Line 86:
Line 86:
|-
|-
|
|
−
| ''X'' = <<''x'', ''y''>> = {<''x'', ''y''>} <u>≈</u> '''B'''<sup>2</sup>.
+
| <math>X = \langle x, y \rangle = \{ (x, y) \} \cong \mathbb{B}^2.</math>
|-
|-
|
|
Line 94:
Line 94:
|-
|-
|
|
−
| ''X'' = {<"(''x'')", "(''y'')">, <"(''x'')", "''y''">, <"''x''", "(''y'')">, <"''x''", "''y''">}
+
| <math>X = \{ (\lnot x, \lnot y), (\lnot x, y), (x, \lnot y), (x, y) \}</math>
|-
|-
|
|
−
| ''X'' <u>≈</u> {<0, 0>, <0, 1>, <1, 0>, <1, 1>}
+
| <math>X \cong \{ (0, 0), (0, 1), (1, 0), (1, 1) \}</math>
|-
|-
|
|
|-
|-
| align=right width=36 | 2.
| align=right width=36 | 2.
−
| The propositions of ''X''° make up the space:
+
| The propositions of <math>X^\circ</math> make up the space:
|-
|-
|
|
−
| ''X''↑ = (''X'' → '''B''') = {''f'' : ''X'' → '''B'''} <u>≈</u> ('''B'''<sup>2</sup> → '''B''').
+
| <math>X^\uparrow = (X \to \mathbb{B}) = \{ f : X \to \mathbb{B} \} \cong (\mathbb{B}^2 \to \mathbb{B}).</math>
|}
|}