Line 1,019: |
Line 1,019: |
| Intuitively, we want to map this <math>(\mathbb{B}^2)^n</math> onto <math>\mathbb{D}^n</math> by mapping each component <math>\mathbb{B}^2</math> onto a copy of <math>\mathbb{D}.</math> But in the presenting context "<math>\mathbb{D}</math>" is just a name associated with, or an incidental quality attributed to, coefficient values in <math>\mathbb{B}</math> when they are attached to features in <math>\operatorname{d}\mathcal{X}.</math> | | Intuitively, we want to map this <math>(\mathbb{B}^2)^n</math> onto <math>\mathbb{D}^n</math> by mapping each component <math>\mathbb{B}^2</math> onto a copy of <math>\mathbb{D}.</math> But in the presenting context "<math>\mathbb{D}</math>" is just a name associated with, or an incidental quality attributed to, coefficient values in <math>\mathbb{B}</math> when they are attached to features in <math>\operatorname{d}\mathcal{X}.</math> |
| | | |
− | Taking these inetntions into account, define <math>\operatorname{d}x_i : X^2 \to \mathbb{B}</math> in the following manner: | + | Taking these intentions into account, define <math>\operatorname{d}x_i : X^2 \to \mathbb{B}</math> in the following manner: |
| | | |
− | :{| cellpadding=2 | + | : <p><math>\begin{array}{lcrcl} |
− | | d''x''<sub>''i''</sub>(‹''u'', ''v''›)
| + | \operatorname{d}x_i ((u, v)) & = & (\!|\ x_i (u) & , & x_i (v)\ |\!) \\ |
− | | =
| + | & = & x_i (u) & + & x_i (v) \\ |
− | | <font face=system>(</font> ''x''<sub>''i''</sub>(''u'') , ''x''<sub>''i''</sub>(''v'') <font face=system>)</font> | + | & = & x_i (v) & - & x_i (u). \\ \end{array}</math></p> |
− | |-
| |
− | |
| |
− | | =
| |
− | | ''x''<sub>''i''</sub>(''u'') + ''x''<sub>''i''</sub>(''v'')
| |
− | |-
| |
− | |
| |
− | | =
| |
− | | ''x''<sub>''i''</sub>(''v'') – ''x''<sub>''i''</sub>(''u'').
| |
− | |}
| |
| | | |
| In the above transcription, the operator bracket of the form "<font face=system>( … , … )</font>" is a ''cactus lobe'', signifying ''just one false'', in this case among two boolean variables, while "+" is boolean addition in the proper sense of addition in GF(2), and is thus equivalent to "–", in the sense of adding the additive inverse. | | In the above transcription, the operator bracket of the form "<font face=system>( … , … )</font>" is a ''cactus lobe'', signifying ''just one false'', in this case among two boolean variables, while "+" is boolean addition in the proper sense of addition in GF(2), and is thus equivalent to "–", in the sense of adding the additive inverse. |