Line 545: |
Line 545: |
| |+ '''Table 5. A Bridge Over Troubled Waters''' | | |+ '''Table 5. A Bridge Over Troubled Waters''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
− | ! Linear Space
| + | | align="center" | <math>\mbox{Linear Space}\!</math> |
− | ! Liminal Space
| + | | align="center" | <math>\mbox{Liminal Space}\!</math> |
− | ! Logical Space
| + | | align="center" | <math>\mbox{Logical Space}\!</math> |
| |- | | |- |
| | | | | |
− | <font face="lucida calligraphy">X</font><br> | + | <math>\begin{matrix} |
− | {''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>}<br> | + | \mathcal{X} |
− | cardinality ''n''
| + | & = & \{x_1, \ldots, x_n\} \\ |
| + | \end{matrix}</math> |
| | | | | |
− | <font face="lucida calligraphy"><u>X</u></font><br> | + | <math>\begin{matrix} |
− | {<u>''x''</u><sub>1</sub>, …, <u>''x''</u><sub>''n''</sub>}<br> | + | \underline\mathcal{X} |
− | cardinality ''n''
| + | & = & \{\underline{x}_1, \ldots, \underline{x}_n\} \\ |
| + | \end{matrix}</math> |
| | | | | |
− | <font face="lucida calligraphy">A</font><br> | + | <math>\begin{matrix} |
− | {''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>}<br> | + | \mathcal{A} |
− | cardinality ''n''
| + | & = & \{a_1, \ldots, a_n\} \\ |
| + | \end{matrix}</math> |
| |- | | |- |
| | | | | |
− | ''X''<sub>''i''</sub><br>
| + | <math>\begin{matrix} |
− | 〈''x''<sub>''i''</sub>〉<br>
| + | X_i |
− | isomorphic to '''K'''
| + | & = & \langle x_i \rangle \\ |
| + | & \cong & \mathbb{K} \\ |
| + | \end{matrix}</math> |
| | | | | |
− | <u>''X''</u><sub>''i''</sub><br> | + | <math>\begin{matrix} |
− | {(<u>''x''</u><sub>''i''</sub>), <u>''x''</u><sub>''i''</sub>}<br> | + | \underline{X}_i |
− | isomorphic to '''B'''
| + | & = & \{(\underline{x}_i), \underline{x}_i \} \\ |
| + | & \cong & \mathbb{B} \\ |
| + | \end{matrix}</math> |
| | | | | |
− | ''A''<sub>''i''</sub><br>
| + | <math>\begin{matrix} |
− | {(''a''<sub>''i''</sub>), ''a''<sub>''i''</sub>}<br> | + | A_i |
− | isomorphic to '''B'''
| + | & = & \{(a_i), a_i \} \\ |
| + | & \cong & \mathbb{B} \\ |
| + | \end{matrix}</math> |
| |- | | |- |
| | | | | |
− | ''X''<br>
| + | <math>\begin{matrix} |
− | 〈<font face="lucida calligraphy">X</font>〉<br>
| + | X \\ |
− | 〈''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>〉<br>
| + | = & \langle \mathcal{X} \rangle \\ |
− | {‹''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>›}<br>
| + | = & \langle x_1, \ldots, x_n \rangle \\ |
− | ''X''<sub>1</sub> × … × ''X''<sub>''n''</sub><br>
| + | = & X_1 \times \ldots \times X_n \\ |
− | ∏<sub>''i''</sub> ''X''<sub>''i''</sub><br> | + | = & \prod_{i=1}^n X_i \\ |
− | isomorphic to '''K'''<sup>''n''</sup>
| + | \cong & \mathbb{K}^n \\ |
| + | \end{matrix}</math> |
| | | | | |
− | <u>''X''</u><br> | + | <math>\begin{matrix} |
− | 〈<font face="lucida calligraphy"><u>X</u></font>〉<br>
| + | \underline{X} \\ |
− | 〈<u>''x''</u><sub>1</sub>, …, <u>''x''</u><sub>''n''</sub>〉<br>
| + | = & \langle \underline\mathcal{X} \rangle \\ |
− | {‹<u>''x''</u><sub>1</sub>, …, <u>''x''</u><sub>''n''</sub>›}<br> | + | = & \langle \underline{x}_1, \ldots, \underline{x}_n \rangle \\ |
− | <u>''X''</u><sub>1</sub> × … × <u>''X''</u><sub>''n''</sub><br>
| + | = & \underline{X}_1 \times \ldots \times \underline{X}_n \\ |
− | ∏<sub>''i''</sub> <u>''X''</u><sub>''i''</sub><br> | + | = & \prod_{i=1}^n \underline{X}_i \\ |
− | isomorphic to '''B'''<sup>''n''</sup>
| + | \cong & \mathbb{B}^n \\ |
| + | \end{matrix}</math> |
| | | | | |
− | ''A''<br>
| + | <math>\begin{matrix} |
− | 〈<font face="lucida calligraphy">A</font>〉<br>
| + | A \\ |
− | 〈''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>〉<br>
| + | = & \langle \mathcal{A} \rangle \\ |
− | {‹''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>›}<br>
| + | = & \langle a_1, \ldots, a_n \rangle \\ |
− | ''A''<sub>1</sub> × … × ''A''<sub>''n''</sub><br>
| + | = & A_1 \times \ldots \times A_n \\ |
− | ∏<sub>''i''</sub> ''A''<sub>''i''</sub><br> | + | = & \prod_{i=1}^n A_i \\ |
− | isomorphic to '''B'''<sup>''n''</sup>
| + | \cong & \mathbb{B}^n \\ |
| + | \end{matrix}</math> |
| |- | | |- |
| | | | | |
− | ''X''*<br>
| + | <math>\begin{matrix} |
− | (hom : ''X'' → '''K''')<br> | + | X^* |
− | isomorphic to '''K'''<sup>''n''</sup>
| + | & = & (\ell : X \to \mathbb{K}) \\ |
| + | & \cong & \mathbb{K}^n \\ |
| + | \end{matrix}</math> |
| | | | | |
− | <u>''X''</u>*<br> | + | <math>\begin{matrix} |
− | (hom : <u>''X''</u> → '''B''')<br> | + | \underline{X}^* |
− | isomorphic to '''B'''<sup>''n''</sup>
| + | & = & (\ell : \underline{X} \to \mathbb{B}) \\ |
| + | & \cong & \mathbb{B}^n \\ |
| + | \end{matrix}</math> |
| | | | | |
− | ''A''*<br>
| + | <math>\begin{matrix} |
− | (hom : ''A'' → '''B''')<br> | + | A^* |
− | isomorphic to '''B'''<sup>''n''</sup>
| + | & = & (\ell : A \to \mathbb{B}) \\ |
| + | & \cong & \mathbb{B}^n \\ |
| + | \end{matrix}</math> |
| |- | | |- |
| | | | | |
− | ''X''^<br>
| + | <math>\begin{matrix} |
− | (''X'' → '''K''')<br> | + | X^\uparrow |
− | isomorphic to:<br>
| + | & = & (X \to \mathbb{K}) \\ |
− | ('''K'''<sup>''n''</sup> → '''K''') | + | & \cong & (\mathbb{K}^n \to \mathbb{K}) \\ |
| + | \end{matrix}</math> |
| | | | | |
− | <u>''X''</u>^<br> | + | <math>\begin{matrix} |
− | (<u>''X''</u> → '''B''')<br> | + | \underline{X}^\uparrow |
− | isomorphic to:<br>
| + | & = & (\underline{X} \to \mathbb{B}) \\ |
− | ('''B'''<sup>''n''</sup> → '''B''') | + | & \cong & (\mathbb{B}^n \to \mathbb{B}) \\ |
| + | \end{matrix}</math> |
| | | | | |
− | ''A''^<br>
| + | <math>\begin{matrix} |
− | (''A'' → '''B''')<br> | + | A^\uparrow |
− | isomorphic to:<br>
| + | & = & (A \to \mathbb{B}) \\ |
− | ('''B'''<sup>''n''</sup> → '''B''') | + | & \cong & (\mathbb{B}^n \to \mathbb{B}) \\ |
| + | \end{matrix}</math> |
| |- | | |- |
| | | | | |
− | ''X''<sup>•</sup><br>
| + | <math>\begin{matrix} |
− | [<font face="lucida calligraphy">X</font>]<br> | + | X^\circ \\ |
− | [''x''<sub>1</sub>, …, ''x''<sub>''n''</sub>]<br> | + | = & [\mathcal{X}] \\ |
− | (''X'', ''X''^)<br> | + | = & [x_1, \ldots, x_n] \\ |
− | (''X'' +→ '''K''')<br> | + | = & (X, X^\uparrow) \\ |
− | (''X'', (''X'' → '''K'''))<br> | + | = & (X\ +\!\to \mathbb{K}) \\ |
− | isomorphic to:<br>
| + | = & (X, (X \to \mathbb{K})) \\ |
− | ('''K'''<sup>''n''</sup>, ('''K'''<sup>''n''</sup> → '''K'''))<br> | + | \cong & (\mathbb{K}^n, (\mathbb{K}^n \to \mathbb{K})) \\ |
− | ('''K'''<sup>''n''</sup> +→ '''K''')<br> | + | = & (\mathbb{K}^n\ +\!\to \mathbb{K}) \\ |
− | ['''K'''<sup>''n''</sup>] | + | = & [\mathbb{K}^n] \\ |
| + | \end{matrix}</math> |
| | | | | |
− | <u>''X''</u><sup>•</sup><br> | + | <math>\begin{matrix} |
− | [<font face="lucida calligraphy"><u>X</u></font>]<br> | + | \underline{X}^\circ \\ |
− | [<u>''x''</u><sub>1</sub>, …, <u>''x''</u><sub>''n''</sub>]<br> | + | = & [\underline\mathcal{X}] \\ |
− | (<u>''X''</u>, <u>''X''</u>^)<br> | + | = & [\underline{x}_1, \ldots, \underline{x}_n] \\ |
− | (<u>''X''</u> +→ '''B''')<br> | + | = & (\underline{X}, \underline{X}^\uparrow) \\ |
− | (<u>''X''</u>, (<u>''X''</u> → '''B'''))<br> | + | = & (\underline{X}\ +\!\to \mathbb{B}) \\ |
− | isomorphic to:<br>
| + | = & (\underline{X}, (\underline{X} \to \mathbb{B})) \\ |
− | ('''B'''<sup>''n''</sup>, ('''B'''<sup>''n''</sup> → '''B'''))<br> | + | \cong & (\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B})) \\ |
− | ('''B'''<sup>''n''</sup> +→ '''B''')<br> | + | = & (\mathbb{B}^n\ +\!\to \mathbb{B}) \\ |
− | ['''B'''<sup>''n''</sup>] | + | = & [\mathbb{B}^n] \\ |
| + | \end{matrix}</math> |
| | | | | |
− | ''A''<sup>•</sup><br>
| + | <math>\begin{matrix} |
− | [<font face="lucida calligraphy">A</font>]<br> | + | A^\circ \\ |
− | [''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>]<br> | + | = & [\mathcal{A}] \\ |
− | (''A'', ''A''^)<br> | + | = & [a_1, \ldots, a_n] \\ |
− | (''A'' +→ '''B''')<br> | + | = & (A, A^\uparrow) \\ |
− | (''A'', (''A'' → '''B'''))<br> | + | = & (A\ +\!\to \mathbb{B}) \\ |
− | isomorphic to:<br>
| + | = & (A, (A \to \mathbb{B})) \\ |
− | ('''B'''<sup>''n''</sup>, ('''B'''<sup>''n''</sup> → '''B'''))<br> | + | \cong & (\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B})) \\ |
− | ('''B'''<sup>''n''</sup> +→ '''B''')<br> | + | = & (\mathbb{B}^n\ +\!\to \mathbb{B}) \\ |
− | ['''B'''<sup>''n''</sup>] | + | = & [\mathbb{B}^n] \\ |
| + | \end{matrix}</math> |
| |}<br> | | |}<br> |
| | | |