Line 738: |
Line 738: |
| Tables 8 and 9 develop these ideas in more detail. | | Tables 8 and 9 develop these ideas in more detail. |
| | | |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:90%" | + | {| align="center" border="1" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| |+ '''Table 8. Relation of Quantifiers to Higher Order Propositions''' | | |+ '''Table 8. Relation of Quantifiers to Higher Order Propositions''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
Line 748: |
Line 748: |
| | Operator | | | Operator |
| |- | | |- |
− | | <math>\mathrm{E}\!</math><br>Exclusive | + | | <math>\text{E}\!</math><br>Exclusive |
| | Universal<br>Negative | | | Universal<br>Negative |
− | | <math>\mbox{All } x \mbox{ is } (y)</math> | + | | <math>\text{All}\ x\ \text{is}\ (y)</math> |
| | | | | |
− | | <math>\mbox{No } x \mbox{ is } y</math> | + | | <math>\text{No}\ x\ \text{is}\ y</math> |
− | | <math>(\!| \ell_{11} |\!)</math> | + | | <math>(\ell_{11})</math> |
| |- | | |- |
− | | <math>\mathrm{A}\!</math><br>Absolute | + | | <math>\text{A}\!</math><br>Absolute |
| | Universal<br>Affirmative | | | Universal<br>Affirmative |
− | | <math>\mbox{All } x \mbox{ is } y</math> | + | | <math>\text{All}\ x\ \text{is}\ y</math> |
| | | | | |
− | | <math>\mbox{No } x \mbox{ is } (y)</math> | + | | <math>\text{No}\ x\ \text{is}\ (y)</math> |
− | | <math>(\!| \ell_{10} |\!)</math> | + | | <math>(\ell_{10})</math> |
| |- | | |- |
| | | | | |
| | | | | |
− | | <math>\mbox{All } y \mbox{ is } x</math> | + | | <math>\text{All}\ y\ \text{is}\ x</math> |
− | | <math>\mbox{No } y \mbox{ is } (x)</math> | + | | <math>\text{No}\ y\ \text{is}\ (x)</math> |
− | | <math>\mbox{No } (x) \mbox{ is } y</math> | + | | <math>\text{No}\ (x)\ \text{is}\ y</math> |
− | | <math>(\!| \ell_{01} |\!)</math> | + | | <math>(\ell_{01})</math> |
| |- | | |- |
| | | | | |
| | | | | |
− | | <math>\mbox{All } (y) \mbox{ is } x</math> | + | | <math>\text{All}\ (y)\ \text{is}\ x</math> |
− | | <math>\mbox{No } (y) \mbox{ is } (x)</math> | + | | <math>\text{No}\ (y)\ \text{is}\ (x)</math> |
− | | <math>\mbox{No } (x) \mbox{ is } (y)</math> | + | | <math>\text{No}\ (x)\ \text{is}\ (y)</math> |
− | | <math>(\!| \ell_{00} |\!)</math> | + | | <math>(\ell_{00})</math> |
| |- | | |- |
| | | | | |
| | | | | |
− | | <math>\mbox{Some } (x) \mbox{ is } (y)</math> | + | | <math>\text{Some}\ (x)\ \text{is}\ (y)</math> |
| | | | | |
− | | <math>\mbox{Some } (x) \mbox{ is } (y)</math> | + | | <math>\text{Some}\ (x)\ \text{is}\ (y)</math> |
| | <math>\ell_{00}\!</math> | | | <math>\ell_{00}\!</math> |
| |- | | |- |
| | | | | |
| | | | | |
− | | <math>\mbox{Some } (x) \mbox{ is } y</math> | + | | <math>\text{Some}\ (x)\ \text{is}\ y</math> |
| | | | | |
− | | <math>\mbox{Some } (x) \mbox{ is } y</math> | + | | <math>\text{Some}\ (x)\ \text{is}\ y</math> |
| | <math>\ell_{01}\!</math> | | | <math>\ell_{01}\!</math> |
| |- | | |- |
− | | <math>\mathrm{O}\!</math><br>Obtrusive | + | | <math>\text{O}\!</math><br>Obtrusive |
| | Particular<br>Negative | | | Particular<br>Negative |
− | | <math>\mbox{Some } x \mbox{ is } (y)</math> | + | | <math>\text{Some}\ x\ \text{is}\ (y)</math> |
| | | | | |
− | | <math>\mbox{Some } x \mbox{ is } (y)</math> | + | | <math>\text{Some}\ x\ \text{is}\ (y)</math> |
| | <math>\ell_{10}\!</math> | | | <math>\ell_{10}\!</math> |
| |- | | |- |
− | | <math>\mathrm{I}\!</math><br>Indefinite | + | | <math>\text{I}\!</math><br>Indefinite |
| | Particular<br>Affirmative | | | Particular<br>Affirmative |
− | | <math>\mbox{Some } x \mbox{ is } y</math> | + | | <math>\text{Some}\ x\ \text{is}\ y</math> |
| | | | | |
− | | <math>\mbox{Some } x \mbox{ is } y</math> | + | | <math>\text{Some}\ x\ \text{is}\ y</math> |
| | <math>\ell_{11}\!</math> | | | <math>\ell_{11}\!</math> |
| |}<br> | | |}<br> |