MyWikiBiz, Author Your Legacy — Monday November 25, 2024
Jump to navigationJump to search
87 bytes added
, 15:24, 18 November 2008
Line 229: |
Line 229: |
| |- | | |- |
| | align="right" width="36" | 2. | | | align="right" width="36" | 2. |
− | | <math>\Upsilon_p = \Upsilon (p, \_\_, \textstyle\prod) : (\mathbb{B}^k \to \mathbb{B}) \to \mathbb{B}.</math> | + | | <math>\Upsilon_p = \Upsilon (p, \underline{~~}, \textstyle\prod) : (\mathbb{B}^k \to \mathbb{B}) \to \mathbb{B}.</math> |
| |}<br> | | |}<br> |
| | | |
Line 236: |
Line 236: |
| Throwing in the lower default value permits the following abbreviations: | | Throwing in the lower default value permits the following abbreviations: |
| | | |
− | {| | + | {| celpadding="4" |
− | | align=right width=36 | 3. | + | | align="right" width="36" | 3. |
− | | Υ''q'' = Υ(''q'') = Υ<sub>1</sub> ''q'' = Υ(1, ''q'', Π). | + | | <math>\Upsilon q = \Upsilon (q) = \Upsilon_1 q = \Upsilon (1, q, \textstyle\prod).</math> |
| |- | | |- |
− | | align=right width=36 | 4. | + | | align="right" width="36" | 4. |
− | | Υ = Υ(1, __, Π) : ('''B'''<sup>''k''</sup> → '''B''') → '''B'''. | + | | <math>\Upsilon = \Upsilon (1, \underline{~~}, \textstyle\prod)) : (\mathbb{B}^k\ \to \mathbb{B}) \to \mathbb{B}.</math> |
| |}<br> | | |}<br> |
| | | |
− | This means that Υ''q'' = 1 if and only if ''q'' holds for the whole universe of discourse in question, that is, if and only ''q'' is the constantly true proposition '''1''' : '''B'''<sup>''k''</sup> → '''B'''. The ambiguities of this usage are not a problem so long as we distinguish the context of definition from the context of application and restrict all shorthand notations to the latter. | + | This means that <math>\Upsilon q = 1\!</math> if and only if <math>q\!</math> holds for the whole universe of discourse in question, that is, if and only <math>q\!</math> is the constantly true proposition <math>1 : \mathbb{B}^k \to \mathbb{B}.</math> The ambiguities of this usage are not a problem so long as we distinguish the context of definition from the context of application and restrict all shorthand notations to the latter. |
| | | |
| ===Measure for Measure=== | | ===Measure for Measure=== |