 0100 || <math>p (q)\!</math> | + | | <math>f_4</math> || 0100 || <math>u (v)\!</math> |
| | 1 || || || || 1 || || || | | | 1 || || || || 1 || || || |
| | || || || || || || || | | | || || || || || || || |
| |- | | |- |
− | | <math>f_5</math> || 0101 || <math>(q)\!</math> | + | | <math>f_5</math> || 0101 || <math>(v)\!</math> |
| | 1 || 1 || || || 1 || 1 || || | | | 1 || 1 || || || 1 || 1 || || |
| | || || || || || || || | | | || || || || || || || |
| |- | | |- |
− | | <math>f_6</math> || 0110 || <math>(p, q)\!</math> | + | | <math>f_6</math> || 0110 || <math>(u, v)\!</math> |
| | 1 || || 1 || || 1 || || 1 || | | | 1 || || 1 || || 1 || || 1 || |
| | || || || || || || || | | | || || || || || || || |
| |- | | |- |
− | | <math>f_7</math> || 0111 || <math>(p q)\!</math> | + | | <math>f_7</math> || 0111 || <math>(u v)\!</math> |
| | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 |
| | || || || || || || || | | | || || || || || || || |
| |- | | |- |
− | | <math>f_8</math> || 1000 || <math>p q\!</math> | + | | <math>f_8</math> || 1000 || <math>u v\!</math> |
| | 1 || || || || || || || | | | 1 || || || || || || || |
| | 1 || || || || || || || | | | 1 || || || || || || || |
| |- | | |- |
− | | <math>f_9</math> || 1001 || <math>((p, q))\!</math> | + | | <math>f_9</math> || 1001 || <math>((u, v))\!</math> |
| | 1 || 1 || || || || || || | | | 1 || 1 || || || || || || |
| | 1 || 1 || || || || || || | | | 1 || 1 || || || || || || |
| |- | | |- |
− | | <math>f_{10}</math> || 1010 || <math>q\!</math> | + | | <math>f_{10}</math> || 1010 || <math>v\!</math> |
| | 1 || || 1 || || || || || | | | 1 || || 1 || || || || || |
| | 1 || || 1 || || || || || | | | 1 || || 1 || || || || || |
| |- | | |- |
− | | <math>f_{11}</math> || 1011 || <math>(p (q))\!</math> | + | | <math>f_{11}</math> || 1011 || <math>(u (v))\!</math> |
| | 1 || 1 || 1 || 1 || || || || | | | 1 || 1 || 1 || 1 || || || || |
| | 1 || 1 || 1 || 1 || || || || | | | 1 || 1 || 1 || 1 || || || || |
| |- | | |- |
− | | <math>f_{12}</math> || 1100 || <math>p\!</math> | + | | <math>f_{12}</math> || 1100 || <math>u\!</math> |
| | 1 || || || || 1 || || || | | | 1 || || || || 1 || || || |
| | 1 || || || || 1 || || || | | | 1 || || || || 1 || || || |
| |- | | |- |
− | | <math>f_{13}</math> || 1101 || <math>((p) q)\!</math> | + | | <math>f_{13}</math> || 1101 || <math>((u) v)\!</math> |
| | 1 || 1 || || || 1 || 1 || || | | | 1 || 1 || || || 1 || 1 || || |
| | 1 || 1 || || || 1 || 1 || || | | | 1 || 1 || || || 1 || 1 || || |
| |- | | |- |
− | | <math>f_{14}</math> || 1110 || <math>((p)(q))\!</math> | + | | <math>f_{14}</math> || 1110 || <math>((u)(v))\!</math> |
| | 1 || || 1 || || 1 || || 1 || | | | 1 || || 1 || || 1 || || 1 || |
| | 1 || || 1 || || 1 || || 1 || | | | 1 || || 1 || || 1 || || 1 || |
Line 552: |
Line 552: |
| |+ '''Table 2. Qualifiers of Implication Ordering: <math>\beta_i f = \Upsilon \langle f, f_i \rangle = \Upsilon \langle f \Rightarrow f_i \rangle</math>''' | | |+ '''Table 2. Qualifiers of Implication Ordering: <math>\beta_i f = \Upsilon \langle f, f_i \rangle = \Upsilon \langle f \Rightarrow f_i \rangle</math>''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
− | | align="right" | <math>p:</math><br><math>q:</math> | + | | align="right" | <math>u:</math><br><math>v:</math> |
| | 1100<br>1010 | | | 1100<br>1010 |
| | <math>f\!</math> | | | <math>f\!</math> |
Line 576: |
Line 576: |
| | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 |
| |- | | |- |
− | | <math>f_1</math> || 0001 || <math>(p)(q)\!</math> | + | | <math>f_1</math> || 0001 || <math>(u)(v)\!</math> |
| | || 1 || || 1 || || 1 || || 1 | | | || 1 || || 1 || || 1 || || 1 |
| | || 1 || || 1 || || 1 || || 1 | | | || 1 || || 1 || || 1 || || 1 |
| |- | | |- |
− | | <math>f_2</math> || 0010 || <math>(p) q\!</math> | + | | <math>f_2</math> || 0010 || <math>(u) v\!</math> |
| | || || 1 || 1 || || || 1 || 1 | | | || || 1 || 1 || || || 1 || 1 |
| | || || 1 || 1 || || || 1 || 1 | | | || || 1 || 1 || || || 1 || 1 |
| |- | | |- |
− | | <math>f_3</math> || 0011 || <math>(p)\!</math> | + | | <math>f_3</math> || 0011 || <math>(u)\!</math> |
| | || || || 1 || || || || 1 | | | || || || 1 || || || || 1 |
| | || || || 1 || || || || 1 | | | || || || 1 || || || || 1 |
| |- | | |- |
− | | <math>f_4</math> || 0100 || <math>p (q)\!</math> | + | | <math>f_4</math> || 0100 || <math>u (v)\!</math> |
| | || || || || 1 || 1 || 1 || 1 | | | || || || || 1 || 1 || 1 || 1 |
| | || || || || 1 || 1 || 1 || 1 | | | || || || || 1 || 1 || 1 || 1 |
| |- | | |- |
− | | <math>f_5</math> || 0101 || <math>(q)\!</math> | + | | <math>f_5</math> || 0101 || <math>(v)\!</math> |
| | || || || || || 1 || || 1 | | | || || || || || 1 || || 1 |
| | || || || || || 1 || || 1 | | | || || || || || 1 || || 1 |
| |- | | |- |
− | | <math>f_6</math> || 0110 || <math>(p, q)\!</math> | + | | <math>f_6</math> || 0110 || <math>(u, v)\!</math> |
| | || || || || || || 1 || 1 | | | || || || || || || 1 || 1 |
| | || || || || || || 1 || 1 | | | || || || || || || 1 || 1 |
| |- | | |- |
− | | <math>f_7</math> || 0111 || <math>(p q)\!</math> | + | | <math>f_7</math> || 0111 || <math>(u v)\!</math> |
| | || || || || || || || 1 | | | || || || || || || || 1 |
| | || || || || || || || 1 | | | || || || || || || || 1 |
| |- | | |- |
− | | <math>f_8</math> || 1000 || <math>p q\!</math> | + | | <math>f_8</math> || 1000 || <math>u v\!</math> |
| | || || || || || || || | | | || || || || || || || |
| | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 |
| |- | | |- |
− | | <math>f_9</math> || 1001 || <math>((p, q))\!</math> | + | | <math>f_9</math> || 1001 || <math>((u, v))\!</math> |
| | || || || || || || || | | | || || || || || || || |
| | || 1 || || 1 || || 1 || || 1 | | | || 1 || || 1 || || 1 || || 1 |
| |- | | |- |
− | | <math>f_{10}</math> || 1010 || <math>q\!</math> | + | | <math>f_{10}</math> || 1010 || <math>v\!</math> |
| | || || || || || || || | | | || || || || || || || |
| | || || 1 || 1 || || || 1 || 1 | | | || || 1 || 1 || || || 1 || 1 |
| |- | | |- |
− | | <math>f_{11}</math> || 1011 || <math>(p (q))\!</math> | + | | <math>f_{11}</math> || 1011 || <math>(u (v))\!</math> |
| | || || || || || || || | | | || || || || || || || |
| | || || || 1 || || || || 1 | | | || || || 1 || || || || 1 |
| |- | | |- |
− | | <math>f_{12}</math> || 1100 || <math>p\!</math> | + | | <math>f_{12}</math> || 1100 || <math>u\!</math> |
| | || || || || || || || | | | || || || || || || || |
| | || || || || 1 || 1 || 1 || 1 | | | || || || || 1 || 1 || 1 || 1 |
| |- | | |- |
− | | <math>f_{13}</math> || 1101 || <math>((p) q)\!</math> | + | | <math>f_{13}</math> || 1101 || <math>((u) v)\!</math> |
| | || || || || || || || | | | || || || || || || || |
| | || || || || || 1 || || 1 | | | || || || || || 1 || || 1 |
| |- | | |- |
− | | <math>f_{14}</math> || 1110 || <math>((p)(y))\!</math> | + | | <math>f_{14}</math> || 1110 || <math>((u)(y))\!</math> |
| | || || || || || || || | | | || || || || || || || |
| | || || || || || || 1 || 1 | | | || || || || || || 1 || 1 |
Line 640: |
Line 640: |
| |+ '''Table 3. Simple Qualifiers of Propositions (''n'' = 2)''' | | |+ '''Table 3. Simple Qualifiers of Propositions (''n'' = 2)''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
− | | align="right" | <math>p:</math><br><math>q:</math> | + | | align="right" | <math>u:</math><br><math>v:</math> |
| | 1100<br>1010 | | | 1100<br>1010 |
| | <math>f\!</math> | | | <math>f\!</math> |
− | | <math>(\ell_{11})</math><br><math>\text{No } p </math><br><math>\text{is } q </math> | + | | <math>(\ell_{11})</math><br><math>\text{No } u </math><br><math>\text{is } v </math> |
− | | <math>(\ell_{10})</math><br><math>\text{No } p </math><br><math>\text{is }(q)</math> | + | | <math>(\ell_{10})</math><br><math>\text{No } u </math><br><math>\text{is }(v)</math> |
− | | <math>(\ell_{01})</math><br><math>\text{No }(p)</math><br><math>\text{is } q </math> | + | | <math>(\ell_{01})</math><br><math>\text{No }(u)</math><br><math>\text{is } v </math> |
− | | <math>(\ell_{00})</math><br><math>\text{No }(p)</math><br><math>\text{is }(q)</math> | + | | <math>(\ell_{00})</math><br><math>\text{No }(u)</math><br><math>\text{is }(v)</math> |
− | | <math> \ell_{00} </math><br><math>\text{Some }(p)</math><br><math>\text{is }(q)</math> | + | | <math> \ell_{00} </math><br><math>\text{Some }(u)</math><br><math>\text{is }(v)</math> |
− | | <math> \ell_{01} </math><br><math>\text{Some }(p)</math><br><math>\text{is } q </math> | + | | <math> \ell_{01} </math><br><math>\text{Some }(u)</math><br><math>\text{is } v </math> |
− | | <math> \ell_{10} </math><br><math>\text{Some } p </math><br><math>\text{is }(q)</math> | + | | <math> \ell_{10} </math><br><math>\text{Some } u </math><br><math>\text{is }(v)</math> |
− | | <math> \ell_{11} </math><br><math>\text{Some } p </math><br><math>\text{is } q </math> | + | | <math> \ell_{11} </math><br><math>\text{Some } u </math><br><math>\text{is } v </math> |
| |- | | |- |
| | <math>f_0</math> || 0000 || <math>(~)</math> | | | <math>f_0</math> || 0000 || <math>(~)</math> |
| | 1 || 1 || 1 || 1 || 0 || 0 || 0 || 0 | | | 1 || 1 || 1 || 1 || 0 || 0 || 0 || 0 |
| |- | | |- |
− | | <math>f_1</math> || 0001 || <math>(p)(q)\!</math> | + | | <math>f_1</math> || 0001 || <math>(u)(v)\!</math> |
| | 1 || 1 || 1 || 0 || 1 || 0 || 0 || 0 | | | 1 || 1 || 1 || 0 || 1 || 0 || 0 || 0 |
| |- | | |- |
− | | <math>f_2</math> || 0010 || <math>(p) q\!</math> | + | | <math>f_2</math> || 0010 || <math>(u) v\!</math> |
| | 1 || 1 || 0 || 1 || 0 || 1 || 0 || 0 | | | 1 || 1 || 0 || 1 || 0 || 1 || 0 || 0 |
| |- | | |- |
− | | <math>f_3</math> || 0011 || <math>(p)\!</math> | + | | <math>f_3</math> || 0011 || <math>(u)\!</math> |
| | 1 || 1 || 0 || 0 || 1 || 1 || 0 || 0 | | | 1 || 1 || 0 || 0 || 1 || 1 || 0 || 0 |
| |- | | |- |
− | | <math>f_4</math> || 0100 || <math>p (q)\!</math> | + | | <math>f_4</math> || 0100 || <math>u (v)\!</math> |
| | 1 || 0 || 1 || 1 || 0 || 0 || 1 || 0 | | | 1 || 0 || 1 || 1 || 0 || 0 || 1 || 0 |
| |- | | |- |
− | | <math>f_5</math> || 0101 || <math>(q)\!</math> | + | | <math>f_5</math> || 0101 || <math>(v)\!</math> |
| | 1 || 0 || 1 || 0 || 1 || 0 || 1 || 0 | | | 1 || 0 || 1 || 0 || 1 || 0 || 1 || 0 |
| |- | | |- |
− | | <math>f_6</math> || 0110 || <math>(p, q)\!</math> | + | | <math>f_6</math> || 0110 || <math>(u, v)\!</math> |
| | 1 || 0 || 0 || 1 || 0 || 1 || 1 || 0 | | | 1 || 0 || 0 || 1 || 0 || 1 || 1 || 0 |
| |- | | |- |
− | | <math>f_7</math> || 0111 || <math>(p q)\!</math> | + | | <math>f_7</math> || 0111 || <math>(u v)\!</math> |
| | 1 || 0 || 0 || 0 || 1 || 1 || 1 || 0 | | | 1 || 0 || 0 || 0 || 1 || 1 || 1 || 0 |
| |- | | |- |
− | | <math>f_8</math> || 1000 || <math>p q\!</math> | + | | <math>f_8</math> || 1000 || <math>u v\!</math> |
| | 0 || 1 || 1 || 1 || 0 || 0 || 0 || 1 | | | 0 || 1 || 1 || 1 || 0 || 0 || 0 || 1 |
| |- | | |- |
− | | <math>f_9</math> || 1001 || <math>((p, q))\!</math> | + | | <math>f_9</math> || 1001 || <math>((u, v))\!</math> |
| | 0 || 1 || 1 || 0 || 1 || 0 || 0 || 1 | | | 0 || 1 || 1 || 0 || 1 || 0 || 0 || 1 |
| |- | | |- |
− | | <math>f_{10}</math> || 1010 || <math>q\!</math> | + | | <math>f_{10}</math> || 1010 || <math>v\!</math> |
| | 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1 | | | 0 || 1 || 0 || 1 || 0 || 1 || 0 || 1 |
| |- | | |- |
− | | <math>f_{11}</math> || 1011 || <math>(p (q))\!</math> | + | | <math>f_{11}</math> || 1011 || <math>(u (v))\!</math> |
| | 0 || 1 || 0 || 0 || 1 || 1 || 0 || 1 | | | 0 || 1 || 0 || 0 || 1 || 1 || 0 || 1 |
| |- | | |- |
− | | <math>f_{12}</math> || 1100 || <math>p\!</math> | + | | <math>f_{12}</math> || 1100 || <math>u\!</math> |
| | 0 || 0 || 1 || 1 || 0 || 0 || 1 || 1 | | | 0 || 0 || 1 || 1 || 0 || 0 || 1 || 1 |
| |- | | |- |
− | | <math>f_{13}</math> || 1101 || <math>((p) q)\!</math> | + | | <math>f_{13}</math> || 1101 || <math>((u) v)\!</math> |
| | 0 || 0 || 1 || 0 || 1 || 0 || 1 || 1 | | | 0 || 0 || 1 || 0 || 1 || 0 || 1 || 1 |
| |- | | |- |
− | | <math>f_{14}</math> || 1110 || <math>((p)(q))\!</math> | + | | <math>f_{14}</math> || 1110 || <math>((u)(v))\!</math> |
| | 0 || 0 || 0 || 1 || 0 || 1 || 1 || 1 | | | 0 || 0 || 0 || 1 || 0 || 1 || 1 || 1 |
| |- | | |- |
Line 713: |
Line 713: |
| | <math>\text{E}\!</math><br><math>\text{Exclusive}</math> | | | <math>\text{E}\!</math><br><math>\text{Exclusive}</math> |
| | <math>\text{Universal}</math><br><math>\text{Negative}</math> | | | <math>\text{Universal}</math><br><math>\text{Negative}</math> |
− | | <math>\text{All}\ p\ \text{is}\ (q)</math> | + | | <math>\text{All}\ u\ \text{is}\ (v)</math> |
| | | | | |
− | | <math>\text{No}\ p\ \text{is}\ q </math> | + | | <math>\text{No}\ u\ \text{is}\ v </math> |
| | <math>(\ell_{11})</math> | | | <math>(\ell_{11})</math> |
| |- | | |- |
| | <math>\text{A}\!</math><br><math>\text{Absolute}</math> | | | <math>\text{A}\!</math><br><math>\text{Absolute}</math> |
| | <math>\text{Universal}</math><br><math>\text{Affirmative}</math> | | | <math>\text{Universal}</math><br><math>\text{Affirmative}</math> |
− | | <math>\text{All}\ p\ \text{is}\ q </math> | + | | <math>\text{All}\ u\ \text{is}\ v </math> |
| | | | | |
− | | <math>\text{No}\ p\ \text{is}\ (q)</math> | + | | <math>\text{No}\ u\ \text{is}\ (v)</math> |
| | <math>(\ell_{10})</math> | | | <math>(\ell_{10})</math> |
| |- | | |- |
| | | | | |
| | | | | |
− | | <math>\text{All}\ q\ \text{is}\ p </math> | + | | <math>\text{All}\ v\ \text{is}\ u </math> |
− | | <math>\text{No}\ q\ \text{is}\ (p)</math> | + | | <math>\text{No}\ v\ \text{is}\ (u)</math> |
− | | <math>\text{No}\ (p)\ \text{is}\ q </math> | + | | <math>\text{No}\ (u)\ \text{is}\ v </math> |
| | <math>(\ell_{01})</math> | | | <math>(\ell_{01})</math> |
| |- | | |- |
| | | | | |
| | | | | |
− | | <math>\text{All}\ (q)\ \text{is}\ p </math> | + | | <math>\text{All}\ (v)\ \text{is}\ u </math> |
− | | <math>\text{No}\ (q)\ \text{is}\ (p)</math> | + | | <math>\text{No}\ (v)\ \text{is}\ (u)</math> |
− | | <math>\text{No}\ (p)\ \text{is}\ (q)</math> | + | | <math>\text{No}\ (u)\ \text{is}\ (v)</math> |
| | <math>(\ell_{00})</math> | | | <math>(\ell_{00})</math> |
| |- | | |- |
| | | | | |
| | | | | |
− | | <math>\text{Some}\ (p)\ \text{is}\ (q)</math> | + | | <math>\text{Some}\ (u)\ \text{is}\ (v)</math> |
| | | | | |
− | | <math>\text{Some}\ (p)\ \text{is}\ (q)</math> | + | | <math>\text{Some}\ (u)\ \text{is}\ (v)</math> |
| | <math>\ell_{00}\!</math> | | | <math>\ell_{00}\!</math> |
| |- | | |- |
| | | | | |
| | | | | |
− | | <math>\text{Some}\ (p)\ \text{is}\ q</math> | + | | <math>\text{Some}\ (u)\ \text{is}\ v</math> |
| | | | | |
− | | <math>\text{Some}\ (p)\ \text{is}\ q</math> | + | | <math>\text{Some}\ (u)\ \text{is}\ v</math> |
| | <math>\ell_{01}\!</math> | | | <math>\ell_{01}\!</math> |
| |- | | |- |
| | <math>\text{O}\!</math><br><math>\text{Obtrusive}</math> | | | <math>\text{O}\!</math><br><math>\text{Obtrusive}</math> |
| | <math>\text{Particular}</math><br><math>\text{Negative}</math> | | | <math>\text{Particular}</math><br><math>\text{Negative}</math> |
− | | <math>\text{Some}\ p\ \text{is}\ (q)</math> | + | | <math>\text{Some}\ u\ \text{is}\ (v)</math> |
| | | | | |
− | | <math>\text{Some}\ p\ \text{is}\ (q)</math> | + | | <math>\text{Some}\ u\ \text{is}\ (v)</math> |
| | <math>\ell_{10}\!</math> | | | <math>\ell_{10}\!</math> |
| |- | | |- |
| | <math>\text{I}\!</math><br><math>\text{Indefinite}</math> | | | <math>\text{I}\!</math><br><math>\text{Indefinite}</math> |
| | <math>\text{Particular}</math><br><math>\text{Affirmative}</math> | | | <math>\text{Particular}</math><br><math>\text{Affirmative}</math> |
− | | <math>\text{Some}\ p\ \text{is}\ q</math> | + | | <math>\text{Some}\ u\ \text{is}\ v</math> |
| | | | | |
− | | <math>\text{Some}\ p\ \text{is}\ y</math> | + | | <math>\text{Some}\ u\ \text{is}\ y</math> |
| | <math>\ell_{11}\!</math> | | | <math>\ell_{11}\!</math> |
| |}<br> | | |}<br> |
Line 775: |
Line 775: |
| | | |
| <blockquote> | | <blockquote> |
− | <math>(\forall x \in X)(p(x) \Rightarrow q(x))</math> | + | <math>(\forall x \in X)(u(x) \Rightarrow v(x))</math> |
| </blockquote> | | </blockquote> |
| | | |
| <blockquote> | | <blockquote> |
− | <math>\prod_{x \in X} (p_x (q_x)) = 1</math> | + | <math>\prod_{x \in X} (u_x (v_x)) = 1</math> |
| </blockquote> | | </blockquote> |
| | | |
− | This is just the form <math>\operatorname{All}\ p\ \operatorname{are}\ q,</math> already covered here: | + | This is just the form <math>\operatorname{All}\ u\ \operatorname{are}\ v,</math> already covered here: |
| | | |
| : [[Directory:Jon_Awbrey/Papers/Functional_Logic_:_Quantification_Theory#Application_of_Higher_Order_Propositions_to_Quantification_Theory|Application of Higher Order Propositions to Quantification Theory]] | | : [[Directory:Jon_Awbrey/Papers/Functional_Logic_:_Quantification_Theory#Application_of_Higher_Order_Propositions_to_Quantification_Theory|Application of Higher Order Propositions to Quantification Theory]] |
| | | |
− | Need to think a little more about the proposition <math>p \Rightarrow q</math> as a boolean function of type <math>\mathbb{B}^2 \to \mathbb{B}</math> and the corresponding higher order proposition of type <math>(\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}.</math> | + | Need to think a little more about the proposition <math>u \Rightarrow v</math> as a boolean function of type <math>\mathbb{B}^2 \to \mathbb{B}</math> and the corresponding higher order proposition of type <math>(\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}.</math> |
| | | |
| ====Exercise 2==== | | ====Exercise 2==== |