MyWikiBiz, Author Your Legacy — Wednesday November 27, 2024
Jump to navigationJump to search
48 bytes added
, 11:34, 7 August 2008
Line 1,403: |
Line 1,403: |
| By way of example, suppose that we are given the initial condition <math>A = \operatorname{d}A</math> and the law <math>\operatorname{d}^2 A = (A).</math> Since the equation <math>A = \operatorname{d}A</math> is logically equivalent to the disjunction <math>A\ \operatorname{d}A\ \operatorname{or}\ (A)(\operatorname{d}A),</math> we may infer two possible trajectories, as displayed in Table 11. In either case the state <math>A\ (\operatorname{d}A)(\operatorname{d}^2 A)</math> is a stable attractor or a terminal condition for both starting points. | | By way of example, suppose that we are given the initial condition <math>A = \operatorname{d}A</math> and the law <math>\operatorname{d}^2 A = (A).</math> Since the equation <math>A = \operatorname{d}A</math> is logically equivalent to the disjunction <math>A\ \operatorname{d}A\ \operatorname{or}\ (A)(\operatorname{d}A),</math> we may infer two possible trajectories, as displayed in Table 11. In either case the state <math>A\ (\operatorname{d}A)(\operatorname{d}^2 A)</math> is a stable attractor or a terminal condition for both starting points. |
| | | |
− | <font face="courier new">
| |
| {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:96%" | | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:96%" |
| |+ '''Table 11. A Pair of Commodious Trajectories''' | | |+ '''Table 11. A Pair of Commodious Trajectories''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
− | ! Time
| + | | <math>\operatorname{Time}</math> |
− | ! Trajectory 1
| + | | <math>\operatorname{Trajectory}\ 1</math> |
− | ! Trajectory 2
| + | | <math>\operatorname{Trajectory}\ 2</math> |
| |- | | |- |
| | | | | |
Line 1,448: |
Line 1,447: |
| |} | | |} |
| |} | | |} |
− | </font><br>
| |
| | | |
| Because the initial space ''X'' = 〈''A''〉 is one-dimensional, we can easily fit the second order extension E<sup>2</sup>''X'' = 〈''A'', d''A'', d<sup>2</sup>''A''〉 within the compass of a single venn diagram, charting the couple of converging trajectories as shown in Figure 12. | | Because the initial space ''X'' = 〈''A''〉 is one-dimensional, we can easily fit the second order extension E<sup>2</sup>''X'' = 〈''A'', d''A'', d<sup>2</sup>''A''〉 within the compass of a single venn diagram, charting the couple of converging trajectories as shown in Figure 12. |