Changes

MyWikiBiz, Author Your Legacy — Tuesday November 26, 2024
Jump to navigationJump to search
12 bytes removed ,  18:08, 11 December 2008
reorganize
Line 427: Line 427:  
But the latter is not a theorem in anyone's philosophy, so there is really no disagreement here.
 
But the latter is not a theorem in anyone's philosophy, so there is really no disagreement here.
   −
===Functional quantifiers===
+
==Functional Quantifiers==
    
The '''relative umpire operator''' <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B})^2 \to \mathbb{B}</math> takes two propositions as arguments and gives the value <math>1\!</math> if and only if the first implies the second.  In symbols:
 
The '''relative umpire operator''' <math>\Upsilon : (\mathbb{B}^2 \to \mathbb{B})^2 \to \mathbb{B}</math> takes two propositions as arguments and gives the value <math>1\!</math> if and only if the first implies the second.  In symbols:
Line 437: Line 437:  
<br>
 
<br>
   −
====Tables====
+
===Tables===
    
The auxiliary notations:
 
The auxiliary notations:
Line 758: Line 758:  
|}<br>
 
|}<br>
   −
====Exercises====
+
===Exercises===
    
Express the following formulas in functional terms.
 
Express the following formulas in functional terms.
   −
=====Exercise 1=====
+
====Exercise 1====
    
<blockquote>
 
<blockquote>
Line 778: Line 778:  
Need to think a little more about the proposition <math>p \Rightarrow q</math> as a boolean function of type <math>\mathbb{B}^2 \to \mathbb{B}</math> and the corresponding higher order proposition of type <math>(\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}.</math>
 
Need to think a little more about the proposition <math>p \Rightarrow q</math> as a boolean function of type <math>\mathbb{B}^2 \to \mathbb{B}</math> and the corresponding higher order proposition of type <math>(\mathbb{B}^2 \to \mathbb{B}) \to \mathbb{B}.</math>
   −
=====Exercise 2=====
+
====Exercise 2====
    
<blockquote>
 
<blockquote>
Line 784: Line 784:  
</blockquote>
 
</blockquote>
   −
=====Exercise 3=====
+
====Exercise 3====
    
<blockquote>
 
<blockquote>
 
<math>(\forall x \in X)(Px \Rightarrow Qx) \lor (\forall x \in X)(Qx \Rightarrow Px)</math>
 
<math>(\forall x \in X)(Px \Rightarrow Qx) \lor (\forall x \in X)(Qx \Rightarrow Px)</math>
 
</blockquote>
 
</blockquote>
12,080

edits

Navigation menu