Line 447: |
Line 447: |
| ===Propositions as Types and Higher Order Types=== | | ===Propositions as Types and Higher Order Types=== |
| | | |
− | The arrangement of types collected in Table 3 (repeated below) serve to introduce the themes of ''higher order propositional expressions'' and the ''propositions as types'' (PAT) analogy. | + | The types collected in Table 3 (repeated below) serve to illustrate the themes of ''higher order propositional expressions'' and the ''propositions as types'' (PAT) analogy. |
| | | |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
Line 505: |
Line 505: |
| Applying the propositions as types analogy, one can follow this pattern through a series of metamorphoses from the type of a vector field to the type of a derivation, as traced out in Table 4. Observe how the function <math>f : X \to \mathbb{K},</math> associated with the place of <math>Y\!</math> in the pattern, moves through its paces from the second to the first position. In this way, the vector field <math>\xi,\!</math> initially viewed as attaching each tangent vector <math>\xi_x\!</math> to the site <math>x\!</math> where it acts in <math>X,\!</math> now comes to be seen as acting on each scalar potential <math>f : X \to \mathbb{K}</math> like a generalized species of differentiation, producing another function <math>\xi f : X \to \mathbb{K}</math> of the same type. | | Applying the propositions as types analogy, one can follow this pattern through a series of metamorphoses from the type of a vector field to the type of a derivation, as traced out in Table 4. Observe how the function <math>f : X \to \mathbb{K},</math> associated with the place of <math>Y\!</math> in the pattern, moves through its paces from the second to the first position. In this way, the vector field <math>\xi,\!</math> initially viewed as attaching each tangent vector <math>\xi_x\!</math> to the site <math>x\!</math> where it acts in <math>X,\!</math> now comes to be seen as acting on each scalar potential <math>f : X \to \mathbb{K}</math> like a generalized species of differentiation, producing another function <math>\xi f : X \to \mathbb{K}</math> of the same type. |
| | | |
− | <font face="courier new">
| |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:96%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:96%" |
| |+ '''Table 4. An Equivalence Based on the Propositions as Types Analogy | | |+ '''Table 4. An Equivalence Based on the Propositions as Types Analogy |
| ''' | | ''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
− | ! Pattern | + | ! <math>\mbox{Pattern}\!</math> |
− | ! Construction | + | ! <math>\mbox{Construct}\!</math> |
− | ! Instance | + | ! <math>\mbox{Instance}\!</math> |
| |- | | |- |
− | | ''X'' → (''Y'' → ''Z'') | + | | <math>X \to (Y \to Z)</math> |
− | | Vector Field | + | | <math>\mbox{Vector Field}\!</math> |
− | | '''K'''<sup>''n''</sup> → (('''K'''<sup>''n''</sup> → '''K''') → '''K''') | + | | <math>\mathbb{K}^n \to ((\mathbb{K}^n \to \mathbb{K}) \to \mathbb{K})</math> |
| |- | | |- |
− | |(''X'' × ''Y'') → ''Z'' | + | | <math>(X \times Y) \to Z</math> |
− | | | + | | <math>\Uparrow</math> |
− | | ('''K'''<sup>''n''</sup> × ('''K'''<sup>''n''</sup> → '''K''')) → '''K''' | + | | <math>(\mathbb{K}^n \times (\mathbb{K}^n \to \mathbb{K})) \to \mathbb{K}</math> |
| |- | | |- |
− | | (''Y'' × ''X'') → ''Z'' | + | | <math>(Y \times X) \to Z</math> |
− | | | + | | <math>\Downarrow</math> |
− | | (('''K'''<sup>''n''</sup> → '''K''') × '''K'''<sup>''n''</sup>) → '''K''' | + | | <math>((\mathbb{K}^n \to \mathbb{K}) \times \mathbb{K}^n) \to \mathbb{K}</math> |
| |- | | |- |
− | | ''Y'' → (''X'' → ''Z'') | + | | <math>Y \to (X \to Z)</math> |
− | | Derivation | + | | <math>\mbox{Derivation}\!</math> |
− | | ('''K'''<sup>''n''</sup> → '''K''') → ('''K'''<sup>''n''</sup> → '''K''') | + | | <math>(\mathbb{K}^n \to \mathbb{K}) \to (\mathbb{K}^n \to \mathbb{K})</math> |
| |} | | |} |
− | </font><br>
| |
| | | |
| ===Reality at the Threshold of Logic=== | | ===Reality at the Threshold of Logic=== |