| Line 713: | 
Line 713: | 
|   | With this interpretation in mind we note the following correspondences between classical quantifications and higher order indicator functions:  |   | With this interpretation in mind we note the following correspondences between classical quantifications and higher order indicator functions:  | 
|   |  |   |  | 
| − | {| align="center" border="1" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:90%"  | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; width:90%"  | 
|   | |+ '''Table 7.  Syllogistic Premisses as Higher Order Indicator Functions'''  |   | |+ '''Table 7.  Syllogistic Premisses as Higher Order Indicator Functions'''  | 
| − | | <math>\mathrm{A}\!</math>  | + | |  | 
| − | | align=left | Universal Affirmative
  | + | <math>\begin{array}{clcl}  | 
| − | | align=left | All
  | + | \mathrm{A}                           &  | 
| − | | <math>x\!</math> || is || <math>y\!</math>
  | + | \mathrm{Universal~Affirmative}       &  | 
| − | | align=left | Indicator of <math>x (\!| y |\!) = 0</math>
  | + | \mathrm{All}\ x\ \mathrm{is}\ y      &  | 
| − | |-
  | + | \mathrm{Indicator~of}\ x (y) = 0     \\  | 
| − | | <math>\mathrm{E}\!</math>
  | + | \mathrm{E}                           &  | 
| − | | align=left | Universal Negative
  | + | \mathrm{Universal~Negative}          &  | 
| − | | align=left | All
  | + | \mathrm{All}\ x\ \mathrm{is}\ (y)    &  | 
| − | | <math>x\!</math> || is || <math>(\!| y |\!)</math>
  | + | \mathrm{Indicator~of}\ x \cdot y = 0 \\  | 
| − | | align=left | Indicator of <math>x\ y = 0\!</math>
  | + | \mathrm{I}                           &  | 
| − | |-
  | + | \mathrm{Particular~Affirmative}      &  | 
| − | | <math>\mathrm{I}\!</math>
  | + | \mathrm{Some}\ x\ \mathrm{is}\ y     &  | 
| − | | align=left | Particular Affirmative
  | + | \mathrm{Indicator~of}\ x \cdot y = 1 \\  | 
| − | | align=left | Some
  | + | \mathrm{O}                           &  | 
| − | | <math>x\!</math> || is || <math>y\!</math>
  | + | \mathrm{Particular~Negative}         &  | 
| − | | align=left | Indicator of <math>x\ y = 1\!</math>
  | + | \mathrm{Some}\ x\ \mathrm{is}\ (y)   &  | 
| − | |-
  | + | \mathrm{Indicator~of}\ x (y) = 1     \\  | 
| − | | <math>\mathrm{O}\!</math>
  | + | \end{array}</math>  | 
| − | | align=left | Particular Negative
  | + | |}<br>  | 
| − | | align=left | Some
  |   | 
| − | | <math>x\!</math> || is || <math>(\!| y |\!)</math>
  |   | 
| − | | align=left | Indicator of <math>x (\!| y |\!) = 1</math>
  |   | 
| − | |}  |   | 
|   |  |   |  | 
|   | Tables 8 and 9 develop these ideas in more detail.  |   | Tables 8 and 9 develop these ideas in more detail.  |