MyWikiBiz, Author Your Legacy — Friday November 22, 2024
Jump to navigationJump to search
101 bytes removed
, 18:04, 20 November 2008
Line 713: |
Line 713: |
| With this interpretation in mind we note the following correspondences between classical quantifications and higher order indicator functions: | | With this interpretation in mind we note the following correspondences between classical quantifications and higher order indicator functions: |
| | | |
− | {| align="center" border="1" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:90%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; width:90%" |
| |+ '''Table 7. Syllogistic Premisses as Higher Order Indicator Functions''' | | |+ '''Table 7. Syllogistic Premisses as Higher Order Indicator Functions''' |
− | | <math>\mathrm{A}\!</math> | + | | |
− | | align=left | Universal Affirmative
| + | <math>\begin{array}{clcl} |
− | | align=left | All
| + | \mathrm{A} & |
− | | <math>x\!</math> || is || <math>y\!</math>
| + | \mathrm{Universal~Affirmative} & |
− | | align=left | Indicator of <math>x (\!| y |\!) = 0</math>
| + | \mathrm{All}\ x\ \mathrm{is}\ y & |
− | |-
| + | \mathrm{Indicator~of}\ x (y) = 0 \\ |
− | | <math>\mathrm{E}\!</math>
| + | \mathrm{E} & |
− | | align=left | Universal Negative
| + | \mathrm{Universal~Negative} & |
− | | align=left | All
| + | \mathrm{All}\ x\ \mathrm{is}\ (y) & |
− | | <math>x\!</math> || is || <math>(\!| y |\!)</math>
| + | \mathrm{Indicator~of}\ x \cdot y = 0 \\ |
− | | align=left | Indicator of <math>x\ y = 0\!</math>
| + | \mathrm{I} & |
− | |-
| + | \mathrm{Particular~Affirmative} & |
− | | <math>\mathrm{I}\!</math>
| + | \mathrm{Some}\ x\ \mathrm{is}\ y & |
− | | align=left | Particular Affirmative
| + | \mathrm{Indicator~of}\ x \cdot y = 1 \\ |
− | | align=left | Some
| + | \mathrm{O} & |
− | | <math>x\!</math> || is || <math>y\!</math>
| + | \mathrm{Particular~Negative} & |
− | | align=left | Indicator of <math>x\ y = 1\!</math>
| + | \mathrm{Some}\ x\ \mathrm{is}\ (y) & |
− | |-
| + | \mathrm{Indicator~of}\ x (y) = 1 \\ |
− | | <math>\mathrm{O}\!</math>
| + | \end{array}</math> |
− | | align=left | Particular Negative
| + | |}<br> |
− | | align=left | Some
| |
− | | <math>x\!</math> || is || <math>(\!| y |\!)</math>
| |
− | | align=left | Indicator of <math>x (\!| y |\!) = 1</math>
| |
− | |} | |
| | | |
| Tables 8 and 9 develop these ideas in more detail. | | Tables 8 and 9 develop these ideas in more detail. |