Changes

MyWikiBiz, Author Your Legacy — Tuesday September 02, 2025
Jump to navigationJump to search
Line 447: Line 447:  
===Propositions as Types and Higher Order Types===
 
===Propositions as Types and Higher Order Types===
   −
The arrangement of types collected in Table 3 (repeated below) serve to introduce the themes of ''higher order propositional expressions'' and the ''propositions as types'' (PAT) analogy.
+
The types collected in Table 3 (repeated below) serve to illustrate the themes of ''higher order propositional expressions'' and the ''propositions as types'' (PAT) analogy.
    
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
Line 505: Line 505:  
Applying the propositions as types analogy, one can follow this pattern through a series of metamorphoses from the type of a vector field to the type of a derivation, as traced out in Table&nbsp;4.  Observe how the function <math>f : X \to \mathbb{K},</math> associated with the place of <math>Y\!</math> in the pattern, moves through its paces from the second to the first position.  In this way, the vector field <math>\xi,\!</math> initially viewed as attaching each tangent vector <math>\xi_x\!</math> to the site <math>x\!</math> where it acts in <math>X,\!</math> now comes to be seen as acting on each scalar potential <math>f : X \to \mathbb{K}</math> like a generalized species of differentiation, producing another function <math>\xi f : X \to \mathbb{K}</math> of the same type.
 
Applying the propositions as types analogy, one can follow this pattern through a series of metamorphoses from the type of a vector field to the type of a derivation, as traced out in Table&nbsp;4.  Observe how the function <math>f : X \to \mathbb{K},</math> associated with the place of <math>Y\!</math> in the pattern, moves through its paces from the second to the first position.  In this way, the vector field <math>\xi,\!</math> initially viewed as attaching each tangent vector <math>\xi_x\!</math> to the site <math>x\!</math> where it acts in <math>X,\!</math> now comes to be seen as acting on each scalar potential <math>f : X \to \mathbb{K}</math> like a generalized species of differentiation, producing another function <math>\xi f : X \to \mathbb{K}</math> of the same type.
   −
<font face="courier new">
   
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:96%"
 
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:96%"
 
|+ '''Table 4.  An Equivalence Based on the Propositions as Types Analogy
 
|+ '''Table 4.  An Equivalence Based on the Propositions as Types Analogy
 
'''
 
'''
 
|- style="background:ghostwhite"
 
|- style="background:ghostwhite"
! Pattern
+
! <math>\mbox{Pattern}\!</math>
! Construction
+
! <math>\mbox{Construct}\!</math>
! Instance
+
! <math>\mbox{Instance}\!</math>
 
|-
 
|-
| ''X''&nbsp;&rarr;&nbsp;(''Y''&nbsp;&rarr;&nbsp;''Z'')
+
| <math>X \to (Y \to Z)</math>
| Vector Field
+
| <math>\mbox{Vector Field}\!</math>
| '''K'''<sup>''n''</sup>&nbsp;&rarr;&nbsp;(('''K'''<sup>''n''</sup>&nbsp;&rarr;&nbsp;'''K''')&nbsp;&rarr;&nbsp;'''K''')
+
| <math>\mathbb{K}^n \to ((\mathbb{K}^n \to \mathbb{K}) \to \mathbb{K})</math>
 
|-
 
|-
|(''X''&nbsp;&times;&nbsp;''Y'')&nbsp;&rarr;&nbsp;''Z''
+
| <math>(X \times Y) \to Z</math>
| &nbsp;
+
| <math>\Uparrow</math>
| ('''K'''<sup>''n''</sup>&nbsp;&times;&nbsp;('''K'''<sup>''n''</sup>&nbsp;&rarr;&nbsp;'''K'''))&nbsp;&rarr;&nbsp;'''K'''
+
| <math>(\mathbb{K}^n \times (\mathbb{K}^n \to \mathbb{K})) \to \mathbb{K}</math>
 
|-
 
|-
| (''Y''&nbsp;&times;&nbsp;''X'')&nbsp;&rarr;&nbsp;''Z''
+
| <math>(Y \times X) \to Z</math>
| &nbsp;
+
| <math>\Downarrow</math>
| (('''K'''<sup>''n''</sup>&nbsp;&rarr;&nbsp;'''K''')&nbsp;&times;&nbsp;'''K'''<sup>''n''</sup>)&nbsp;&rarr;&nbsp;'''K'''
+
| <math>((\mathbb{K}^n \to \mathbb{K}) \times \mathbb{K}^n) \to \mathbb{K}</math>
 
|-
 
|-
| ''Y''&nbsp;&rarr;&nbsp;(''X''&nbsp;&rarr;&nbsp;''Z'')
+
| <math>Y \to (X \to Z)</math>
| Derivation
+
| <math>\mbox{Derivation}\!</math>
| ('''K'''<sup>''n''</sup>&nbsp;&rarr;&nbsp;'''K''')&nbsp;&rarr;&nbsp;('''K'''<sup>''n''</sup>&nbsp;&rarr;&nbsp;'''K''')
+
| <math>(\mathbb{K}^n \to \mathbb{K}) \to (\mathbb{K}^n \to \mathbb{K})</math>
 
|}
 
|}
</font><br>
      
===Reality at the Threshold of Logic===
 
===Reality at the Threshold of Logic===
12,089

edits

Navigation menu