Changes

a whiter shade of pale
Line 366: Line 366:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|+ '''Table 3.  Analogy of Real and Boolean Types'''
 
|+ '''Table 3.  Analogy of Real and Boolean Types'''
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
! Real Domain '''R'''
 
! Real Domain '''R'''
 
! &larr;&rarr;
 
! &larr;&rarr;
Line 446: Line 446:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|+ '''Table 3.  Analogy of Real and Boolean Types'''
 
|+ '''Table 3.  Analogy of Real and Boolean Types'''
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
! Real Domain '''R'''
 
! Real Domain '''R'''
 
! &larr;&rarr;
 
! &larr;&rarr;
Line 504: Line 504:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:96%"
 
|+ '''Table 4.  An Equivalence Based on the Propositions as Types Analogy
 
|+ '''Table 4.  An Equivalence Based on the Propositions as Types Analogy
 
'''
 
'''
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
! Pattern
 
! Pattern
 
! Construction
 
! Construction
Line 544: Line 544:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%"
 
|+ '''Table 5.  A Bridge Over Troubled Waters'''
 
|+ '''Table 5.  A Bridge Over Troubled Waters'''
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
! Linear Space
 
! Linear Space
 
! Liminal Space
 
! Liminal Space
Line 717: Line 717:  
Propositional forms on one variable correspond to boolean functions ''f''&nbsp;:&nbsp;'''B'''<sup>1</sup>&nbsp;&rarr;&nbsp;'''B'''.  In Table 6 these functions are listed in a variant form of [[truth table]], one which rotates the axes of the usual arrangement.  Each function ''f''<sub>''i''</sub> is indexed by the string of values that it takes on the points of the universe ''X''<sup>&nbsp;&bull;</sup>&nbsp;=&nbsp;[''x'']&nbsp;<math>\cong</math>&nbsp;'''B'''<sup>1</sup>.  The binary index generated in this way is converted to its decimal equivalent, and these are used as conventional names for the ''f''<sub>''i''</sub>&nbsp;, as shown in the first column of the Table.  In their own right the 2<sup>1</sup> points of the universe ''X''<sup>&nbsp;&bull;</sup> are coordinated as a space of type '''B'''<sup>1</sup>, this in light of the universe ''X''<sup>&nbsp;&bull;</sup> being a functional domain where the coordinate projection ''x'' takes on its values in '''B'''.
 
Propositional forms on one variable correspond to boolean functions ''f''&nbsp;:&nbsp;'''B'''<sup>1</sup>&nbsp;&rarr;&nbsp;'''B'''.  In Table 6 these functions are listed in a variant form of [[truth table]], one which rotates the axes of the usual arrangement.  Each function ''f''<sub>''i''</sub> is indexed by the string of values that it takes on the points of the universe ''X''<sup>&nbsp;&bull;</sup>&nbsp;=&nbsp;[''x'']&nbsp;<math>\cong</math>&nbsp;'''B'''<sup>1</sup>.  The binary index generated in this way is converted to its decimal equivalent, and these are used as conventional names for the ''f''<sub>''i''</sub>&nbsp;, as shown in the first column of the Table.  In their own right the 2<sup>1</sup> points of the universe ''X''<sup>&nbsp;&bull;</sup> are coordinated as a space of type '''B'''<sup>1</sup>, this in light of the universe ''X''<sup>&nbsp;&bull;</sup> being a functional domain where the coordinate projection ''x'' takes on its values in '''B'''.
   −
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|+ '''Table 6.  Propositional Forms on One Variable'''
 
|+ '''Table 6.  Propositional Forms on One Variable'''
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
! style="width:16%" | L<sub>1</sub><br>Decimal
 
! style="width:16%" | L<sub>1</sub><br>Decimal
 
! style="width:16%" | L<sub>2</sub><br>Binary
 
! style="width:16%" | L<sub>2</sub><br>Binary
Line 726: Line 726:  
! style="width:16%" | L<sub>5</sub><br>English
 
! style="width:16%" | L<sub>5</sub><br>English
 
! style="width:16%" | L<sub>6</sub><br>Ordinary
 
! style="width:16%" | L<sub>6</sub><br>Ordinary
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
| &nbsp;
 
| &nbsp;
 
| align="right" | x :
 
| align="right" | x :
Line 766: Line 766:  
Propositional forms on two variables correspond to boolean functions ''f''&nbsp;:&nbsp;'''B'''<sup>2</sup>&nbsp;&rarr;&nbsp;'''B'''.  In Table 7 each function ''f''<sub>''i''</sub> is indexed by the values that it takes on the points of the universe ''X''<sup>&nbsp;&bull;</sup>&nbsp;=&nbsp;[''x'',&nbsp;''y'']&nbsp;<math>\cong</math>&nbsp;'''B'''<sup>2</sup>.  Converting the binary index thus generated to a decimal equivalent, we obtain the functional nicknames that are listed in the first column.  The 2<sup>2</sup> points of the universe ''X''<sup>&nbsp;&bull;</sup> are coordinated as a space of type '''B'''<sup>2</sup>, as indicated under the heading of the Table, where the coordinate projections ''x'' and ''y'' run through the various combinations of their values in '''B'''.
 
Propositional forms on two variables correspond to boolean functions ''f''&nbsp;:&nbsp;'''B'''<sup>2</sup>&nbsp;&rarr;&nbsp;'''B'''.  In Table 7 each function ''f''<sub>''i''</sub> is indexed by the values that it takes on the points of the universe ''X''<sup>&nbsp;&bull;</sup>&nbsp;=&nbsp;[''x'',&nbsp;''y'']&nbsp;<math>\cong</math>&nbsp;'''B'''<sup>2</sup>.  Converting the binary index thus generated to a decimal equivalent, we obtain the functional nicknames that are listed in the first column.  The 2<sup>2</sup> points of the universe ''X''<sup>&nbsp;&bull;</sup> are coordinated as a space of type '''B'''<sup>2</sup>, as indicated under the heading of the Table, where the coordinate projections ''x'' and ''y'' run through the various combinations of their values in '''B'''.
   −
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|+ '''Table 7.  Propositional Forms on Two Variables'''
 
|+ '''Table 7.  Propositional Forms on Two Variables'''
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
! style="width:16%" | L<sub>1</sub><br>Decimal
 
! style="width:16%" | L<sub>1</sub><br>Decimal
 
! style="width:16%" | L<sub>2</sub><br>Binary
 
! style="width:16%" | L<sub>2</sub><br>Binary
Line 775: Line 775:  
! style="width:16%" | L<sub>5</sub><br>English
 
! style="width:16%" | L<sub>5</sub><br>English
 
! style="width:16%" | L<sub>6</sub><br>Ordinary
 
! style="width:16%" | L<sub>6</sub><br>Ordinary
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
| &nbsp;
 
| &nbsp;
 
| align="right" | x :
 
| align="right" | x :
Line 782: Line 782:  
| &nbsp;
 
| &nbsp;
 
| &nbsp;
 
| &nbsp;
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
| &nbsp;
 
| &nbsp;
 
| align="right" | y :
 
| align="right" | y :
Line 983: Line 983:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%"
 
|+ '''Table 8.  Notation for the Differential Extension of Propositional Calculus'''
 
|+ '''Table 8.  Notation for the Differential Extension of Propositional Calculus'''
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
! Symbol
 
! Symbol
 
! Notation
 
! Notation
Line 1,061: Line 1,061:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="4" cellspacing="0" style="text-align:left; width:96%"
 
|+ '''Table 9.  Higher Order Differential Features'''
 
|+ '''Table 9.  Higher Order Differential Features'''
 
| width=50% |
 
| width=50% |
{| cellpadding="4" style="background:lightcyan"
+
{| cellpadding="4"
 
| <font face="lucida calligraphy">A</font>
 
| <font face="lucida calligraphy">A</font>
 
| =
 
| =
Line 1,097: Line 1,097:  
|}
 
|}
 
| width=50% |
 
| width=50% |
{| cellpadding="4" style="background:lightcyan"
+
{| cellpadding="4"
 
| E<sup>0</sup><font face="lucida calligraphy">A</font>
 
| E<sup>0</sup><font face="lucida calligraphy">A</font>
 
| =
 
| =
Line 1,136: Line 1,136:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="4" cellspacing="0" style="text-align:left; width:96%"
 
|+ '''Table 10.  A Realm of Intentional Features'''
 
|+ '''Table 10.  A Realm of Intentional Features'''
 
| width=50% |
 
| width=50% |
{| cellpadding="4" style="background:lightcyan"
+
{| cellpadding="4"
 
| p<sup>0</sup><font face="lucida calligraphy">A</font>
 
| p<sup>0</sup><font face="lucida calligraphy">A</font>
 
| =
 
| =
Line 1,179: Line 1,179:  
|}
 
|}
 
| width=50% |
 
| width=50% |
{| cellpadding="4" style="background:lightcyan"
+
{| cellpadding="4"
 
| Q<sup>0</sup><font face="lucida calligraphy">A</font>
 
| Q<sup>0</sup><font face="lucida calligraphy">A</font>
 
| =
 
| =
Line 1,282: Line 1,282:     
<br><font face="courier new">
 
<br><font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:96%"
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="text-align:center; width:96%"
 
| &nbsp; || From || (''A'') || and || (d''A'') || infer || (''A'') || next. || &nbsp;
 
| &nbsp; || From || (''A'') || and || (d''A'') || infer || (''A'') || next. || &nbsp;
 
|-
 
|-
Line 1,325: Line 1,325:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="6" cellspacing="0" style="background:lightcyan; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:96%"
 
|+ '''Table 11.  A Pair of Commodious Trajectories'''
 
|+ '''Table 11.  A Pair of Commodious Trajectories'''
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
! Time
 
! Time
 
! Trajectory 1
 
! Trajectory 1
Line 1,333: Line 1,333:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; text-align:center"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="text-align:center"
 
| 0
 
| 0
 
|-
 
|-
Line 1,345: Line 1,345:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; text-align:center"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="text-align:center"
 
|  ''A''  ||  d''A''  || (d<sup>2</sup>''A'')
 
|  ''A''  ||  d''A''  || (d<sup>2</sup>''A'')
 
|-
 
|-
Line 1,357: Line 1,357:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; text-align:center"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="text-align:center"
 
| (''A'') || (d''A'') ||  d<sup>2</sup>''A''
 
| (''A'') || (d''A'') ||  d<sup>2</sup>''A''
 
|-
 
|-
Line 1,425: Line 1,425:  
To complete the construction of the extended universe of discourse E''X''<sup>&nbsp;&bull;</sup>&nbsp;=&nbsp;[''x''<sub>1</sub>,&nbsp;d''x''<sub>1</sub>]&nbsp;=&nbsp;[''A'',&nbsp;d''A''], one must add the set of differential propositions E''X''^&nbsp;=&nbsp;{''g''&nbsp;:&nbsp;E''X''&nbsp;&rarr;&nbsp;'''B'''}&nbsp;<math>\cong</math>&nbsp;('''B'''&nbsp;&times;&nbsp;'''D'''&nbsp;&rarr;&nbsp;'''B''') to the set of dispositions in E''X''.  There are <math>2^{2^{2n}}</math>&nbsp;=&nbsp;16 propositions in E''X''^, as detailed in Table 14.
 
To complete the construction of the extended universe of discourse E''X''<sup>&nbsp;&bull;</sup>&nbsp;=&nbsp;[''x''<sub>1</sub>,&nbsp;d''x''<sub>1</sub>]&nbsp;=&nbsp;[''A'',&nbsp;d''A''], one must add the set of differential propositions E''X''^&nbsp;=&nbsp;{''g''&nbsp;:&nbsp;E''X''&nbsp;&rarr;&nbsp;'''B'''}&nbsp;<math>\cong</math>&nbsp;('''B'''&nbsp;&times;&nbsp;'''D'''&nbsp;&rarr;&nbsp;'''B''') to the set of dispositions in E''X''.  There are <math>2^{2^{2n}}</math>&nbsp;=&nbsp;16 propositions in E''X''^, as detailed in Table 14.
   −
{| align="center" border="1" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|+ '''Table 14.  Differential Propositions'''
 
|+ '''Table 14.  Differential Propositions'''
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
| &nbsp;
 
| &nbsp;
 
| align="right" | A :
 
| align="right" | A :
Line 1,434: Line 1,434:  
| &nbsp;
 
| &nbsp;
 
| &nbsp;
 
| &nbsp;
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
| &nbsp;
 
| &nbsp;
 
| align="right" | dA :
 
| align="right" | dA :
Line 1,450: Line 1,450:  
|-
 
|-
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
&nbsp;<br>
 
&nbsp;<br>
Line 1,458: Line 1,458:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
g<sub>1</sub><br>
 
g<sub>1</sub><br>
Line 1,466: Line 1,466:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
0 0 0 1<br>
 
0 0 0 1<br>
Line 1,474: Line 1,474:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
(A)(dA)<br>
 
(A)(dA)<br>
Line 1,482: Line 1,482:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
Neither A nor dA<br>
 
Neither A nor dA<br>
Line 1,490: Line 1,490:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
&not;A &and; &not;dA<br>
 
&not;A &and; &not;dA<br>
Line 1,499: Line 1,499:  
|-
 
|-
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
f<sub>1</sub><br>
 
f<sub>1</sub><br>
Line 1,505: Line 1,505:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
g<sub>3</sub><br>
 
g<sub>3</sub><br>
Line 1,511: Line 1,511:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
0 0 1 1<br>
 
0 0 1 1<br>
Line 1,517: Line 1,517:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
(A)<br>
 
(A)<br>
Line 1,523: Line 1,523:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
Not A<br>
 
Not A<br>
Line 1,529: Line 1,529:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
&not;A<br>
 
&not;A<br>
Line 1,536: Line 1,536:  
|-
 
|-
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
&nbsp;<br>
 
&nbsp;<br>
Line 1,542: Line 1,542:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
g<sub>6</sub><br>
 
g<sub>6</sub><br>
Line 1,548: Line 1,548:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
0 1 1 0<br>
 
0 1 1 0<br>
Line 1,554: Line 1,554:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
(A, dA)<br>
 
(A, dA)<br>
Line 1,560: Line 1,560:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
A not equal to dA<br>
 
A not equal to dA<br>
Line 1,566: Line 1,566:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
A &ne; dA<br>
 
A &ne; dA<br>
Line 1,573: Line 1,573:  
|-
 
|-
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
&nbsp;<br>
 
&nbsp;<br>
Line 1,579: Line 1,579:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
g<sub>5</sub><br>
 
g<sub>5</sub><br>
Line 1,585: Line 1,585:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
0 1 0 1<br>
 
0 1 0 1<br>
Line 1,591: Line 1,591:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
(dA)<br>
 
(dA)<br>
Line 1,597: Line 1,597:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
Not dA<br>
 
Not dA<br>
Line 1,603: Line 1,603:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
&not;dA<br>
 
&not;dA<br>
Line 1,610: Line 1,610:  
|-
 
|-
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
&nbsp;<br>
 
&nbsp;<br>
Line 1,618: Line 1,618:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
g<sub>7</sub><br>
 
g<sub>7</sub><br>
Line 1,626: Line 1,626:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
0 1 1 1<br>
 
0 1 1 1<br>
Line 1,634: Line 1,634:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
(A dA)<br>
 
(A dA)<br>
Line 1,642: Line 1,642:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
Not both A and dA<br>
 
Not both A and dA<br>
Line 1,650: Line 1,650:  
|}
 
|}
 
|
 
|
{| style="background:lightcyan"
+
{|
 
|
 
|
 
&not;A &or; &not;dA<br>
 
&not;A &or; &not;dA<br>
Line 1,693: Line 1,693:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:96%"
 
|+ '''Table 15.  Tacit Extension of <math>[A]\!</math> to <math>[A, \operatorname{d}A]</math>'''
 
|+ '''Table 15.  Tacit Extension of <math>[A]\!</math> to <math>[A, \operatorname{d}A]</math>'''
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="text-align:center; width:96%"
 
| &nbsp;
 
| &nbsp;
 
| <math>0\!</math>
 
| <math>0\!</math>
Line 1,769: Line 1,769:     
<br><font face="courier new">
 
<br><font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:96%"
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="text-align:center; width:96%"
 
| <math>r(q)\!</math>
 
| <math>r(q)\!</math>
 
| <math>=</math>
 
| <math>=</math>
Line 1,791: Line 1,791:  
Applied to the example of fourth gear curves, this scheme results in the data of Tables&nbsp;17-a and 17-b, which exhibit one period for each orbit.  The states in each orbit are listed as ordered pairs ‹''p''<sub>''i''</sub>,&nbsp;''q''<sub>''j''</sub>›, where ''p''<sub>''i''</sub> may be read as a temporal parameter that indicates the present time of the state, and where ''j'' is the decimal equivalent of the binary numeral ''s''.  Informally and more casually, the Tables exhibit the states ''q''<sub>''s''</sub> as subscripted with the numerators of their rational indices, taking for granted the constant denominators of 2<sup>''m''</sup>&nbsp;=&nbsp;2<sup>4</sup>&nbsp;=&nbsp;16.  Within this set-up, the temporal successions of states can be reckoned as given by a kind of ''parallel round-up rule''.  That is, if ‹''d''<sub>''k''</sub>,&nbsp;''d''<sub>''k''+1</sub>› is any pair of adjacent digits in the state index ''r'', then the value of ''d''<sub>''k''</sub> in the next state is ''d''<sub>''k''</sub>&prime;&nbsp;=&nbsp;''d''<sub>''k''</sub>&nbsp;+&nbsp;''d''<sub>''k''+1</sub>.
 
Applied to the example of fourth gear curves, this scheme results in the data of Tables&nbsp;17-a and 17-b, which exhibit one period for each orbit.  The states in each orbit are listed as ordered pairs ‹''p''<sub>''i''</sub>,&nbsp;''q''<sub>''j''</sub>›, where ''p''<sub>''i''</sub> may be read as a temporal parameter that indicates the present time of the state, and where ''j'' is the decimal equivalent of the binary numeral ''s''.  Informally and more casually, the Tables exhibit the states ''q''<sub>''s''</sub> as subscripted with the numerators of their rational indices, taking for granted the constant denominators of 2<sup>''m''</sup>&nbsp;=&nbsp;2<sup>4</sup>&nbsp;=&nbsp;16.  Within this set-up, the temporal successions of states can be reckoned as given by a kind of ''parallel round-up rule''.  That is, if ‹''d''<sub>''k''</sub>,&nbsp;''d''<sub>''k''+1</sub>› is any pair of adjacent digits in the state index ''r'', then the value of ''d''<sub>''k''</sub> in the next state is ''d''<sub>''k''</sub>&prime;&nbsp;=&nbsp;''d''<sub>''k''</sub>&nbsp;+&nbsp;''d''<sub>''k''+1</sub>.
   −
{| align="center" border="1" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|+ '''Table 17-a.  A Couple of Orbits in Fourth Gear:  Orbit 1'''
 
|+ '''Table 17-a.  A Couple of Orbits in Fourth Gear:  Orbit 1'''
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
| Time
 
| Time
 
| State
 
| State
Line 1,801: Line 1,801:  
| &nbsp;
 
| &nbsp;
 
| &nbsp;
 
| &nbsp;
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
| ''p''<sub>''i''</sub>
 
| ''p''<sub>''i''</sub>
 
| ''q''<sub>''j''</sub>
 
| ''q''<sub>''j''</sub>
Line 1,811: Line 1,811:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center"
 
| ''p''<sub>0</sub>
 
| ''p''<sub>0</sub>
 
|-
 
|-
Line 1,829: Line 1,829:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center"
 
| ''q''<sub>01</sub>
 
| ''q''<sub>01</sub>
 
|-
 
|-
Line 1,847: Line 1,847:  
|}
 
|}
 
| colspan="5" |
 
| colspan="5" |
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0. || 0 || 0 || 0 || 1
 
| 0. || 0 || 0 || 0 || 1
 
|-
 
|-
Line 1,867: Line 1,867:  
<br>
 
<br>
   −
{| align="center" border="1" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|+ '''Table 17-b.  A Couple of Orbits in Fourth Gear:  Orbit 2'''
 
|+ '''Table 17-b.  A Couple of Orbits in Fourth Gear:  Orbit 2'''
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
| Time
 
| Time
 
| State
 
| State
Line 1,877: Line 1,877:  
| &nbsp;
 
| &nbsp;
 
| &nbsp;
 
| &nbsp;
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
| ''p''<sub>''i''</sub>
 
| ''p''<sub>''i''</sub>
 
| ''q''<sub>''j''</sub>
 
| ''q''<sub>''j''</sub>
Line 1,887: Line 1,887:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center"
 
| ''p''<sub>0</sub>
 
| ''p''<sub>0</sub>
 
|-
 
|-
Line 1,905: Line 1,905:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center"
 
| ''q''<sub>25</sub>
 
| ''q''<sub>25</sub>
 
|-
 
|-
Line 1,923: Line 1,923:  
|}
 
|}
 
| colspan="5" |
 
| colspan="5" |
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1. || 1 || 0 || 0 || 1
 
| 1. || 1 || 0 || 0 || 1
 
|-
 
|-
Line 2,148: Line 2,148:     
<br><font face="courier new">
 
<br><font face="courier new">
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|+ '''Table 22.  Disjunction ''f'' and Equality ''g'' '''
 
|+ '''Table 22.  Disjunction ''f'' and Equality ''g'' '''
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| ''u'' || ''v''
 
| ''u'' || ''v''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| ''f'' || ''g''
 
| ''f'' || ''g''
 
|}
 
|}
 
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 2,170: Line 2,170:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 1
 
| 0 || 1
 
|-
 
|-
Line 2,188: Line 2,188:  
|+ '''Tables 23-i and 23-ii.  Thematics of Disjunction and Equality (1)'''
 
|+ '''Tables 23-i and 23-ii.  Thematics of Disjunction and Equality (1)'''
 
|
 
|
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:90%"
 
|+ '''Table 23-i.  Disjunction ''f'' '''
 
|+ '''Table 23-i.  Disjunction ''f'' '''
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| ''u'' || ''v'' || ''f''
 
| ''u'' || ''v'' || ''f''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| ''x'' || &phi;
 
| ''x'' || &phi;
 
|}
 
|}
 
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0 || &rarr;
 
| 0 || 0 || &rarr;
 
|-
 
|-
Line 2,210: Line 2,210:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 1
 
| 0 || 1
 
|-
 
|-
Line 2,221: Line 2,221:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0 || &nbsp;&nbsp;
 
| 0 || 0 || &nbsp;&nbsp;
 
|-
 
|-
Line 2,231: Line 2,231:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1 || 0
 
| 1 || 0
 
|-
 
|-
Line 2,242: Line 2,242:  
|}
 
|}
 
|
 
|
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:90%"
 
|+ '''Table 23-ii.  Equality ''g'' '''
 
|+ '''Table 23-ii.  Equality ''g'' '''
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| ''u'' || ''v'' || ''g''
 
| ''u'' || ''v'' || ''g''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| ''y'' || &gamma;
 
| ''y'' || &gamma;
 
|}
 
|}
 
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0 || &rarr;
 
| 0 || 0 || &rarr;
 
|-
 
|-
Line 2,264: Line 2,264:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1 || 1
 
| 1 || 1
 
|-
 
|-
Line 2,275: Line 2,275:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0 || &nbsp;&nbsp;
 
| 0 || 0 || &nbsp;&nbsp;
 
|-
 
|-
Line 2,285: Line 2,285:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 2,304: Line 2,304:  
|+ '''Tables 24-i and 24-ii.  Thematics of Disjunction and Equality (2)'''
 
|+ '''Tables 24-i and 24-ii.  Thematics of Disjunction and Equality (2)'''
 
|
 
|
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:90%"
 
|+ '''Table 24-i.  Disjunction ''f'' '''
 
|+ '''Table 24-i.  Disjunction ''f'' '''
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| ''u'' || ''v'' || ''f'' || ''x''
 
| ''u'' || ''v'' || ''f'' || ''x''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| &phi;
 
| &phi;
 
|}
 
|}
 
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0 || &rarr;      || 0
 
| 0 || 0 || &rarr;      || 0
 
|-
 
|-
Line 2,326: Line 2,326:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1
 
| 1
 
|-
 
|-
Line 2,337: Line 2,337:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1 || 0 || &nbsp;&nbsp; || 0
 
| 1 || 0 || &nbsp;&nbsp; || 0
 
|-
 
|-
Line 2,347: Line 2,347:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0
 
| 0
 
|-
 
|-
Line 2,358: Line 2,358:  
|}
 
|}
 
|
 
|
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:90%"
 
|+ '''Table 24-ii.  Equality ''g'' '''
 
|+ '''Table 24-ii.  Equality ''g'' '''
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| ''u'' || ''v'' || ''g'' || ''y''
 
| ''u'' || ''v'' || ''g'' || ''y''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| &gamma;
 
| &gamma;
 
|}
 
|}
 
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0 || &nbsp;&nbsp; || 0
 
| 0 || 0 || &nbsp;&nbsp; || 0
 
|-
 
|-
Line 2,380: Line 2,380:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0
 
| 0
 
|-
 
|-
Line 2,391: Line 2,391:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1 || 0 || &rarr;      || 0
 
| 1 || 0 || &rarr;      || 0
 
|-
 
|-
Line 2,401: Line 2,401:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1
 
| 1
 
|-
 
|-
Line 2,420: Line 2,420:  
|+ '''Tables 25-i and 25-ii.  Thematics of Disjunction and Equality (3)'''
 
|+ '''Tables 25-i and 25-ii.  Thematics of Disjunction and Equality (3)'''
 
|
 
|
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:90%"
 
|+ '''Table 25-i.  Disjunction ''f'' '''
 
|+ '''Table 25-i.  Disjunction ''f'' '''
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| ''u'' || ''v'' || ''f'' || ''x''
 
| ''u'' || ''v'' || ''f'' || ''x''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| &phi;
 
| &phi;
 
|}
 
|}
 
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0 || &rarr;      || 0
 
| 0 || 0 || &rarr;      || 0
 
|-
 
|-
Line 2,442: Line 2,442:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1
 
| 1
 
|-
 
|-
Line 2,453: Line 2,453:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0 || &nbsp;&nbsp; || 1
 
| 0 || 0 || &nbsp;&nbsp; || 1
 
|-
 
|-
Line 2,463: Line 2,463:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0
 
| 0
 
|-
 
|-
Line 2,474: Line 2,474:  
|}
 
|}
 
|
 
|
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:90%"
 
|+ '''Table 25-ii.  Equality ''g'' '''
 
|+ '''Table 25-ii.  Equality ''g'' '''
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| ''u'' || ''v'' || ''g'' || ''y''
 
| ''u'' || ''v'' || ''g'' || ''y''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| &gamma;
 
| &gamma;
 
|}
 
|}
 
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0 || &nbsp;&nbsp; || 0
 
| 0 || 0 || &nbsp;&nbsp; || 0
 
|-
 
|-
Line 2,496: Line 2,496:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0
 
| 0
 
|-
 
|-
Line 2,507: Line 2,507:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0 || &rarr;      || 1
 
| 0 || 0 || &rarr;      || 1
 
|-
 
|-
Line 2,517: Line 2,517:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1
 
| 1
 
|-
 
|-
Line 2,536: Line 2,536:  
|+ '''Tables 26-i and 26-ii.  Tacit Extension and Thematization'''
 
|+ '''Tables 26-i and 26-ii.  Tacit Extension and Thematization'''
 
|
 
|
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:90%"
 
|+ '''Table 26-i.  Disjunction ''f'' '''
 
|+ '''Table 26-i.  Disjunction ''f'' '''
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| ''u'' || ''v'' || ''x''
 
| ''u'' || ''v'' || ''x''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| &epsilon;''f'' || &theta;''f''
 
| &epsilon;''f'' || &theta;''f''
 
|}
 
|}
 
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0 || 0
 
| 0 || 0 || 0
 
|-
 
|-
Line 2,558: Line 2,558:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 1
 
| 0 || 1
 
|-
 
|-
Line 2,569: Line 2,569:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1 || 0 || 0
 
| 1 || 0 || 0
 
|-
 
|-
Line 2,579: Line 2,579:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1 || 0
 
| 1 || 0
 
|-
 
|-
Line 2,590: Line 2,590:  
|}
 
|}
 
|
 
|
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%"
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:90%"
 
|+ '''Table 26-ii.  Equality ''g'' '''
 
|+ '''Table 26-ii.  Equality ''g'' '''
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| ''u'' || ''v'' || ''y''
 
| ''u'' || ''v'' || ''y''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| &epsilon;''g'' || &theta;''g''
 
| &epsilon;''g'' || &theta;''g''
 
|}
 
|}
 
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0 || 0
 
| 0 || 0 || 0
 
|-
 
|-
Line 2,612: Line 2,612:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1 || 0
 
| 1 || 0
 
|-
 
|-
Line 2,623: Line 2,623:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1 || 0 || 0
 
| 1 || 0 || 0
 
|-
 
|-
Line 2,633: Line 2,633:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 1
 
| 0 || 1
 
|-
 
|-
Line 2,649: Line 2,649:     
<br><font face="courier new">
 
<br><font face="courier new">
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|+ Table 27.  Thematization of Bivariate Propositions
 
|+ Table 27.  Thematization of Bivariate Propositions
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
|
 
|
{| align="right" style="background:paleturquoise; text-align:right"
+
{| align="right" style="background:ghostwhite; text-align:right"
 
| u :
 
| u :
 
|-
 
|-
Line 2,659: Line 2,659:  
|}
 
|}
 
|
 
|
{| style="background:paleturquoise"
+
{| style="background:ghostwhite"
 
| 1100
 
| 1100
 
|-
 
|-
Line 2,665: Line 2,665:  
|}
 
|}
 
|
 
|
{| style="background:paleturquoise"
+
{| style="background:ghostwhite"
 
| f
 
| f
 
|-
 
|-
Line 2,671: Line 2,671:  
|}
 
|}
 
|
 
|
{| style="background:paleturquoise"
+
{| style="background:ghostwhite"
 
| &theta;f
 
| &theta;f
 
|-
 
|-
Line 2,677: Line 2,677:  
|}
 
|}
 
|
 
|
{| style="background:paleturquoise"
+
{| style="background:ghostwhite"
 
| &theta;f
 
| &theta;f
 
|-
 
|-
Line 2,684: Line 2,684:  
|-
 
|-
 
|
 
|
{| cellpadding="2" style="background:lightcyan"
+
{| cellpadding="2"
 
| f<sub>0</sub>
 
| f<sub>0</sub>
 
|-
 
|-
Line 2,702: Line 2,702:  
|}
 
|}
 
|
 
|
{| cellpadding="2" style="background:lightcyan"
+
{| cellpadding="2"
 
| 0000
 
| 0000
 
|-
 
|-
Line 2,720: Line 2,720:  
|}
 
|}
 
|
 
|
{| cellpadding="2" style="background:lightcyan"
+
{| cellpadding="2"
 
| ()
 
| ()
 
|-
 
|-
Line 2,738: Line 2,738:  
|}
 
|}
 
|
 
|
{| cellpadding="2" style="background:lightcyan"
+
{| cellpadding="2"
 
| ((&nbsp;f&nbsp;,&nbsp;&nbsp;&nbsp;&nbsp;()&nbsp;&nbsp;&nbsp;&nbsp;))
 
| ((&nbsp;f&nbsp;,&nbsp;&nbsp;&nbsp;&nbsp;()&nbsp;&nbsp;&nbsp;&nbsp;))
 
|-
 
|-
Line 2,756: Line 2,756:  
|}
 
|}
 
|
 
|
{| align="left" cellpadding="2" style="background:lightcyan; text-align:left"
+
{| align="left" cellpadding="2" style="text-align:left"
 
| &nbsp;f + 1
 
| &nbsp;f + 1
 
|-
 
|-
Line 2,775: Line 2,775:  
|-
 
|-
 
|
 
|
{| cellpadding="2" style="background:lightcyan"
+
{| cellpadding="2"
 
| f<sub>8</sub>
 
| f<sub>8</sub>
 
|-
 
|-
Line 2,793: Line 2,793:  
|}
 
|}
 
|
 
|
{| cellpadding="2" style="background:lightcyan"
+
{| cellpadding="2"
 
| 1000
 
| 1000
 
|-
 
|-
Line 2,811: Line 2,811:  
|}
 
|}
 
|
 
|
{| cellpadding="2" style="background:lightcyan"
+
{| cellpadding="2"
 
| &nbsp;&nbsp;u&nbsp;&nbsp;v&nbsp;&nbsp;
 
| &nbsp;&nbsp;u&nbsp;&nbsp;v&nbsp;&nbsp;
 
|-
 
|-
Line 2,829: Line 2,829:  
|}
 
|}
 
|
 
|
{| cellpadding="2" style="background:lightcyan"
+
{| cellpadding="2"
 
| ((&nbsp;f&nbsp;,&nbsp;&nbsp;&nbsp;u&nbsp;&nbsp;v&nbsp;&nbsp;&nbsp;))
 
| ((&nbsp;f&nbsp;,&nbsp;&nbsp;&nbsp;u&nbsp;&nbsp;v&nbsp;&nbsp;&nbsp;))
 
|-
 
|-
Line 2,847: Line 2,847:  
|}
 
|}
 
|
 
|
{| align="left" cellpadding="2" style="background:lightcyan; text-align:left"
+
{| align="left" cellpadding="2" style="text-align:left"
 
| &nbsp;f + uv + 1
 
| &nbsp;f + uv + 1
 
|-
 
|-
Line 2,870: Line 2,870:     
<br>
 
<br>
{| align="center" border="1" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|+ Table 28.  Propositions on Two Variables
 
|+ Table 28.  Propositions on Two Variables
 
|
 
|
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
| u || v || &nbsp;
 
| u || v || &nbsp;
 
|f<sub>00</sub>||f<sub>01</sub>||f<sub>02</sub>||f<sub>03</sub>
 
|f<sub>00</sub>||f<sub>01</sub>||f<sub>02</sub>||f<sub>03</sub>
Line 2,896: Line 2,896:  
<br>
 
<br>
   −
{| align="center" border="1" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|+ Table 29.  Thematic Extensions of Bivariate Propositions
 
|+ Table 29.  Thematic Extensions of Bivariate Propositions
 
|
 
|
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
| u || v || f<sup>&cent;</sup>
 
| u || v || f<sup>&cent;</sup>
 
| &phi;<sub>00</sub> || &phi;<sub>01</sub>
 
| &phi;<sub>00</sub> || &phi;<sub>01</sub>
Line 3,089: Line 3,089:     
<br><font face="courier new">
 
<br><font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:left; width:96%"
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="20%" | &nbsp;
 
| width="20%" | &nbsp;
 
| width="20%" | ''x''
 
| width="20%" | ''x''
Line 3,415: Line 3,415:     
<br><font face="courier new">
 
<br><font face="courier new">
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%"
 
|
 
|
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="center" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="8%" | ''x''<sub>1</sub>
 
| width="8%" | ''x''<sub>1</sub>
 
| width="4%" | =
 
| width="4%" | =
Line 3,434: Line 3,434:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="center" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="8%" | d''x''<sub>1</sub>
 
| width="8%" | d''x''<sub>1</sub>
 
| width="4%" | =
 
| width="4%" | =
Line 3,498: Line 3,498:     
<br><font face="courier new">
 
<br><font face="courier new">
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%"
 
|
 
|
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="center" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="8%" | ''x''<sub>1</sub>
 
| width="8%" | ''x''<sub>1</sub>
 
| width="4%" | =
 
| width="4%" | =
Line 3,517: Line 3,517:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="center" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="8%" | d''x''<sub>1</sub>
 
| width="8%" | d''x''<sub>1</sub>
 
| width="4%" | =
 
| width="4%" | =
Line 3,555: Line 3,555:     
<br><font face="courier new">
 
<br><font face="courier new">
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%"
 
|
 
|
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="center" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="8%" | d''x''<sub>1</sub>
 
| width="8%" | d''x''<sub>1</sub>
 
| width="4%" | =
 
| width="4%" | =
Line 3,595: Line 3,595:     
<br><font face="courier new">
 
<br><font face="courier new">
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%"
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| <font face=georgia>'''D'''</font>
 
| <font face=georgia>'''D'''</font>
 
| =
 
| =
Line 3,695: Line 3,695:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%"
 
|+ Table 36.  Computation of <math>\epsilon</math>''J''
 
|+ Table 36.  Computation of <math>\epsilon</math>''J''
 
|
 
|
{| align="left" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="8%" | <math>\epsilon</math>''J''
 
| width="8%" | <math>\epsilon</math>''J''
 
| width="4%" | =
 
| width="4%" | =
Line 3,716: Line 3,716:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="8%"  | <math>\epsilon</math>''J''
 
| width="8%"  | <math>\epsilon</math>''J''
 
| width="4%"  | =
 
| width="4%"  | =
Line 3,794: Line 3,794:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:left; width:96%"
 
|+ Table 38.  Computation of E''J'' (Method 1)
 
|+ Table 38.  Computation of E''J'' (Method 1)
 
|
 
|
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="8%"  | E''J''
 
| width="8%"  | E''J''
 
| width="4%"  | =
 
| width="4%"  | =
Line 3,856: Line 3,856:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="8%"  | E''J''
 
| width="8%"  | E''J''
 
| width="23%" | = ''u'' ''v'' (d''u'')(d''v'')
 
| width="23%" | = ''u'' ''v'' (d''u'')(d''v'')
Line 3,887: Line 3,887:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%"
 
|+ Table 39.  Computation of E''J'' (Method 2)
 
|+ Table 39.  Computation of E''J'' (Method 2)
 
|
 
|
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="8%"  | E''J''
 
| width="8%"  | E''J''
 
| colspan="2" | = ‹''u'' + d''u''› <math>\cdot</math> ‹''v'' + d''v''›
 
| colspan="2" | = ‹''u'' + d''u''› <math>\cdot</math> ‹''v'' + d''v''›
Line 3,974: Line 3,974:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:left; width:96%"
 
|+ Table 41.  Computation of D''J'' (Method 1)
 
|+ Table 41.  Computation of D''J'' (Method 1)
 
|
 
|
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="8%"  | D''J''
 
| width="8%"  | D''J''
 
| width="4%"  | =
 
| width="4%"  | =
Line 3,998: Line 3,998:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="8%"  | D''J''
 
| width="8%"  | D''J''
 
| width="3%"  | =
 
| width="3%"  | =
Line 4,029: Line 4,029:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="8%"  | D''J''
 
| width="8%"  | D''J''
 
| width="3%"  | =
 
| width="3%"  | =
Line 4,043: Line 4,043:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%"
 
|+ Table 42.  Computation of D''J'' (Method 2)
 
|+ Table 42.  Computation of D''J'' (Method 2)
 
|
 
|
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="8%"  | D''J''
 
| width="8%"  | D''J''
 
| width="4%"  | =
 
| width="4%"  | =
Line 4,091: Line 4,091:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:left; width:96%"
 
|+ Table 43.  Computation of D''J'' (Method 3)
 
|+ Table 43.  Computation of D''J'' (Method 3)
 
|
 
|
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="6%"  | D''J''
 
| width="6%"  | D''J''
 
| width="3%"  | =
 
| width="3%"  | =
Line 4,104: Line 4,104:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="6%"  | <math>\epsilon</math>''J''
 
| width="6%"  | <math>\epsilon</math>''J''
 
| width="23%" | =&nbsp;''u''&nbsp;''v''&nbsp;(d''u'')(d''v'')
 
| width="23%" | =&nbsp;''u''&nbsp;''v''&nbsp;(d''u'')(d''v'')
Line 4,119: Line 4,119:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="6%"  | D''J''
 
| width="6%"  | D''J''
 
| width="23%" | = 0 <math>\cdot</math> (d''u'')(d''v'')
 
| width="23%" | = 0 <math>\cdot</math> (d''u'')(d''v'')
Line 4,132: Line 4,132:     
<br><font face="courier new">
 
<br><font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:left; width:96%"
 
|
 
|
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="6%"  | <math>\epsilon</math>''J''
 
| width="6%"  | <math>\epsilon</math>''J''
 
| width="47%" | = {Dispositions from  ''J''  to  ''J''  }
 
| width="47%" | = {Dispositions from  ''J''  to  ''J''  }
Line 4,205: Line 4,205:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%"
 
|+ Table 45.  Computation of d''J''
 
|+ Table 45.  Computation of d''J''
 
|
 
|
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="6%"  | D''J''
 
| width="6%"  | D''J''
 
| width="25%" | = ''u'' ''v'' ((d''u'')(d''v''))
 
| width="25%" | = ''u'' ''v'' ((d''u'')(d''v''))
Line 4,267: Line 4,267:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:left; width:96%"
 
|+ Table 47.  Computation of r''J''
 
|+ Table 47.  Computation of r''J''
 
|
 
|
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="6%"  | r''J''
 
| width="6%"  | r''J''
 
| width="5%"  | =
 
| width="5%"  | =
Line 4,280: Line 4,280:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="6%"  | D''J''
 
| width="6%"  | D''J''
 
| width="25%" | = ''u'' ''v'' ((d''u'')(d''v''))
 
| width="25%" | = ''u'' ''v'' ((d''u'')(d''v''))
Line 4,295: Line 4,295:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="6%"  | r''J''
 
| width="6%"  | r''J''
 
| width="25%" | = ''u'' ''v''&nbsp;&nbsp;&nbsp;d''u'' d''v''
 
| width="25%" | = ''u'' ''v''&nbsp;&nbsp;&nbsp;d''u'' d''v''
Line 4,356: Line 4,356:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|+ Table 49.  Computation Summary for ''J''
 
|+ Table 49.  Computation Summary for ''J''
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| <math>\epsilon</math>''J''
 
| <math>\epsilon</math>''J''
 
| = || ''uv''        || <math>\cdot</math> || 1
 
| = || ''uv''        || <math>\cdot</math> || 1
Line 4,407: Line 4,407:     
<br>
 
<br>
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|+ Table 50.  Computation of an Analytic Series in Terms of Coordinates
 
|+ Table 50.  Computation of an Analytic Series in Terms of Coordinates
 
|
 
|
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| ''u''
 
| ''u''
 
| ''v''
 
| ''v''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| d''u''
 
| d''u''
 
| d''v''
 
| d''v''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| ''u''<font face="courier new">’</font>
 
| ''u''<font face="courier new">’</font>
 
| ''v''<font face="courier new">’</font>
 
| ''v''<font face="courier new">’</font>
Line 4,428: Line 4,428:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0      || 0
 
| 0      || 0
 
|-
 
|-
Line 4,438: Line 4,438:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 4,448: Line 4,448:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 4,459: Line 4,459:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0      || 1
 
| 0      || 1
 
|-
 
|-
Line 4,469: Line 4,469:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 4,479: Line 4,479:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 1
 
| 0 || 1
 
|-
 
|-
Line 4,490: Line 4,490:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1      || 0
 
| 1      || 0
 
|-
 
|-
Line 4,500: Line 4,500:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 4,510: Line 4,510:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1 || 0
 
| 1 || 0
 
|-
 
|-
Line 4,521: Line 4,521:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1      || 1
 
| 1      || 1
 
|-
 
|-
Line 4,531: Line 4,531:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1 || 1
 
| 1 || 1
 
|-
 
|-
Line 4,541: Line 4,541:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 4,552: Line 4,552:  
|}
 
|}
 
|
 
|
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| <math>\epsilon</math>''J''
 
| <math>\epsilon</math>''J''
 
| E''J''
 
| E''J''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| D''J''
 
| D''J''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| d''J''
 
| d''J''
 
| d<sup>2</sup>''J''
 
| d<sup>2</sup>''J''
Line 4,569: Line 4,569:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0      || 0
 
| 0      || 0
 
|-
 
|-
Line 4,579: Line 4,579:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0
 
| 0
 
|-
 
|-
Line 4,589: Line 4,589:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 4,600: Line 4,600:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0      || 0
 
| 0      || 0
 
|-
 
|-
Line 4,610: Line 4,610:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0
 
| 0
 
|-
 
|-
Line 4,620: Line 4,620:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 4,631: Line 4,631:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0      || 0
 
| 0      || 0
 
|-
 
|-
Line 4,641: Line 4,641:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0
 
| 0
 
|-
 
|-
Line 4,651: Line 4,651:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 4,662: Line 4,662:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0      || 1
 
| 0      || 1
 
|-
 
|-
Line 4,672: Line 4,672:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0
 
| 0
 
|-
 
|-
Line 4,682: Line 4,682:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 4,699: Line 4,699:     
<br><font face="courier new">
 
<br><font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| &nbsp; || ''u''’ || = || ''u'' + d''u'' || = || (''u'', d''u'') || &nbsp;
 
| &nbsp; || ''u''’ || = || ''u'' + d''u'' || = || (''u'', d''u'') || &nbsp;
 
|-
 
|-
Line 4,718: Line 4,718:     
<br><font face="courier new">
 
<br><font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| E''J''‹''u'', ''v'', d''u'', d''v''›
 
| E''J''‹''u'', ''v'', d''u'', d''v''›
 
| =
 
| =
Line 4,741: Line 4,741:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|+ Table 51.  Computation of an Analytic Series in Symbolic Terms
 
|+ Table 51.  Computation of an Analytic Series in Symbolic Terms
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| ''u'' || ''v''
 
| ''u'' || ''v''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| ''J''
 
| ''J''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| E''J''
 
| E''J''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| D''J''
 
| D''J''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| d''J''
 
| d''J''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| d<sup>2</sup>''J''
 
| d<sup>2</sup>''J''
 
|}
 
|}
 
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 4,779: Line 4,779:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0
 
| 0
 
|-
 
|-
Line 4,789: Line 4,789:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| &nbsp;d''u''&nbsp;&nbsp;d''v''&nbsp;
 
| &nbsp;d''u''&nbsp;&nbsp;d''v''&nbsp;
 
|-
 
|-
Line 4,799: Line 4,799:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| &nbsp;&nbsp;d''u''&nbsp;&nbsp;d''v''&nbsp;&nbsp;
 
| &nbsp;&nbsp;d''u''&nbsp;&nbsp;d''v''&nbsp;&nbsp;
 
|-
 
|-
Line 4,809: Line 4,809:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| ()
 
| ()
 
|-
 
|-
Line 4,819: Line 4,819:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| d''u'' d''v''
 
| d''u'' d''v''
 
|-
 
|-
Line 4,866: Line 4,866:  
Table&nbsp;54 provides basic notation and descriptive information for the objects and operators that are used used in this Example, giving the generic type (or broadest defined type) for each entity.  Here, the operators <font face=georgia>'''W'''</font> in {<font face=georgia>'''e'''</font>,&nbsp;<font face=georgia>'''E'''</font>,&nbsp;<font face=georgia>'''D'''</font>,&nbsp;<font face=georgia>'''d'''</font>,&nbsp;<font face=georgia>'''r'''</font>} and their components W in {<math>\epsilon</math>,&nbsp;<math>\eta</math>,&nbsp;E,&nbsp;D,&nbsp;d,&nbsp;r} both have the same broad type <font face=georgia>'''W'''</font>,&nbsp;W&nbsp;:&nbsp;(''U''<sup>&nbsp;&bull;</sup>&nbsp;&rarr;&nbsp;''X''<sup>&nbsp;&bull;</sup>)&nbsp;&rarr;&nbsp;(E''U''<sup>&nbsp;&bull;</sup>&nbsp;&rarr;&nbsp;E''X''<sup>&nbsp;&bull;</sup>), as would be expected of operators that map transformations ''J''&nbsp;:&nbsp;''U''<sup>&nbsp;&bull;</sup>&nbsp;&rarr;&nbsp;''X''<sup>&nbsp;&bull;</sup> to extended transformations <font face=georgia>'''W'''</font>''J'',&nbsp;W''J''&nbsp;:&nbsp;E''U<sup>&nbsp;&bull;</sup>&nbsp;&rarr;&nbsp;E''X''<sup>&nbsp;&bull;</sup>.
 
Table&nbsp;54 provides basic notation and descriptive information for the objects and operators that are used used in this Example, giving the generic type (or broadest defined type) for each entity.  Here, the operators <font face=georgia>'''W'''</font> in {<font face=georgia>'''e'''</font>,&nbsp;<font face=georgia>'''E'''</font>,&nbsp;<font face=georgia>'''D'''</font>,&nbsp;<font face=georgia>'''d'''</font>,&nbsp;<font face=georgia>'''r'''</font>} and their components W in {<math>\epsilon</math>,&nbsp;<math>\eta</math>,&nbsp;E,&nbsp;D,&nbsp;d,&nbsp;r} both have the same broad type <font face=georgia>'''W'''</font>,&nbsp;W&nbsp;:&nbsp;(''U''<sup>&nbsp;&bull;</sup>&nbsp;&rarr;&nbsp;''X''<sup>&nbsp;&bull;</sup>)&nbsp;&rarr;&nbsp;(E''U''<sup>&nbsp;&bull;</sup>&nbsp;&rarr;&nbsp;E''X''<sup>&nbsp;&bull;</sup>), as would be expected of operators that map transformations ''J''&nbsp;:&nbsp;''U''<sup>&nbsp;&bull;</sup>&nbsp;&rarr;&nbsp;''X''<sup>&nbsp;&bull;</sup> to extended transformations <font face=georgia>'''W'''</font>''J'',&nbsp;W''J''&nbsp;:&nbsp;E''U<sup>&nbsp;&bull;</sup>&nbsp;&rarr;&nbsp;E''X''<sup>&nbsp;&bull;</sup>.
   −
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%"
 
|+ '''Table 54.  Cast of Characters:  Expansive Subtypes of Objects and Operators'''
 
|+ '''Table 54.  Cast of Characters:  Expansive Subtypes of Objects and Operators'''
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
! Item
 
! Item
 
! Notation
 
! Notation
Line 4,905: Line 4,905:  
|-
 
|-
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| W
 
| W
 
|}
 
|}
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| W&nbsp;:
 
| W&nbsp;:
 
|-
 
|-
Line 4,927: Line 4,927:  
|}
 
|}
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Operator
 
| Operator
 
|}
 
|}
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100"
 
| &nbsp;
 
| &nbsp;
 
|-
 
|-
Line 4,950: Line 4,950:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <math>\epsilon</math>
 
| <math>\epsilon</math>
 
|-
 
|-
Line 4,963: Line 4,963:  
| valign="top" | &nbsp;
 
| valign="top" | &nbsp;
 
| colspan="2"  |
 
| colspan="2"  |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:60%"
 
| Tacit Extension Operator || <math>\epsilon</math>
 
| Tacit Extension Operator || <math>\epsilon</math>
 
|-
 
|-
Line 4,976: Line 4,976:  
|-
 
|-
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''W'''</font>
 
| <font face=georgia>'''W'''</font>
 
|}
 
|}
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''W'''</font>&nbsp;:
 
| <font face=georgia>'''W'''</font>&nbsp;:
 
|-
 
|-
Line 4,998: Line 4,998:  
|}
 
|}
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Operator
 
| Operator
 
|}
 
|}
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100"
 
| &nbsp;
 
| &nbsp;
 
|-
 
|-
Line 5,021: Line 5,021:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''e'''</font>
 
| <font face=georgia>'''e'''</font>
 
|-
 
|-
Line 5,032: Line 5,032:  
| valign="top" | &nbsp;
 
| valign="top" | &nbsp;
 
| colspan="2"  |
 
| colspan="2"  |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:60%"
 
| Radius Operator || <font face=georgia>'''e'''</font>&nbsp;=&nbsp;‹<math>\epsilon</math>,&nbsp;<math>\eta</math>›
 
| Radius Operator || <font face=georgia>'''e'''</font>&nbsp;=&nbsp;‹<math>\epsilon</math>,&nbsp;<math>\eta</math>›
 
|-
 
|-
Line 5,045: Line 5,045:  
Table&nbsp;55 supplies a more detailed outline of terminology for operators and their results.  Here, I list the restrictive subtype (or narrowest defined subtype) that applies to each entity, and I indicate across the span of the Table the whole spectrum of alternative types that color the interpretation of each symbol.  Accordingly, each of the component operator maps W''J'', since their ranges are 1-dimensional (of type '''B'''<sup>1</sup> or '''D'''<sup>1</sup>), can be regarded either as propositions W''J''&nbsp;:&nbsp;E''U''&nbsp;&rarr;&nbsp;'''B''' or as logical transformations W''J''&nbsp;:&nbsp;E''U''<sup>&nbsp;&bull;</sup>&nbsp;&rarr;&nbsp;''X''<sup>&nbsp;&bull;</sup>.  As a rule, the plan of the Table allows us to name each entry by detaching the adjective at the left of its row and prefixing it to the generic noun at the top of its column.  In one case, however, it is customary to depart from this scheme.  Because the phrase ''differential proposition'', applied to the result d''J''&nbsp;:&nbsp;E''U''&nbsp;&rarr;&nbsp;'''D''', does not distinguish it from the general run of differential propositions ''G''&nbsp;:&nbsp;E''U''&nbsp;&rarr;&nbsp;'''B''', it is usual to single out d''J'' as the ''tangent proposition'' of ''J''.
 
Table&nbsp;55 supplies a more detailed outline of terminology for operators and their results.  Here, I list the restrictive subtype (or narrowest defined subtype) that applies to each entity, and I indicate across the span of the Table the whole spectrum of alternative types that color the interpretation of each symbol.  Accordingly, each of the component operator maps W''J'', since their ranges are 1-dimensional (of type '''B'''<sup>1</sup> or '''D'''<sup>1</sup>), can be regarded either as propositions W''J''&nbsp;:&nbsp;E''U''&nbsp;&rarr;&nbsp;'''B''' or as logical transformations W''J''&nbsp;:&nbsp;E''U''<sup>&nbsp;&bull;</sup>&nbsp;&rarr;&nbsp;''X''<sup>&nbsp;&bull;</sup>.  As a rule, the plan of the Table allows us to name each entry by detaching the adjective at the left of its row and prefixing it to the generic noun at the top of its column.  In one case, however, it is customary to depart from this scheme.  Because the phrase ''differential proposition'', applied to the result d''J''&nbsp;:&nbsp;E''U''&nbsp;&rarr;&nbsp;'''D''', does not distinguish it from the general run of differential propositions ''G''&nbsp;:&nbsp;E''U''&nbsp;&rarr;&nbsp;'''B''', it is usual to single out d''J'' as the ''tangent proposition'' of ''J''.
   −
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%"
 
|+ '''Table 55.  Synopsis of Terminology:  Restrictive and Alternative Subtypes'''
 
|+ '''Table 55.  Synopsis of Terminology:  Restrictive and Alternative Subtypes'''
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
! &nbsp;
 
! &nbsp;
 
! Operator
 
! Operator
Line 5,054: Line 5,054:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Tacit
 
| Tacit
 
|-
 
|-
Line 5,060: Line 5,060:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <math>\epsilon</math> :
 
| <math>\epsilon</math> :
 
|-
 
|-
Line 5,068: Line 5,068:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <math>\epsilon</math>''J'' :
 
| <math>\epsilon</math>''J'' :
 
|-
 
|-
Line 5,076: Line 5,076:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <math>\epsilon</math>''J'' :
 
| <math>\epsilon</math>''J'' :
 
|-
 
|-
Line 5,085: Line 5,085:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Trope
 
| Trope
 
|-
 
|-
Line 5,091: Line 5,091:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <math>\eta</math> :
 
| <math>\eta</math> :
 
|-
 
|-
Line 5,099: Line 5,099:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <math>\eta</math>''J'' :
 
| <math>\eta</math>''J'' :
 
|-
 
|-
Line 5,107: Line 5,107:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <math>\eta</math>''J'' :
 
| <math>\eta</math>''J'' :
 
|-
 
|-
Line 5,116: Line 5,116:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Enlargement
 
| Enlargement
 
|-
 
|-
Line 5,122: Line 5,122:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| E :
 
| E :
 
|-
 
|-
Line 5,130: Line 5,130:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| E''J'' :
 
| E''J'' :
 
|-
 
|-
Line 5,138: Line 5,138:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| E''J'' :
 
| E''J'' :
 
|-
 
|-
Line 5,147: Line 5,147:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Difference
 
| Difference
 
|-
 
|-
Line 5,153: Line 5,153:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| D :
 
| D :
 
|-
 
|-
Line 5,161: Line 5,161:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| D''J'' :
 
| D''J'' :
 
|-
 
|-
Line 5,169: Line 5,169:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| D''J'' :
 
| D''J'' :
 
|-
 
|-
Line 5,178: Line 5,178:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Differential
 
| Differential
 
|-
 
|-
Line 5,184: Line 5,184:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| d :
 
| d :
 
|-
 
|-
Line 5,192: Line 5,192:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| d''J'' :
 
| d''J'' :
 
|-
 
|-
Line 5,200: Line 5,200:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| d''J'' :
 
| d''J'' :
 
|-
 
|-
Line 5,209: Line 5,209:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Remainder
 
| Remainder
 
|-
 
|-
Line 5,215: Line 5,215:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| r :
 
| r :
 
|-
 
|-
Line 5,223: Line 5,223:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| r''J'' :
 
| r''J'' :
 
|-
 
|-
Line 5,231: Line 5,231:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| r''J'' :
 
| r''J'' :
 
|-
 
|-
Line 5,240: Line 5,240:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Radius
 
| Radius
 
|-
 
|-
Line 5,246: Line 5,246:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› :
 
| <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› :
 
|-
 
|-
Line 5,254: Line 5,254:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| &nbsp;
 
| &nbsp;
 
|-
 
|-
Line 5,262: Line 5,262:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''e'''</font>''J'' :
 
| <font face=georgia>'''e'''</font>''J'' :
 
|-
 
|-
Line 5,271: Line 5,271:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Secant
 
| Secant
 
|-
 
|-
Line 5,277: Line 5,277:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› :
 
| <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› :
 
|-
 
|-
Line 5,285: Line 5,285:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| &nbsp;
 
| &nbsp;
 
|-
 
|-
Line 5,293: Line 5,293:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''E'''</font>''J'' :
 
| <font face=georgia>'''E'''</font>''J'' :
 
|-
 
|-
Line 5,302: Line 5,302:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Chord
 
| Chord
 
|-
 
|-
Line 5,308: Line 5,308:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› :
 
| <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› :
 
|-
 
|-
Line 5,316: Line 5,316:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| &nbsp;
 
| &nbsp;
 
|-
 
|-
Line 5,324: Line 5,324:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''D'''</font>''J'' :
 
| <font face=georgia>'''D'''</font>''J'' :
 
|-
 
|-
Line 5,333: Line 5,333:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Tangent
 
| Tangent
 
|-
 
|-
Line 5,339: Line 5,339:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› :
 
| <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› :
 
|-
 
|-
Line 5,347: Line 5,347:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| d''J'' :
 
| d''J'' :
 
|-
 
|-
Line 5,355: Line 5,355:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''T'''</font>''J'' :
 
| <font face=georgia>'''T'''</font>''J'' :
 
|-
 
|-
Line 5,438: Line 5,438:     
<br><font face="courier new">
 
<br><font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| align="left" | ''F''
 
| align="left" | ''F''
 
| =
 
| =
Line 5,482: Line 5,482:  
But that's it, and no further.  Neglect of these distinctions in range and target universes of higher dimensions is bound to cause a hopeless confusion.  To guard against these adverse prospects, Tables&nbsp;58 and 59 lay the groundwork for discussing a typical map ''F''&nbsp;:&nbsp;['''B'''<sup>2</sup>]&nbsp;&rarr;&nbsp;['''B'''<sup>2</sup>], and begin to pave the way, to some extent, for discussing any transformation of the form ''F''&nbsp;:&nbsp;['''B'''<sup>''n''</sup>]&nbsp;&rarr;&nbsp;['''B'''<sup>''k''</sup>].
 
But that's it, and no further.  Neglect of these distinctions in range and target universes of higher dimensions is bound to cause a hopeless confusion.  To guard against these adverse prospects, Tables&nbsp;58 and 59 lay the groundwork for discussing a typical map ''F''&nbsp;:&nbsp;['''B'''<sup>2</sup>]&nbsp;&rarr;&nbsp;['''B'''<sup>2</sup>], and begin to pave the way, to some extent, for discussing any transformation of the form ''F''&nbsp;:&nbsp;['''B'''<sup>''n''</sup>]&nbsp;&rarr;&nbsp;['''B'''<sup>''k''</sup>].
   −
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%"
 
|+ '''Table 58.  Cast of Characters:  Expansive Subtypes of Objects and Operators'''
 
|+ '''Table 58.  Cast of Characters:  Expansive Subtypes of Objects and Operators'''
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
! Item
 
! Item
 
! Notation
 
! Notation
Line 5,497: Line 5,497:  
| valign="top" | ''X''<sup>&nbsp;&bull;</sup>
 
| valign="top" | ''X''<sup>&nbsp;&bull;</sup>
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="text-align:left; width:100%"
 
| <font face="courier new">=&nbsp;</font>[''x'', ''y'']
 
| <font face="courier new">=&nbsp;</font>[''x'', ''y'']
 
|-
 
|-
Line 5,512: Line 5,512:  
| valign="top" | E''X''<sup>&nbsp;&bull;</sup>
 
| valign="top" | E''X''<sup>&nbsp;&bull;</sup>
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="text-align:left; width:100%"
 
| <font face="courier new">=&nbsp;</font>[''x'', ''y'', d''x'', d''y'']
 
| <font face="courier new">=&nbsp;</font>[''x'', ''y'', d''x'', d''y'']
 
|-
 
|-
Line 5,526: Line 5,526:  
|-
 
|-
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| &nbsp;
 
| &nbsp;
 
|-
 
|-
Line 5,534: Line 5,534:  
|}
 
|}
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| ''f'', ''g'' : ''U'' &rarr; '''B'''
 
| ''f'', ''g'' : ''U'' &rarr; '''B'''
 
|-
 
|-
Line 5,542: Line 5,542:  
|}
 
|}
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Proposition
 
| Proposition
 
|}
 
|}
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100"
 
| '''B'''<sup>''n''</sup> &rarr; '''B'''
 
| '''B'''<sup>''n''</sup> &rarr; '''B'''
 
|-
 
|-
Line 5,555: Line 5,555:  
|-
 
|-
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| W
 
| W
 
|}
 
|}
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| W&nbsp;:
 
| W&nbsp;:
 
|-
 
|-
Line 5,577: Line 5,577:  
|}
 
|}
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Operator
 
| Operator
 
|}
 
|}
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100"
 
| &nbsp;
 
| &nbsp;
 
|-
 
|-
Line 5,600: Line 5,600:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <math>\epsilon</math>
 
| <math>\epsilon</math>
 
|-
 
|-
Line 5,613: Line 5,613:  
| valign="top" | &nbsp;
 
| valign="top" | &nbsp;
 
| colspan="2"  |
 
| colspan="2"  |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:60%"
 
| Tacit Extension Operator || <math>\epsilon</math>
 
| Tacit Extension Operator || <math>\epsilon</math>
 
|-
 
|-
Line 5,626: Line 5,626:  
|-
 
|-
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''W'''</font>
 
| <font face=georgia>'''W'''</font>
 
|}
 
|}
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''W'''</font>&nbsp;:
 
| <font face=georgia>'''W'''</font>&nbsp;:
 
|-
 
|-
Line 5,648: Line 5,648:  
|}
 
|}
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Operator
 
| Operator
 
|}
 
|}
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100"
 
| &nbsp;
 
| &nbsp;
 
|-
 
|-
Line 5,671: Line 5,671:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''e'''</font>
 
| <font face=georgia>'''e'''</font>
 
|-
 
|-
Line 5,682: Line 5,682:  
| valign="top" | &nbsp;
 
| valign="top" | &nbsp;
 
| colspan="2"  |
 
| colspan="2"  |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:60%"
 
| Radius Operator || <font face=georgia>'''e'''</font>&nbsp;=&nbsp;‹<math>\epsilon</math>,&nbsp;<math>\eta</math>›
 
| Radius Operator || <font face=georgia>'''e'''</font>&nbsp;=&nbsp;‹<math>\epsilon</math>,&nbsp;<math>\eta</math>›
 
|-
 
|-
Line 5,693: Line 5,693:  
|}<br>
 
|}<br>
   −
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="4" cellspacing="0" style="text-align:left; width:96%"
 
|+ '''Table 59.  Synopsis of Terminology:  Restrictive and Alternative Subtypes'''
 
|+ '''Table 59.  Synopsis of Terminology:  Restrictive and Alternative Subtypes'''
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
| &nbsp;
 
| &nbsp;
 
| align="center" | '''Operator<br>or<br>Operand'''
 
| align="center" | '''Operator<br>or<br>Operand'''
Line 5,703: Line 5,703:  
| Operand
 
| Operand
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| ''F'' = ‹''F''<sub>1</sub>, ''F''<sub>2</sub>›
 
| ''F'' = ‹''F''<sub>1</sub>, ''F''<sub>2</sub>›
 
|-
 
|-
Line 5,709: Line 5,709:  
|}
 
|}
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| ''F''<sub>''i''</sub> : 〈''u'', ''v''〉 &rarr; '''B'''
 
| ''F''<sub>''i''</sub> : 〈''u'', ''v''〉 &rarr; '''B'''
 
|-
 
|-
Line 5,715: Line 5,715:  
|}
 
|}
 
| valign="top" |
 
| valign="top" |
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100"
 
| ''F'' : [''u'', ''v''] &rarr; [''x'', ''y'']
 
| ''F'' : [''u'', ''v''] &rarr; [''x'', ''y'']
 
|-
 
|-
Line 5,722: Line 5,722:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Tacit
 
| Tacit
 
|-
 
|-
Line 5,728: Line 5,728:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <math>\epsilon</math> :
 
| <math>\epsilon</math> :
 
|-
 
|-
Line 5,736: Line 5,736:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <math>\epsilon</math>''F''<sub>''i''</sub> :
 
| <math>\epsilon</math>''F''<sub>''i''</sub> :
 
|-
 
|-
Line 5,744: Line 5,744:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <math>\epsilon</math>''F'' :
 
| <math>\epsilon</math>''F'' :
 
|-
 
|-
Line 5,753: Line 5,753:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Trope
 
| Trope
 
|-
 
|-
Line 5,759: Line 5,759:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <math>\eta</math> :
 
| <math>\eta</math> :
 
|-
 
|-
Line 5,767: Line 5,767:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <math>\eta</math>''F''<sub>''i''</sub> :
 
| <math>\eta</math>''F''<sub>''i''</sub> :
 
|-
 
|-
Line 5,775: Line 5,775:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <math>\eta</math>''F'' :
 
| <math>\eta</math>''F'' :
 
|-
 
|-
Line 5,784: Line 5,784:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Enlargement
 
| Enlargement
 
|-
 
|-
Line 5,790: Line 5,790:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| E :
 
| E :
 
|-
 
|-
Line 5,798: Line 5,798:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| E''F''<sub>''i''</sub> :
 
| E''F''<sub>''i''</sub> :
 
|-
 
|-
Line 5,806: Line 5,806:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| E''F'' :
 
| E''F'' :
 
|-
 
|-
Line 5,815: Line 5,815:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Difference
 
| Difference
 
|-
 
|-
Line 5,821: Line 5,821:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| D :
 
| D :
 
|-
 
|-
Line 5,829: Line 5,829:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| D''F''<sub>''i''</sub> :
 
| D''F''<sub>''i''</sub> :
 
|-
 
|-
Line 5,837: Line 5,837:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| D''F'' :
 
| D''F'' :
 
|-
 
|-
Line 5,846: Line 5,846:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Differential
 
| Differential
 
|-
 
|-
Line 5,852: Line 5,852:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| d :
 
| d :
 
|-
 
|-
Line 5,860: Line 5,860:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| d''F''<sub>''i''</sub> :
 
| d''F''<sub>''i''</sub> :
 
|-
 
|-
Line 5,868: Line 5,868:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| d''F'' :
 
| d''F'' :
 
|-
 
|-
Line 5,877: Line 5,877:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Remainder
 
| Remainder
 
|-
 
|-
Line 5,883: Line 5,883:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| r :
 
| r :
 
|-
 
|-
Line 5,891: Line 5,891:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| r''F''<sub>''i''</sub> :
 
| r''F''<sub>''i''</sub> :
 
|-
 
|-
Line 5,899: Line 5,899:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| r''F'' :
 
| r''F'' :
 
|-
 
|-
Line 5,908: Line 5,908:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Radius
 
| Radius
 
|-
 
|-
Line 5,914: Line 5,914:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› :
 
| <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› :
 
|-
 
|-
Line 5,922: Line 5,922:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| &nbsp;
 
| &nbsp;
 
|-
 
|-
Line 5,930: Line 5,930:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''e'''</font>''F'' :
 
| <font face=georgia>'''e'''</font>''F'' :
 
|-
 
|-
Line 5,939: Line 5,939:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Secant
 
| Secant
 
|-
 
|-
Line 5,945: Line 5,945:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› :
 
| <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› :
 
|-
 
|-
Line 5,953: Line 5,953:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| &nbsp;
 
| &nbsp;
 
|-
 
|-
Line 5,961: Line 5,961:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''E'''</font>''F'' :
 
| <font face=georgia>'''E'''</font>''F'' :
 
|-
 
|-
Line 5,970: Line 5,970:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Chord
 
| Chord
 
|-
 
|-
Line 5,976: Line 5,976:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› :
 
| <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› :
 
|-
 
|-
Line 5,984: Line 5,984:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| &nbsp;
 
| &nbsp;
 
|-
 
|-
Line 5,992: Line 5,992:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''D'''</font>''F'' :
 
| <font face=georgia>'''D'''</font>''F'' :
 
|-
 
|-
Line 6,001: Line 6,001:  
|-
 
|-
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| Tangent
 
| Tangent
 
|-
 
|-
Line 6,007: Line 6,007:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› :
 
| <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› :
 
|-
 
|-
Line 6,015: Line 6,015:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| d''F''<sub>''i''</sub> :
 
| d''F''<sub>''i''</sub> :
 
|-
 
|-
Line 6,023: Line 6,023:  
|}
 
|}
 
|
 
|
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
 
| <font face=georgia>'''T'''</font>''F'' :
 
| <font face=georgia>'''T'''</font>''F'' :
 
|-
 
|-
Line 6,037: Line 6,037:     
<br><font face="courier new">
 
<br><font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| &nbsp;
 
| &nbsp;
 
| ''x''
 
| ''x''
Line 6,062: Line 6,062:     
<br><font face="courier new">
 
<br><font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|
 
|
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| &nbsp;
 
| &nbsp;
 
| ‹''x'', ''y''›
 
| ‹''x'', ''y''›
Line 6,079: Line 6,079:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|+ '''Table 60.  Propositional Transformation'''
 
|+ '''Table 60.  Propositional Transformation'''
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
| width="25%" | ''u''
 
| width="25%" | ''u''
 
| width="25%" | ''v''
 
| width="25%" | ''v''
Line 6,088: Line 6,088:  
|-
 
|-
 
| width="25%" |
 
| width="25%" |
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0
 
| 0
 
|-
 
|-
Line 6,098: Line 6,098:  
|}
 
|}
 
| width="25%" |
 
| width="25%" |
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0
 
| 0
 
|-
 
|-
Line 6,108: Line 6,108:  
|}
 
|}
 
| width="25%" |
 
| width="25%" |
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0
 
| 0
 
|-
 
|-
Line 6,118: Line 6,118:  
|}
 
|}
 
| width="25%" |
 
| width="25%" |
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1
 
| 1
 
|-
 
|-
Line 6,155: Line 6,155:  
Table&nbsp;64 shows how the action of the transformation ''F'' on cells or points is computed in terms of coordinates.
 
Table&nbsp;64 shows how the action of the transformation ''F'' on cells or points is computed in terms of coordinates.
   −
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|+ '''Table 64.  Transformation of Positions'''
 
|+ '''Table 64.  Transformation of Positions'''
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
| ''u''&nbsp;&nbsp;''v''
 
| ''u''&nbsp;&nbsp;''v''
 
| ''x''
 
| ''x''
Line 6,168: Line 6,168:  
|-
 
|-
 
| width="12%" |
 
| width="12%" |
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0&nbsp;&nbsp;0
 
| 0&nbsp;&nbsp;0
 
|-
 
|-
Line 6,178: Line 6,178:  
|}
 
|}
 
| width="12%" |
 
| width="12%" |
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0
 
| 0
 
|-
 
|-
Line 6,188: Line 6,188:  
|}
 
|}
 
| width="12%" |
 
| width="12%" |
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1
 
| 1
 
|-
 
|-
Line 6,198: Line 6,198:  
|}
 
|}
 
| width="12%" |
 
| width="12%" |
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0
 
| 0
 
|-
 
|-
Line 6,208: Line 6,208:  
|}
 
|}
 
| width="12%" |
 
| width="12%" |
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0
 
| 0
 
|-
 
|-
Line 6,218: Line 6,218:  
|}
 
|}
 
| width="12%" |
 
| width="12%" |
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1
 
| 1
 
|-
 
|-
Line 6,228: Line 6,228:  
|}
 
|}
 
| width="12%" |
 
| width="12%" |
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0
 
| 0
 
|-
 
|-
Line 6,238: Line 6,238:  
|}
 
|}
 
| width="12%" |
 
| width="12%" |
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| &uarr;
 
| &uarr;
 
|-
 
|-
Line 6,262: Line 6,262:     
<br><font face="courier new">
 
<br><font face="courier new">
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|+ '''Table 65.  Induced Transformation on Propositions'''
 
|+ '''Table 65.  Induced Transformation on Propositions'''
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
| ''X''<sup>&nbsp;&bull;</sup>
 
| ''X''<sup>&nbsp;&bull;</sup>
 
| colspan="3" |
 
| colspan="3" |
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:80%"
+
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%"
 
| &larr;
 
| &larr;
 
| ''F''&nbsp;=&nbsp;‹''f''&nbsp;,&nbsp;''g''›
 
| ''F''&nbsp;=&nbsp;‹''f''&nbsp;,&nbsp;''g''›
Line 6,273: Line 6,273:  
|}
 
|}
 
| ''U''<sup>&nbsp;&bull;</sup>
 
| ''U''<sup>&nbsp;&bull;</sup>
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
| rowspan="2" | ''f''<sub>''i''</sub>‹''x'',&nbsp;''y''›
 
| rowspan="2" | ''f''<sub>''i''</sub>‹''x'',&nbsp;''y''›
 
|
 
|
{| align="right" style="background:paleturquoise; text-align:right"
+
{| align="right" style="background:ghostwhite; text-align:right"
 
| ''u'' =
 
| ''u'' =
 
|-
 
|-
Line 6,282: Line 6,282:  
|}
 
|}
 
|
 
|
{| align="center" style="background:paleturquoise; text-align:center"
+
{| align="center" style="background:ghostwhite; text-align:center"
 
| 1 1 0 0
 
| 1 1 0 0
 
|-
 
|-
Line 6,288: Line 6,288:  
|}
 
|}
 
|
 
|
{| align="left" style="background:paleturquoise; text-align:left"
+
{| align="left" style="background:ghostwhite; text-align:left"
 
| = ''u''
 
| = ''u''
 
|-
 
|-
Line 6,294: Line 6,294:  
|}
 
|}
 
| rowspan="2" | ''f''<sub>''j''</sub>‹''u'',&nbsp;''v''›
 
| rowspan="2" | ''f''<sub>''j''</sub>‹''u'',&nbsp;''v''›
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
|
 
|
{| align="right" style="background:paleturquoise; text-align:right"
+
{| align="right" style="background:ghostwhite; text-align:right"
 
| ''x'' =
 
| ''x'' =
 
|-
 
|-
Line 6,302: Line 6,302:  
|}
 
|}
 
|
 
|
{| align="center" style="background:paleturquoise; text-align:center"
+
{| align="center" style="background:ghostwhite; text-align:center"
 
| 1 1 1 0
 
| 1 1 1 0
 
|-
 
|-
Line 6,308: Line 6,308:  
|}
 
|}
 
|
 
|
{| align="left" style="background:paleturquoise; text-align:left"
+
{| align="left" style="background:ghostwhite; text-align:left"
 
| = ''f''‹''u'',&nbsp;''v''›
 
| = ''f''‹''u'',&nbsp;''v''›
 
|-
 
|-
Line 6,315: Line 6,315:  
|-
 
|-
 
|
 
|
{| cellpadding="2" style="background:lightcyan"
+
{| cellpadding="2"
 
| ''f''<sub>0</sub>
 
| ''f''<sub>0</sub>
 
|-
 
|-
Line 6,333: Line 6,333:  
|}
 
|}
 
|
 
|
{| cellpadding="2" style="background:lightcyan"
+
{| cellpadding="2"
 
| ()
 
| ()
 
|-
 
|-
Line 6,351: Line 6,351:  
|}
 
|}
 
|
 
|
{| cellpadding="2" style="background:lightcyan"
+
{| cellpadding="2"
 
| 0 0 0 0
 
| 0 0 0 0
 
|-
 
|-
Line 6,369: Line 6,369:  
|}
 
|}
 
|
 
|
{| cellpadding="2" style="background:lightcyan"
+
{| cellpadding="2"
 
| ()
 
| ()
 
|-
 
|-
Line 6,387: Line 6,387:  
|}
 
|}
 
|
 
|
{| cellpadding="2" style="background:lightcyan"
+
{| cellpadding="2"
 
| ''f''<sub>0</sub>
 
| ''f''<sub>0</sub>
 
|-
 
|-
Line 6,406: Line 6,406:  
|-
 
|-
 
|
 
|
{| cellpadding="2" style="background:lightcyan"
+
{| cellpadding="2"
 
| ''f''<sub>8</sub>
 
| ''f''<sub>8</sub>
 
|-
 
|-
Line 6,424: Line 6,424:  
|}
 
|}
 
|
 
|
{| cellpadding="2" style="background:lightcyan"
+
{| cellpadding="2"
 
| &nbsp;&nbsp;''x''&nbsp;&nbsp;''y''&nbsp;&nbsp;
 
| &nbsp;&nbsp;''x''&nbsp;&nbsp;''y''&nbsp;&nbsp;
 
|-
 
|-
Line 6,442: Line 6,442:  
|}
 
|}
 
|
 
|
{| cellpadding="2" style="background:lightcyan"
+
{| cellpadding="2"
 
| 1 0 0 0
 
| 1 0 0 0
 
|-
 
|-
Line 6,460: Line 6,460:  
|}
 
|}
 
|
 
|
{| cellpadding="2" style="background:lightcyan"
+
{| cellpadding="2"
 
| &nbsp;&nbsp;''u''&nbsp;&nbsp;''v''&nbsp;&nbsp;
 
| &nbsp;&nbsp;''u''&nbsp;&nbsp;''v''&nbsp;&nbsp;
 
|-
 
|-
Line 6,478: Line 6,478:  
|}
 
|}
 
|
 
|
{| cellpadding="2" style="background:lightcyan"
+
{| cellpadding="2"
 
| ''f''<sub>8</sub>
 
| ''f''<sub>8</sub>
 
|-
 
|-
Line 6,507: Line 6,507:     
<br><font face="courier new">
 
<br><font face="courier new">
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%"
 
|
 
|
{| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="8%"  | E''G''<sub>''i''</sub>
 
| width="8%"  | E''G''<sub>''i''</sub>
 
| width="4%"  | =
 
| width="4%"  | =
Line 6,520: Line 6,520:     
<br><font face="courier new">
 
<br><font face="courier new">
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%"
 
|
 
|
{| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="8%"  | D''G''<sub>''i''</sub>
 
| width="8%"  | D''G''<sub>''i''</sub>
 
| width="4%"  | =
 
| width="4%"  | =
Line 6,545: Line 6,545:     
<br><font face="courier new">
 
<br><font face="courier new">
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%"
 
|
 
|
{| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="8%"  | E''f''
 
| width="8%"  | E''f''
 
| width="4%"  | =
 
| width="4%"  | =
Line 6,560: Line 6,560:  
<br>
 
<br>
 
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%"
 
|
 
|
{| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:100%"
 
| width="8%"  | D''f''
 
| width="8%"  | D''f''
 
| width="4%"  | =
 
| width="4%"  | =
Line 6,581: Line 6,581:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|+ '''Table 66-i.  Computation Summary for ''f''‹''u'', ''v''› = ((''u'')(''v''))'''
 
|+ '''Table 66-i.  Computation Summary for ''f''‹''u'', ''v''› = ((''u'')(''v''))'''
 
|
 
|
{| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="left" border="0" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| <math>\epsilon</math>''f''
 
| <math>\epsilon</math>''f''
 
| = || ''uv''        || <math>\cdot</math> || 1
 
| = || ''uv''        || <math>\cdot</math> || 1
Line 6,619: Line 6,619:     
<font face="courier new">
 
<font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|+ '''Table 66-ii.  Computation Summary for g‹''u'', ''v''› = ((''u'', ''v''))'''
 
|+ '''Table 66-ii.  Computation Summary for g‹''u'', ''v''› = ((''u'', ''v''))'''
 
|
 
|
{| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="left" border="0" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| <math>\epsilon</math>''g''
 
| <math>\epsilon</math>''g''
 
| = || ''uv''        || <math>\cdot</math> || 1
 
| = || ''uv''        || <math>\cdot</math> || 1
Line 6,658: Line 6,658:  
Table&nbsp;67 shows how to compute the analytic series for ''F''&nbsp;=&nbsp;‹''f'',&nbsp;''g''›&nbsp;=&nbsp;‹((''u'')(''v'')),&nbsp;((''u'',&nbsp;''v''))› in terms of coordinates, and Table&nbsp;68 recaps these results in symbolic terms, agreeing with earlier derivations.
 
Table&nbsp;67 shows how to compute the analytic series for ''F''&nbsp;=&nbsp;‹''f'',&nbsp;''g''›&nbsp;=&nbsp;‹((''u'')(''v'')),&nbsp;((''u'',&nbsp;''v''))› in terms of coordinates, and Table&nbsp;68 recaps these results in symbolic terms, agreeing with earlier derivations.
   −
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|+ '''Table 67.  Computation of an Analytic Series in Terms of Coordinates'''
 
|+ '''Table 67.  Computation of an Analytic Series in Terms of Coordinates'''
 
|
 
|
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| ''u''
 
| ''u''
 
| ''v''
 
| ''v''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| d''u''
 
| d''u''
 
| d''v''
 
| d''v''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| ''u''<font face="courier new">’</font>
 
| ''u''<font face="courier new">’</font>
 
| ''v''<font face="courier new">’</font>
 
| ''v''<font face="courier new">’</font>
Line 6,679: Line 6,679:  
|-
 
|-
 
| valign="top" |
 
| valign="top" |
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 6,693: Line 6,693:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 6,704: Line 6,704:  
|-
 
|-
 
| valign="top" |
 
| valign="top" |
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 1
 
| 0 || 1
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 6,718: Line 6,718:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 1
 
| 0 || 1
 
|-
 
|-
Line 6,729: Line 6,729:  
|-
 
|-
 
| valign="top" |
 
| valign="top" |
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1 || 0
 
| 1 || 0
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 6,743: Line 6,743:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1 || 0
 
| 1 || 0
 
|-
 
|-
Line 6,754: Line 6,754:  
|-
 
|-
 
| valign="top" |
 
| valign="top" |
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1 || 1
 
| 1 || 1
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1 || 1
 
| 1 || 1
 
|-
 
|-
Line 6,768: Line 6,768:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 6,779: Line 6,779:  
|}
 
|}
 
|
 
|
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| <math>\epsilon</math>''f''
 
| <math>\epsilon</math>''f''
 
| <math>\epsilon</math>''g''
 
| <math>\epsilon</math>''g''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| E''f''
 
| E''f''
 
| E''g''
 
| E''g''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| D''f''
 
| D''f''
 
| D''g''
 
| D''g''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| d''f''
 
| d''f''
 
| d''g''
 
| d''g''
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
 
| d<sup>2</sup>''f''
 
| d<sup>2</sup>''f''
 
| d<sup>2</sup>''g''
 
| d<sup>2</sup>''g''
Line 6,807: Line 6,807:  
|-
 
|-
 
| valign="top" |
 
| valign="top" |
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 1
 
| 0 || 1
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 1
 
| 0 || 1
 
|-
 
|-
Line 6,821: Line 6,821:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 6,831: Line 6,831:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 6,841: Line 6,841:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 6,852: Line 6,852:  
|-
 
|-
 
| valign="top" |
 
| valign="top" |
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1 || 0
 
| 1 || 0
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1 || 0
 
| 1 || 0
 
|-
 
|-
Line 6,866: Line 6,866:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 6,876: Line 6,876:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 6,886: Line 6,886:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 6,897: Line 6,897:  
|-
 
|-
 
| valign="top" |
 
| valign="top" |
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1 || 0
 
| 1 || 0
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1 || 0
 
| 1 || 0
 
|-
 
|-
Line 6,911: Line 6,911:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 6,921: Line 6,921:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 6,931: Line 6,931:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 6,942: Line 6,942:  
|-
 
|-
 
| valign="top" |
 
| valign="top" |
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1 || 1
 
| 1 || 1
 
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 1 || 1
 
| 1 || 1
 
|-
 
|-
Line 6,956: Line 6,956:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 6,966: Line 6,966:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 6,976: Line 6,976:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0 || 0
 
| 0 || 0
 
|-
 
|-
Line 6,989: Line 6,989:  
<br>
 
<br>
   −
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|+ '''Table 68.  Computation of an Analytic Series in Symbolic Terms'''
 
|+ '''Table 68.  Computation of an Analytic Series in Symbolic Terms'''
|- style="background:paleturquoise"
+
|- style="background:ghostwhite"
 
| ''u''&nbsp;&nbsp;''v''
 
| ''u''&nbsp;&nbsp;''v''
 
| ''f''&nbsp;&nbsp;''g''
 
| ''f''&nbsp;&nbsp;''g''
Line 7,002: Line 7,002:  
|-
 
|-
 
|
 
|
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0&nbsp;&nbsp;0
 
| 0&nbsp;&nbsp;0
 
|-
 
|-
Line 7,012: Line 7,012:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| 0&nbsp;&nbsp;1
 
| 0&nbsp;&nbsp;1
 
|-
 
|-
Line 7,022: Line 7,022:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| ((d''u'')(d''v''))
 
| ((d''u'')(d''v''))
 
|-
 
|-
Line 7,032: Line 7,032:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| (d''u'', d''v'')
 
| (d''u'', d''v'')
 
|-
 
|-
Line 7,042: Line 7,042:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| (d''u'', d''v'')
 
| (d''u'', d''v'')
 
|-
 
|-
Line 7,052: Line 7,052:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| (d''u'', d''v'')
 
| (d''u'', d''v'')
 
|-
 
|-
Line 7,062: Line 7,062:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| d''u'' d''v''
 
| d''u'' d''v''
 
|-
 
|-
Line 7,072: Line 7,072:  
|}
 
|}
 
|
 
|
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| (&nbsp;)
 
| (&nbsp;)
 
|-
 
|-
Line 7,087: Line 7,087:     
<br><font face="courier new">
 
<br><font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|
 
|
{| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="left" border="0" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| &nbsp;
 
| &nbsp;
 
|-
 
|-
Line 7,118: Line 7,118:     
<br><font face="courier new">
 
<br><font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
|
 
|
{| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="left" border="0" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
 
| &nbsp;
 
| &nbsp;
 
|-
 
|-
Line 7,576: Line 7,576:  
[[Category:Computer Science]]
 
[[Category:Computer Science]]
 
[[Category:Cybernetics]]
 
[[Category:Cybernetics]]
 +
[[Category:Differential Logic]]
 
[[Category:Discrete Systems]]
 
[[Category:Discrete Systems]]
 
[[Category:Dynamical Systems]]
 
[[Category:Dynamical Systems]]
12,089

edits