Line 366: |
Line 366: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| |+ '''Table 3. Analogy of Real and Boolean Types''' | | |+ '''Table 3. Analogy of Real and Boolean Types''' |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| ! Real Domain '''R''' | | ! Real Domain '''R''' |
| ! ←→ | | ! ←→ |
Line 446: |
Line 446: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| |+ '''Table 3. Analogy of Real and Boolean Types''' | | |+ '''Table 3. Analogy of Real and Boolean Types''' |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| ! Real Domain '''R''' | | ! Real Domain '''R''' |
| ! ←→ | | ! ←→ |
Line 504: |
Line 504: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:96%" |
| |+ '''Table 4. An Equivalence Based on the Propositions as Types Analogy | | |+ '''Table 4. An Equivalence Based on the Propositions as Types Analogy |
| ''' | | ''' |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| ! Pattern | | ! Pattern |
| ! Construction | | ! Construction |
Line 544: |
Line 544: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%" |
| |+ '''Table 5. A Bridge Over Troubled Waters''' | | |+ '''Table 5. A Bridge Over Troubled Waters''' |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| ! Linear Space | | ! Linear Space |
| ! Liminal Space | | ! Liminal Space |
Line 717: |
Line 717: |
| Propositional forms on one variable correspond to boolean functions ''f'' : '''B'''<sup>1</sup> → '''B'''. In Table 6 these functions are listed in a variant form of [[truth table]], one which rotates the axes of the usual arrangement. Each function ''f''<sub>''i''</sub> is indexed by the string of values that it takes on the points of the universe ''X''<sup> •</sup> = [''x''] <math>\cong</math> '''B'''<sup>1</sup>. The binary index generated in this way is converted to its decimal equivalent, and these are used as conventional names for the ''f''<sub>''i''</sub> , as shown in the first column of the Table. In their own right the 2<sup>1</sup> points of the universe ''X''<sup> •</sup> are coordinated as a space of type '''B'''<sup>1</sup>, this in light of the universe ''X''<sup> •</sup> being a functional domain where the coordinate projection ''x'' takes on its values in '''B'''. | | Propositional forms on one variable correspond to boolean functions ''f'' : '''B'''<sup>1</sup> → '''B'''. In Table 6 these functions are listed in a variant form of [[truth table]], one which rotates the axes of the usual arrangement. Each function ''f''<sub>''i''</sub> is indexed by the string of values that it takes on the points of the universe ''X''<sup> •</sup> = [''x''] <math>\cong</math> '''B'''<sup>1</sup>. The binary index generated in this way is converted to its decimal equivalent, and these are used as conventional names for the ''f''<sub>''i''</sub> , as shown in the first column of the Table. In their own right the 2<sup>1</sup> points of the universe ''X''<sup> •</sup> are coordinated as a space of type '''B'''<sup>1</sup>, this in light of the universe ''X''<sup> •</sup> being a functional domain where the coordinate projection ''x'' takes on its values in '''B'''. |
| | | |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| |+ '''Table 6. Propositional Forms on One Variable''' | | |+ '''Table 6. Propositional Forms on One Variable''' |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| ! style="width:16%" | L<sub>1</sub><br>Decimal | | ! style="width:16%" | L<sub>1</sub><br>Decimal |
| ! style="width:16%" | L<sub>2</sub><br>Binary | | ! style="width:16%" | L<sub>2</sub><br>Binary |
Line 726: |
Line 726: |
| ! style="width:16%" | L<sub>5</sub><br>English | | ! style="width:16%" | L<sub>5</sub><br>English |
| ! style="width:16%" | L<sub>6</sub><br>Ordinary | | ! style="width:16%" | L<sub>6</sub><br>Ordinary |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| | | | | |
| | align="right" | x : | | | align="right" | x : |
Line 766: |
Line 766: |
| Propositional forms on two variables correspond to boolean functions ''f'' : '''B'''<sup>2</sup> → '''B'''. In Table 7 each function ''f''<sub>''i''</sub> is indexed by the values that it takes on the points of the universe ''X''<sup> •</sup> = [''x'', ''y''] <math>\cong</math> '''B'''<sup>2</sup>. Converting the binary index thus generated to a decimal equivalent, we obtain the functional nicknames that are listed in the first column. The 2<sup>2</sup> points of the universe ''X''<sup> •</sup> are coordinated as a space of type '''B'''<sup>2</sup>, as indicated under the heading of the Table, where the coordinate projections ''x'' and ''y'' run through the various combinations of their values in '''B'''. | | Propositional forms on two variables correspond to boolean functions ''f'' : '''B'''<sup>2</sup> → '''B'''. In Table 7 each function ''f''<sub>''i''</sub> is indexed by the values that it takes on the points of the universe ''X''<sup> •</sup> = [''x'', ''y''] <math>\cong</math> '''B'''<sup>2</sup>. Converting the binary index thus generated to a decimal equivalent, we obtain the functional nicknames that are listed in the first column. The 2<sup>2</sup> points of the universe ''X''<sup> •</sup> are coordinated as a space of type '''B'''<sup>2</sup>, as indicated under the heading of the Table, where the coordinate projections ''x'' and ''y'' run through the various combinations of their values in '''B'''. |
| | | |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| |+ '''Table 7. Propositional Forms on Two Variables''' | | |+ '''Table 7. Propositional Forms on Two Variables''' |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| ! style="width:16%" | L<sub>1</sub><br>Decimal | | ! style="width:16%" | L<sub>1</sub><br>Decimal |
| ! style="width:16%" | L<sub>2</sub><br>Binary | | ! style="width:16%" | L<sub>2</sub><br>Binary |
Line 775: |
Line 775: |
| ! style="width:16%" | L<sub>5</sub><br>English | | ! style="width:16%" | L<sub>5</sub><br>English |
| ! style="width:16%" | L<sub>6</sub><br>Ordinary | | ! style="width:16%" | L<sub>6</sub><br>Ordinary |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| | | | | |
| | align="right" | x : | | | align="right" | x : |
Line 782: |
Line 782: |
| | | | | |
| | | | | |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| | | | | |
| | align="right" | y : | | | align="right" | y : |
Line 983: |
Line 983: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%" |
| |+ '''Table 8. Notation for the Differential Extension of Propositional Calculus''' | | |+ '''Table 8. Notation for the Differential Extension of Propositional Calculus''' |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| ! Symbol | | ! Symbol |
| ! Notation | | ! Notation |
Line 1,061: |
Line 1,061: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="text-align:left; width:96%" |
| |+ '''Table 9. Higher Order Differential Features''' | | |+ '''Table 9. Higher Order Differential Features''' |
| | width=50% | | | | width=50% | |
− | {| cellpadding="4" style="background:lightcyan" | + | {| cellpadding="4" |
| | <font face="lucida calligraphy">A</font> | | | <font face="lucida calligraphy">A</font> |
| | = | | | = |
Line 1,097: |
Line 1,097: |
| |} | | |} |
| | width=50% | | | | width=50% | |
− | {| cellpadding="4" style="background:lightcyan" | + | {| cellpadding="4" |
| | E<sup>0</sup><font face="lucida calligraphy">A</font> | | | E<sup>0</sup><font face="lucida calligraphy">A</font> |
| | = | | | = |
Line 1,136: |
Line 1,136: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="text-align:left; width:96%" |
| |+ '''Table 10. A Realm of Intentional Features''' | | |+ '''Table 10. A Realm of Intentional Features''' |
| | width=50% | | | | width=50% | |
− | {| cellpadding="4" style="background:lightcyan" | + | {| cellpadding="4" |
| | p<sup>0</sup><font face="lucida calligraphy">A</font> | | | p<sup>0</sup><font face="lucida calligraphy">A</font> |
| | = | | | = |
Line 1,179: |
Line 1,179: |
| |} | | |} |
| | width=50% | | | | width=50% | |
− | {| cellpadding="4" style="background:lightcyan" | + | {| cellpadding="4" |
| | Q<sup>0</sup><font face="lucida calligraphy">A</font> | | | Q<sup>0</sup><font face="lucida calligraphy">A</font> |
| | = | | | = |
Line 1,282: |
Line 1,282: |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:96%" |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="text-align:center; width:96%" |
| | || From || (''A'') || and || (d''A'') || infer || (''A'') || next. || | | | || From || (''A'') || and || (d''A'') || infer || (''A'') || next. || |
| |- | | |- |
Line 1,325: |
Line 1,325: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="6" cellspacing="0" style="background:lightcyan; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:96%" |
| |+ '''Table 11. A Pair of Commodious Trajectories''' | | |+ '''Table 11. A Pair of Commodious Trajectories''' |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| ! Time | | ! Time |
| ! Trajectory 1 | | ! Trajectory 1 |
Line 1,333: |
Line 1,333: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; text-align:center" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="text-align:center" |
| | 0 | | | 0 |
| |- | | |- |
Line 1,345: |
Line 1,345: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; text-align:center" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="text-align:center" |
| | ''A'' || d''A'' || (d<sup>2</sup>''A'') | | | ''A'' || d''A'' || (d<sup>2</sup>''A'') |
| |- | | |- |
Line 1,357: |
Line 1,357: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; text-align:center" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="text-align:center" |
| | (''A'') || (d''A'') || d<sup>2</sup>''A'' | | | (''A'') || (d''A'') || d<sup>2</sup>''A'' |
| |- | | |- |
Line 1,425: |
Line 1,425: |
| To complete the construction of the extended universe of discourse E''X''<sup> •</sup> = [''x''<sub>1</sub>, d''x''<sub>1</sub>] = [''A'', d''A''], one must add the set of differential propositions E''X''^ = {''g'' : E''X'' → '''B'''} <math>\cong</math> ('''B''' × '''D''' → '''B''') to the set of dispositions in E''X''. There are <math>2^{2^{2n}}</math> = 16 propositions in E''X''^, as detailed in Table 14. | | To complete the construction of the extended universe of discourse E''X''<sup> •</sup> = [''x''<sub>1</sub>, d''x''<sub>1</sub>] = [''A'', d''A''], one must add the set of differential propositions E''X''^ = {''g'' : E''X'' → '''B'''} <math>\cong</math> ('''B''' × '''D''' → '''B''') to the set of dispositions in E''X''. There are <math>2^{2^{2n}}</math> = 16 propositions in E''X''^, as detailed in Table 14. |
| | | |
− | {| align="center" border="1" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| |+ '''Table 14. Differential Propositions''' | | |+ '''Table 14. Differential Propositions''' |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| | | | | |
| | align="right" | A : | | | align="right" | A : |
Line 1,434: |
Line 1,434: |
| | | | | |
| | | | | |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| | | | | |
| | align="right" | dA : | | | align="right" | dA : |
Line 1,450: |
Line 1,450: |
| |- | | |- |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| <br> | | <br> |
Line 1,458: |
Line 1,458: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| g<sub>1</sub><br> | | g<sub>1</sub><br> |
Line 1,466: |
Line 1,466: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| 0 0 0 1<br> | | 0 0 0 1<br> |
Line 1,474: |
Line 1,474: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| (A)(dA)<br> | | (A)(dA)<br> |
Line 1,482: |
Line 1,482: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| Neither A nor dA<br> | | Neither A nor dA<br> |
Line 1,490: |
Line 1,490: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| ¬A ∧ ¬dA<br> | | ¬A ∧ ¬dA<br> |
Line 1,499: |
Line 1,499: |
| |- | | |- |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| f<sub>1</sub><br> | | f<sub>1</sub><br> |
Line 1,505: |
Line 1,505: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| g<sub>3</sub><br> | | g<sub>3</sub><br> |
Line 1,511: |
Line 1,511: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| 0 0 1 1<br> | | 0 0 1 1<br> |
Line 1,517: |
Line 1,517: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| (A)<br> | | (A)<br> |
Line 1,523: |
Line 1,523: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| Not A<br> | | Not A<br> |
Line 1,529: |
Line 1,529: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| ¬A<br> | | ¬A<br> |
Line 1,536: |
Line 1,536: |
| |- | | |- |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| <br> | | <br> |
Line 1,542: |
Line 1,542: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| g<sub>6</sub><br> | | g<sub>6</sub><br> |
Line 1,548: |
Line 1,548: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| 0 1 1 0<br> | | 0 1 1 0<br> |
Line 1,554: |
Line 1,554: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| (A, dA)<br> | | (A, dA)<br> |
Line 1,560: |
Line 1,560: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| A not equal to dA<br> | | A not equal to dA<br> |
Line 1,566: |
Line 1,566: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| A ≠ dA<br> | | A ≠ dA<br> |
Line 1,573: |
Line 1,573: |
| |- | | |- |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| <br> | | <br> |
Line 1,579: |
Line 1,579: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| g<sub>5</sub><br> | | g<sub>5</sub><br> |
Line 1,585: |
Line 1,585: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| 0 1 0 1<br> | | 0 1 0 1<br> |
Line 1,591: |
Line 1,591: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| (dA)<br> | | (dA)<br> |
Line 1,597: |
Line 1,597: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| Not dA<br> | | Not dA<br> |
Line 1,603: |
Line 1,603: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| ¬dA<br> | | ¬dA<br> |
Line 1,610: |
Line 1,610: |
| |- | | |- |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| <br> | | <br> |
Line 1,618: |
Line 1,618: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| g<sub>7</sub><br> | | g<sub>7</sub><br> |
Line 1,626: |
Line 1,626: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| 0 1 1 1<br> | | 0 1 1 1<br> |
Line 1,634: |
Line 1,634: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| (A dA)<br> | | (A dA)<br> |
Line 1,642: |
Line 1,642: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| Not both A and dA<br> | | Not both A and dA<br> |
Line 1,650: |
Line 1,650: |
| |} | | |} |
| | | | | |
− | {| style="background:lightcyan" | + | {| |
| | | | | |
| ¬A ∨ ¬dA<br> | | ¬A ∨ ¬dA<br> |
Line 1,693: |
Line 1,693: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:96%" |
| |+ '''Table 15. Tacit Extension of <math>[A]\!</math> to <math>[A, \operatorname{d}A]</math>''' | | |+ '''Table 15. Tacit Extension of <math>[A]\!</math> to <math>[A, \operatorname{d}A]</math>''' |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="text-align:center; width:96%" |
| | | | | |
| | <math>0\!</math> | | | <math>0\!</math> |
Line 1,769: |
Line 1,769: |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:96%" |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="text-align:center; width:96%" |
| | <math>r(q)\!</math> | | | <math>r(q)\!</math> |
| | <math>=</math> | | | <math>=</math> |
Line 1,791: |
Line 1,791: |
| Applied to the example of fourth gear curves, this scheme results in the data of Tables 17-a and 17-b, which exhibit one period for each orbit. The states in each orbit are listed as ordered pairs ‹''p''<sub>''i''</sub>, ''q''<sub>''j''</sub>›, where ''p''<sub>''i''</sub> may be read as a temporal parameter that indicates the present time of the state, and where ''j'' is the decimal equivalent of the binary numeral ''s''. Informally and more casually, the Tables exhibit the states ''q''<sub>''s''</sub> as subscripted with the numerators of their rational indices, taking for granted the constant denominators of 2<sup>''m''</sup> = 2<sup>4</sup> = 16. Within this set-up, the temporal successions of states can be reckoned as given by a kind of ''parallel round-up rule''. That is, if ‹''d''<sub>''k''</sub>, ''d''<sub>''k''+1</sub>› is any pair of adjacent digits in the state index ''r'', then the value of ''d''<sub>''k''</sub> in the next state is ''d''<sub>''k''</sub>′ = ''d''<sub>''k''</sub> + ''d''<sub>''k''+1</sub>. | | Applied to the example of fourth gear curves, this scheme results in the data of Tables 17-a and 17-b, which exhibit one period for each orbit. The states in each orbit are listed as ordered pairs ‹''p''<sub>''i''</sub>, ''q''<sub>''j''</sub>›, where ''p''<sub>''i''</sub> may be read as a temporal parameter that indicates the present time of the state, and where ''j'' is the decimal equivalent of the binary numeral ''s''. Informally and more casually, the Tables exhibit the states ''q''<sub>''s''</sub> as subscripted with the numerators of their rational indices, taking for granted the constant denominators of 2<sup>''m''</sup> = 2<sup>4</sup> = 16. Within this set-up, the temporal successions of states can be reckoned as given by a kind of ''parallel round-up rule''. That is, if ‹''d''<sub>''k''</sub>, ''d''<sub>''k''+1</sub>› is any pair of adjacent digits in the state index ''r'', then the value of ''d''<sub>''k''</sub> in the next state is ''d''<sub>''k''</sub>′ = ''d''<sub>''k''</sub> + ''d''<sub>''k''+1</sub>. |
| | | |
− | {| align="center" border="1" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| |+ '''Table 17-a. A Couple of Orbits in Fourth Gear: Orbit 1''' | | |+ '''Table 17-a. A Couple of Orbits in Fourth Gear: Orbit 1''' |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| | Time | | | Time |
| | State | | | State |
Line 1,801: |
Line 1,801: |
| | | | | |
| | | | | |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| | ''p''<sub>''i''</sub> | | | ''p''<sub>''i''</sub> |
| | ''q''<sub>''j''</sub> | | | ''q''<sub>''j''</sub> |
Line 1,811: |
Line 1,811: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center" |
| | ''p''<sub>0</sub> | | | ''p''<sub>0</sub> |
| |- | | |- |
Line 1,829: |
Line 1,829: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center" |
| | ''q''<sub>01</sub> | | | ''q''<sub>01</sub> |
| |- | | |- |
Line 1,847: |
Line 1,847: |
| |} | | |} |
| | colspan="5" | | | | colspan="5" | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0. || 0 || 0 || 0 || 1 | | | 0. || 0 || 0 || 0 || 1 |
| |- | | |- |
Line 1,867: |
Line 1,867: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| |+ '''Table 17-b. A Couple of Orbits in Fourth Gear: Orbit 2''' | | |+ '''Table 17-b. A Couple of Orbits in Fourth Gear: Orbit 2''' |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| | Time | | | Time |
| | State | | | State |
Line 1,877: |
Line 1,877: |
| | | | | |
| | | | | |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| | ''p''<sub>''i''</sub> | | | ''p''<sub>''i''</sub> |
| | ''q''<sub>''j''</sub> | | | ''q''<sub>''j''</sub> |
Line 1,887: |
Line 1,887: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center" |
| | ''p''<sub>0</sub> | | | ''p''<sub>0</sub> |
| |- | | |- |
Line 1,905: |
Line 1,905: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center" |
| | ''q''<sub>25</sub> | | | ''q''<sub>25</sub> |
| |- | | |- |
Line 1,923: |
Line 1,923: |
| |} | | |} |
| | colspan="5" | | | | colspan="5" | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1. || 1 || 0 || 0 || 1 | | | 1. || 1 || 0 || 0 || 1 |
| |- | | |- |
Line 2,148: |
Line 2,148: |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| |+ '''Table 22. Disjunction ''f'' and Equality ''g'' ''' | | |+ '''Table 22. Disjunction ''f'' and Equality ''g'' ''' |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | ''u'' || ''v'' | | | ''u'' || ''v'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | ''f'' || ''g'' | | | ''f'' || ''g'' |
| |} | | |} |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 2,170: |
Line 2,170: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 1 | | | 0 || 1 |
| |- | | |- |
Line 2,188: |
Line 2,188: |
| |+ '''Tables 23-i and 23-ii. Thematics of Disjunction and Equality (1)''' | | |+ '''Tables 23-i and 23-ii. Thematics of Disjunction and Equality (1)''' |
| | | | | |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:90%" |
| |+ '''Table 23-i. Disjunction ''f'' ''' | | |+ '''Table 23-i. Disjunction ''f'' ''' |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | ''u'' || ''v'' || ''f'' | | | ''u'' || ''v'' || ''f'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | ''x'' || φ | | | ''x'' || φ |
| |} | | |} |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 || → | | | 0 || 0 || → |
| |- | | |- |
Line 2,210: |
Line 2,210: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 1 | | | 0 || 1 |
| |- | | |- |
Line 2,221: |
Line 2,221: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 || | | | 0 || 0 || |
| |- | | |- |
Line 2,231: |
Line 2,231: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 0 | | | 1 || 0 |
| |- | | |- |
Line 2,242: |
Line 2,242: |
| |} | | |} |
| | | | | |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:90%" |
| |+ '''Table 23-ii. Equality ''g'' ''' | | |+ '''Table 23-ii. Equality ''g'' ''' |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | ''u'' || ''v'' || ''g'' | | | ''u'' || ''v'' || ''g'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | ''y'' || γ | | | ''y'' || γ |
| |} | | |} |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 || → | | | 0 || 0 || → |
| |- | | |- |
Line 2,264: |
Line 2,264: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 1 | | | 1 || 1 |
| |- | | |- |
Line 2,275: |
Line 2,275: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 || | | | 0 || 0 || |
| |- | | |- |
Line 2,285: |
Line 2,285: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 2,304: |
Line 2,304: |
| |+ '''Tables 24-i and 24-ii. Thematics of Disjunction and Equality (2)''' | | |+ '''Tables 24-i and 24-ii. Thematics of Disjunction and Equality (2)''' |
| | | | | |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:90%" |
| |+ '''Table 24-i. Disjunction ''f'' ''' | | |+ '''Table 24-i. Disjunction ''f'' ''' |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | ''u'' || ''v'' || ''f'' || ''x'' | | | ''u'' || ''v'' || ''f'' || ''x'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | φ | | | φ |
| |} | | |} |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 || → || 0 | | | 0 || 0 || → || 0 |
| |- | | |- |
Line 2,326: |
Line 2,326: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 | | | 1 |
| |- | | |- |
Line 2,337: |
Line 2,337: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 0 || || 0 | | | 1 || 0 || || 0 |
| |- | | |- |
Line 2,347: |
Line 2,347: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 | | | 0 |
| |- | | |- |
Line 2,358: |
Line 2,358: |
| |} | | |} |
| | | | | |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:90%" |
| |+ '''Table 24-ii. Equality ''g'' ''' | | |+ '''Table 24-ii. Equality ''g'' ''' |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | ''u'' || ''v'' || ''g'' || ''y'' | | | ''u'' || ''v'' || ''g'' || ''y'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | γ | | | γ |
| |} | | |} |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 || || 0 | | | 0 || 0 || || 0 |
| |- | | |- |
Line 2,380: |
Line 2,380: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 | | | 0 |
| |- | | |- |
Line 2,391: |
Line 2,391: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 0 || → || 0 | | | 1 || 0 || → || 0 |
| |- | | |- |
Line 2,401: |
Line 2,401: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 | | | 1 |
| |- | | |- |
Line 2,420: |
Line 2,420: |
| |+ '''Tables 25-i and 25-ii. Thematics of Disjunction and Equality (3)''' | | |+ '''Tables 25-i and 25-ii. Thematics of Disjunction and Equality (3)''' |
| | | | | |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:90%" |
| |+ '''Table 25-i. Disjunction ''f'' ''' | | |+ '''Table 25-i. Disjunction ''f'' ''' |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | ''u'' || ''v'' || ''f'' || ''x'' | | | ''u'' || ''v'' || ''f'' || ''x'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | φ | | | φ |
| |} | | |} |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 || → || 0 | | | 0 || 0 || → || 0 |
| |- | | |- |
Line 2,442: |
Line 2,442: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 | | | 1 |
| |- | | |- |
Line 2,453: |
Line 2,453: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 || || 1 | | | 0 || 0 || || 1 |
| |- | | |- |
Line 2,463: |
Line 2,463: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 | | | 0 |
| |- | | |- |
Line 2,474: |
Line 2,474: |
| |} | | |} |
| | | | | |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:90%" |
| |+ '''Table 25-ii. Equality ''g'' ''' | | |+ '''Table 25-ii. Equality ''g'' ''' |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | ''u'' || ''v'' || ''g'' || ''y'' | | | ''u'' || ''v'' || ''g'' || ''y'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | γ | | | γ |
| |} | | |} |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 || || 0 | | | 0 || 0 || || 0 |
| |- | | |- |
Line 2,496: |
Line 2,496: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 | | | 0 |
| |- | | |- |
Line 2,507: |
Line 2,507: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 || → || 1 | | | 0 || 0 || → || 1 |
| |- | | |- |
Line 2,517: |
Line 2,517: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 | | | 1 |
| |- | | |- |
Line 2,536: |
Line 2,536: |
| |+ '''Tables 26-i and 26-ii. Tacit Extension and Thematization''' | | |+ '''Tables 26-i and 26-ii. Tacit Extension and Thematization''' |
| | | | | |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:90%" |
| |+ '''Table 26-i. Disjunction ''f'' ''' | | |+ '''Table 26-i. Disjunction ''f'' ''' |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | ''u'' || ''v'' || ''x'' | | | ''u'' || ''v'' || ''x'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | ε''f'' || θ''f'' | | | ε''f'' || θ''f'' |
| |} | | |} |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 || 0 | | | 0 || 0 || 0 |
| |- | | |- |
Line 2,558: |
Line 2,558: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 1 | | | 0 || 1 |
| |- | | |- |
Line 2,569: |
Line 2,569: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 0 || 0 | | | 1 || 0 || 0 |
| |- | | |- |
Line 2,579: |
Line 2,579: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 0 | | | 1 || 0 |
| |- | | |- |
Line 2,590: |
Line 2,590: |
| |} | | |} |
| | | | | |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:90%" | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:90%" |
| |+ '''Table 26-ii. Equality ''g'' ''' | | |+ '''Table 26-ii. Equality ''g'' ''' |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | ''u'' || ''v'' || ''y'' | | | ''u'' || ''v'' || ''y'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | ε''g'' || θ''g'' | | | ε''g'' || θ''g'' |
| |} | | |} |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 || 0 | | | 0 || 0 || 0 |
| |- | | |- |
Line 2,612: |
Line 2,612: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 0 | | | 1 || 0 |
| |- | | |- |
Line 2,623: |
Line 2,623: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 0 || 0 | | | 1 || 0 || 0 |
| |- | | |- |
Line 2,633: |
Line 2,633: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 1 | | | 0 || 1 |
| |- | | |- |
Line 2,649: |
Line 2,649: |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| |+ Table 27. Thematization of Bivariate Propositions | | |+ Table 27. Thematization of Bivariate Propositions |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| | | | | |
− | {| align="right" style="background:paleturquoise; text-align:right" | + | {| align="right" style="background:ghostwhite; text-align:right" |
| | u : | | | u : |
| |- | | |- |
Line 2,659: |
Line 2,659: |
| |} | | |} |
| | | | | |
− | {| style="background:paleturquoise" | + | {| style="background:ghostwhite" |
| | 1100 | | | 1100 |
| |- | | |- |
Line 2,665: |
Line 2,665: |
| |} | | |} |
| | | | | |
− | {| style="background:paleturquoise" | + | {| style="background:ghostwhite" |
| | f | | | f |
| |- | | |- |
Line 2,671: |
Line 2,671: |
| |} | | |} |
| | | | | |
− | {| style="background:paleturquoise" | + | {| style="background:ghostwhite" |
| | θf | | | θf |
| |- | | |- |
Line 2,677: |
Line 2,677: |
| |} | | |} |
| | | | | |
− | {| style="background:paleturquoise" | + | {| style="background:ghostwhite" |
| | θf | | | θf |
| |- | | |- |
Line 2,684: |
Line 2,684: |
| |- | | |- |
| | | | | |
− | {| cellpadding="2" style="background:lightcyan" | + | {| cellpadding="2" |
| | f<sub>0</sub> | | | f<sub>0</sub> |
| |- | | |- |
Line 2,702: |
Line 2,702: |
| |} | | |} |
| | | | | |
− | {| cellpadding="2" style="background:lightcyan" | + | {| cellpadding="2" |
| | 0000 | | | 0000 |
| |- | | |- |
Line 2,720: |
Line 2,720: |
| |} | | |} |
| | | | | |
− | {| cellpadding="2" style="background:lightcyan" | + | {| cellpadding="2" |
| | () | | | () |
| |- | | |- |
Line 2,738: |
Line 2,738: |
| |} | | |} |
| | | | | |
− | {| cellpadding="2" style="background:lightcyan" | + | {| cellpadding="2" |
| | (( f , () )) | | | (( f , () )) |
| |- | | |- |
Line 2,756: |
Line 2,756: |
| |} | | |} |
| | | | | |
− | {| align="left" cellpadding="2" style="background:lightcyan; text-align:left" | + | {| align="left" cellpadding="2" style="text-align:left" |
| | f + 1 | | | f + 1 |
| |- | | |- |
Line 2,775: |
Line 2,775: |
| |- | | |- |
| | | | | |
− | {| cellpadding="2" style="background:lightcyan" | + | {| cellpadding="2" |
| | f<sub>8</sub> | | | f<sub>8</sub> |
| |- | | |- |
Line 2,793: |
Line 2,793: |
| |} | | |} |
| | | | | |
− | {| cellpadding="2" style="background:lightcyan" | + | {| cellpadding="2" |
| | 1000 | | | 1000 |
| |- | | |- |
Line 2,811: |
Line 2,811: |
| |} | | |} |
| | | | | |
− | {| cellpadding="2" style="background:lightcyan" | + | {| cellpadding="2" |
| | u v | | | u v |
| |- | | |- |
Line 2,829: |
Line 2,829: |
| |} | | |} |
| | | | | |
− | {| cellpadding="2" style="background:lightcyan" | + | {| cellpadding="2" |
| | (( f , u v )) | | | (( f , u v )) |
| |- | | |- |
Line 2,847: |
Line 2,847: |
| |} | | |} |
| | | | | |
− | {| align="left" cellpadding="2" style="background:lightcyan; text-align:left" | + | {| align="left" cellpadding="2" style="text-align:left" |
| | f + uv + 1 | | | f + uv + 1 |
| |- | | |- |
Line 2,870: |
Line 2,870: |
| | | |
| <br> | | <br> |
− | {| align="center" border="1" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| |+ Table 28. Propositions on Two Variables | | |+ Table 28. Propositions on Two Variables |
| | | | | |
− | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| | u || v || | | | u || v || |
| |f<sub>00</sub>||f<sub>01</sub>||f<sub>02</sub>||f<sub>03</sub> | | |f<sub>00</sub>||f<sub>01</sub>||f<sub>02</sub>||f<sub>03</sub> |
Line 2,896: |
Line 2,896: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| |+ Table 29. Thematic Extensions of Bivariate Propositions | | |+ Table 29. Thematic Extensions of Bivariate Propositions |
| | | | | |
− | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| | u || v || f<sup>¢</sup> | | | u || v || f<sup>¢</sup> |
| | φ<sub>00</sub> || φ<sub>01</sub> | | | φ<sub>00</sub> || φ<sub>01</sub> |
Line 3,089: |
Line 3,089: |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="20%" | | | | width="20%" | |
| | width="20%" | ''x'' | | | width="20%" | ''x'' |
Line 3,415: |
Line 3,415: |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" |
| | | | | |
− | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="8%" | ''x''<sub>1</sub> | | | width="8%" | ''x''<sub>1</sub> |
| | width="4%" | = | | | width="4%" | = |
Line 3,434: |
Line 3,434: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="8%" | d''x''<sub>1</sub> | | | width="8%" | d''x''<sub>1</sub> |
| | width="4%" | = | | | width="4%" | = |
Line 3,498: |
Line 3,498: |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" |
| | | | | |
− | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="8%" | ''x''<sub>1</sub> | | | width="8%" | ''x''<sub>1</sub> |
| | width="4%" | = | | | width="4%" | = |
Line 3,517: |
Line 3,517: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="8%" | d''x''<sub>1</sub> | | | width="8%" | d''x''<sub>1</sub> |
| | width="4%" | = | | | width="4%" | = |
Line 3,555: |
Line 3,555: |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" |
| | | | | |
− | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="8%" | d''x''<sub>1</sub> | | | width="8%" | d''x''<sub>1</sub> |
| | width="4%" | = | | | width="4%" | = |
Line 3,595: |
Line 3,595: |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | <font face=georgia>'''D'''</font> | | | <font face=georgia>'''D'''</font> |
| | = | | | = |
Line 3,695: |
Line 3,695: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" |
| |+ Table 36. Computation of <math>\epsilon</math>''J'' | | |+ Table 36. Computation of <math>\epsilon</math>''J'' |
| | | | | |
− | {| align="left" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="8%" | <math>\epsilon</math>''J'' | | | width="8%" | <math>\epsilon</math>''J'' |
| | width="4%" | = | | | width="4%" | = |
Line 3,716: |
Line 3,716: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="8%" | <math>\epsilon</math>''J'' | | | width="8%" | <math>\epsilon</math>''J'' |
| | width="4%" | = | | | width="4%" | = |
Line 3,794: |
Line 3,794: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" |
| |+ Table 38. Computation of E''J'' (Method 1) | | |+ Table 38. Computation of E''J'' (Method 1) |
| | | | | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="8%" | E''J'' | | | width="8%" | E''J'' |
| | width="4%" | = | | | width="4%" | = |
Line 3,856: |
Line 3,856: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="8%" | E''J'' | | | width="8%" | E''J'' |
| | width="23%" | = ''u'' ''v'' (d''u'')(d''v'') | | | width="23%" | = ''u'' ''v'' (d''u'')(d''v'') |
Line 3,887: |
Line 3,887: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" |
| |+ Table 39. Computation of E''J'' (Method 2) | | |+ Table 39. Computation of E''J'' (Method 2) |
| | | | | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="8%" | E''J'' | | | width="8%" | E''J'' |
| | colspan="2" | = ‹''u'' + d''u''› <math>\cdot</math> ‹''v'' + d''v''› | | | colspan="2" | = ‹''u'' + d''u''› <math>\cdot</math> ‹''v'' + d''v''› |
Line 3,974: |
Line 3,974: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" |
| |+ Table 41. Computation of D''J'' (Method 1) | | |+ Table 41. Computation of D''J'' (Method 1) |
| | | | | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="8%" | D''J'' | | | width="8%" | D''J'' |
| | width="4%" | = | | | width="4%" | = |
Line 3,998: |
Line 3,998: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="8%" | D''J'' | | | width="8%" | D''J'' |
| | width="3%" | = | | | width="3%" | = |
Line 4,029: |
Line 4,029: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="8%" | D''J'' | | | width="8%" | D''J'' |
| | width="3%" | = | | | width="3%" | = |
Line 4,043: |
Line 4,043: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" |
| |+ Table 42. Computation of D''J'' (Method 2) | | |+ Table 42. Computation of D''J'' (Method 2) |
| | | | | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="8%" | D''J'' | | | width="8%" | D''J'' |
| | width="4%" | = | | | width="4%" | = |
Line 4,091: |
Line 4,091: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" |
| |+ Table 43. Computation of D''J'' (Method 3) | | |+ Table 43. Computation of D''J'' (Method 3) |
| | | | | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="6%" | D''J'' | | | width="6%" | D''J'' |
| | width="3%" | = | | | width="3%" | = |
Line 4,104: |
Line 4,104: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="6%" | <math>\epsilon</math>''J'' | | | width="6%" | <math>\epsilon</math>''J'' |
| | width="23%" | = ''u'' ''v'' (d''u'')(d''v'') | | | width="23%" | = ''u'' ''v'' (d''u'')(d''v'') |
Line 4,119: |
Line 4,119: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="6%" | D''J'' | | | width="6%" | D''J'' |
| | width="23%" | = 0 <math>\cdot</math> (d''u'')(d''v'') | | | width="23%" | = 0 <math>\cdot</math> (d''u'')(d''v'') |
Line 4,132: |
Line 4,132: |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" |
| | | | | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="6%" | <math>\epsilon</math>''J'' | | | width="6%" | <math>\epsilon</math>''J'' |
| | width="47%" | = {Dispositions from ''J'' to ''J'' } | | | width="47%" | = {Dispositions from ''J'' to ''J'' } |
Line 4,205: |
Line 4,205: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" |
| |+ Table 45. Computation of d''J'' | | |+ Table 45. Computation of d''J'' |
| | | | | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="6%" | D''J'' | | | width="6%" | D''J'' |
| | width="25%" | = ''u'' ''v'' ((d''u'')(d''v'')) | | | width="25%" | = ''u'' ''v'' ((d''u'')(d''v'')) |
Line 4,267: |
Line 4,267: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" |
| |+ Table 47. Computation of r''J'' | | |+ Table 47. Computation of r''J'' |
| | | | | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="6%" | r''J'' | | | width="6%" | r''J'' |
| | width="5%" | = | | | width="5%" | = |
Line 4,280: |
Line 4,280: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="6%" | D''J'' | | | width="6%" | D''J'' |
| | width="25%" | = ''u'' ''v'' ((d''u'')(d''v'')) | | | width="25%" | = ''u'' ''v'' ((d''u'')(d''v'')) |
Line 4,295: |
Line 4,295: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="6%" | r''J'' | | | width="6%" | r''J'' |
| | width="25%" | = ''u'' ''v'' d''u'' d''v'' | | | width="25%" | = ''u'' ''v'' d''u'' d''v'' |
Line 4,356: |
Line 4,356: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| |+ Table 49. Computation Summary for ''J'' | | |+ Table 49. Computation Summary for ''J'' |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | <math>\epsilon</math>''J'' | | | <math>\epsilon</math>''J'' |
| | = || ''uv'' || <math>\cdot</math> || 1 | | | = || ''uv'' || <math>\cdot</math> || 1 |
Line 4,407: |
Line 4,407: |
| | | |
| <br> | | <br> |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| |+ Table 50. Computation of an Analytic Series in Terms of Coordinates | | |+ Table 50. Computation of an Analytic Series in Terms of Coordinates |
| | | | | |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | ''u'' | | | ''u'' |
| | ''v'' | | | ''v'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | d''u'' | | | d''u'' |
| | d''v'' | | | d''v'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | ''u''<font face="courier new">’</font> | | | ''u''<font face="courier new">’</font> |
| | ''v''<font face="courier new">’</font> | | | ''v''<font face="courier new">’</font> |
Line 4,428: |
Line 4,428: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 4,438: |
Line 4,438: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 4,448: |
Line 4,448: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 4,459: |
Line 4,459: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 1 | | | 0 || 1 |
| |- | | |- |
Line 4,469: |
Line 4,469: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 4,479: |
Line 4,479: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 1 | | | 0 || 1 |
| |- | | |- |
Line 4,490: |
Line 4,490: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 0 | | | 1 || 0 |
| |- | | |- |
Line 4,500: |
Line 4,500: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 4,510: |
Line 4,510: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 0 | | | 1 || 0 |
| |- | | |- |
Line 4,521: |
Line 4,521: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 1 | | | 1 || 1 |
| |- | | |- |
Line 4,531: |
Line 4,531: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 1 | | | 1 || 1 |
| |- | | |- |
Line 4,541: |
Line 4,541: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 4,552: |
Line 4,552: |
| |} | | |} |
| | | | | |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | <math>\epsilon</math>''J'' | | | <math>\epsilon</math>''J'' |
| | E''J'' | | | E''J'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | D''J'' | | | D''J'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | d''J'' | | | d''J'' |
| | d<sup>2</sup>''J'' | | | d<sup>2</sup>''J'' |
Line 4,569: |
Line 4,569: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 4,579: |
Line 4,579: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 | | | 0 |
| |- | | |- |
Line 4,589: |
Line 4,589: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 4,600: |
Line 4,600: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 4,610: |
Line 4,610: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 | | | 0 |
| |- | | |- |
Line 4,620: |
Line 4,620: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 4,631: |
Line 4,631: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 4,641: |
Line 4,641: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 | | | 0 |
| |- | | |- |
Line 4,651: |
Line 4,651: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 4,662: |
Line 4,662: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 1 | | | 0 || 1 |
| |- | | |- |
Line 4,672: |
Line 4,672: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 | | | 0 |
| |- | | |- |
Line 4,682: |
Line 4,682: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 4,699: |
Line 4,699: |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | || ''u''’ || = || ''u'' + d''u'' || = || (''u'', d''u'') || | | | || ''u''’ || = || ''u'' + d''u'' || = || (''u'', d''u'') || |
| |- | | |- |
Line 4,718: |
Line 4,718: |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | E''J''‹''u'', ''v'', d''u'', d''v''› | | | E''J''‹''u'', ''v'', d''u'', d''v''› |
| | = | | | = |
Line 4,741: |
Line 4,741: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| |+ Table 51. Computation of an Analytic Series in Symbolic Terms | | |+ Table 51. Computation of an Analytic Series in Symbolic Terms |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | ''u'' || ''v'' | | | ''u'' || ''v'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | ''J'' | | | ''J'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | E''J'' | | | E''J'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | D''J'' | | | D''J'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | d''J'' | | | d''J'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | d<sup>2</sup>''J'' | | | d<sup>2</sup>''J'' |
| |} | | |} |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 4,779: |
Line 4,779: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 | | | 0 |
| |- | | |- |
Line 4,789: |
Line 4,789: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | d''u'' d''v'' | | | d''u'' d''v'' |
| |- | | |- |
Line 4,799: |
Line 4,799: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | d''u'' d''v'' | | | d''u'' d''v'' |
| |- | | |- |
Line 4,809: |
Line 4,809: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | () | | | () |
| |- | | |- |
Line 4,819: |
Line 4,819: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | d''u'' d''v'' | | | d''u'' d''v'' |
| |- | | |- |
Line 4,866: |
Line 4,866: |
| Table 54 provides basic notation and descriptive information for the objects and operators that are used used in this Example, giving the generic type (or broadest defined type) for each entity. Here, the operators <font face=georgia>'''W'''</font> in {<font face=georgia>'''e'''</font>, <font face=georgia>'''E'''</font>, <font face=georgia>'''D'''</font>, <font face=georgia>'''d'''</font>, <font face=georgia>'''r'''</font>} and their components W in {<math>\epsilon</math>, <math>\eta</math>, E, D, d, r} both have the same broad type <font face=georgia>'''W'''</font>, W : (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>), as would be expected of operators that map transformations ''J'' : ''U''<sup> •</sup> → ''X''<sup> •</sup> to extended transformations <font face=georgia>'''W'''</font>''J'', W''J'' : E''U<sup> •</sup> → E''X''<sup> •</sup>. | | Table 54 provides basic notation and descriptive information for the objects and operators that are used used in this Example, giving the generic type (or broadest defined type) for each entity. Here, the operators <font face=georgia>'''W'''</font> in {<font face=georgia>'''e'''</font>, <font face=georgia>'''E'''</font>, <font face=georgia>'''D'''</font>, <font face=georgia>'''d'''</font>, <font face=georgia>'''r'''</font>} and their components W in {<math>\epsilon</math>, <math>\eta</math>, E, D, d, r} both have the same broad type <font face=georgia>'''W'''</font>, W : (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>), as would be expected of operators that map transformations ''J'' : ''U''<sup> •</sup> → ''X''<sup> •</sup> to extended transformations <font face=georgia>'''W'''</font>''J'', W''J'' : E''U<sup> •</sup> → E''X''<sup> •</sup>. |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%" |
| |+ '''Table 54. Cast of Characters: Expansive Subtypes of Objects and Operators''' | | |+ '''Table 54. Cast of Characters: Expansive Subtypes of Objects and Operators''' |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| ! Item | | ! Item |
| ! Notation | | ! Notation |
Line 4,905: |
Line 4,905: |
| |- | | |- |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | W | | | W |
| |} | | |} |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | W : | | | W : |
| |- | | |- |
Line 4,927: |
Line 4,927: |
| |} | | |} |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Operator | | | Operator |
| |} | | |} |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100" |
| | | | | |
| |- | | |- |
Line 4,950: |
Line 4,950: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <math>\epsilon</math> | | | <math>\epsilon</math> |
| |- | | |- |
Line 4,963: |
Line 4,963: |
| | valign="top" | | | | valign="top" | |
| | colspan="2" | | | | colspan="2" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:60%" |
| | Tacit Extension Operator || <math>\epsilon</math> | | | Tacit Extension Operator || <math>\epsilon</math> |
| |- | | |- |
Line 4,976: |
Line 4,976: |
| |- | | |- |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''W'''</font> | | | <font face=georgia>'''W'''</font> |
| |} | | |} |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''W'''</font> : | | | <font face=georgia>'''W'''</font> : |
| |- | | |- |
Line 4,998: |
Line 4,998: |
| |} | | |} |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Operator | | | Operator |
| |} | | |} |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100" |
| | | | | |
| |- | | |- |
Line 5,021: |
Line 5,021: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''e'''</font> | | | <font face=georgia>'''e'''</font> |
| |- | | |- |
Line 5,032: |
Line 5,032: |
| | valign="top" | | | | valign="top" | |
| | colspan="2" | | | | colspan="2" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:60%" |
| | Radius Operator || <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› | | | Radius Operator || <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› |
| |- | | |- |
Line 5,045: |
Line 5,045: |
| Table 55 supplies a more detailed outline of terminology for operators and their results. Here, I list the restrictive subtype (or narrowest defined subtype) that applies to each entity, and I indicate across the span of the Table the whole spectrum of alternative types that color the interpretation of each symbol. Accordingly, each of the component operator maps W''J'', since their ranges are 1-dimensional (of type '''B'''<sup>1</sup> or '''D'''<sup>1</sup>), can be regarded either as propositions W''J'' : E''U'' → '''B''' or as logical transformations W''J'' : E''U''<sup> •</sup> → ''X''<sup> •</sup>. As a rule, the plan of the Table allows us to name each entry by detaching the adjective at the left of its row and prefixing it to the generic noun at the top of its column. In one case, however, it is customary to depart from this scheme. Because the phrase ''differential proposition'', applied to the result d''J'' : E''U'' → '''D''', does not distinguish it from the general run of differential propositions ''G'' : E''U'' → '''B''', it is usual to single out d''J'' as the ''tangent proposition'' of ''J''. | | Table 55 supplies a more detailed outline of terminology for operators and their results. Here, I list the restrictive subtype (or narrowest defined subtype) that applies to each entity, and I indicate across the span of the Table the whole spectrum of alternative types that color the interpretation of each symbol. Accordingly, each of the component operator maps W''J'', since their ranges are 1-dimensional (of type '''B'''<sup>1</sup> or '''D'''<sup>1</sup>), can be regarded either as propositions W''J'' : E''U'' → '''B''' or as logical transformations W''J'' : E''U''<sup> •</sup> → ''X''<sup> •</sup>. As a rule, the plan of the Table allows us to name each entry by detaching the adjective at the left of its row and prefixing it to the generic noun at the top of its column. In one case, however, it is customary to depart from this scheme. Because the phrase ''differential proposition'', applied to the result d''J'' : E''U'' → '''D''', does not distinguish it from the general run of differential propositions ''G'' : E''U'' → '''B''', it is usual to single out d''J'' as the ''tangent proposition'' of ''J''. |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%" |
| |+ '''Table 55. Synopsis of Terminology: Restrictive and Alternative Subtypes''' | | |+ '''Table 55. Synopsis of Terminology: Restrictive and Alternative Subtypes''' |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| ! | | ! |
| ! Operator | | ! Operator |
Line 5,054: |
Line 5,054: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Tacit | | | Tacit |
| |- | | |- |
Line 5,060: |
Line 5,060: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <math>\epsilon</math> : | | | <math>\epsilon</math> : |
| |- | | |- |
Line 5,068: |
Line 5,068: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <math>\epsilon</math>''J'' : | | | <math>\epsilon</math>''J'' : |
| |- | | |- |
Line 5,076: |
Line 5,076: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <math>\epsilon</math>''J'' : | | | <math>\epsilon</math>''J'' : |
| |- | | |- |
Line 5,085: |
Line 5,085: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Trope | | | Trope |
| |- | | |- |
Line 5,091: |
Line 5,091: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <math>\eta</math> : | | | <math>\eta</math> : |
| |- | | |- |
Line 5,099: |
Line 5,099: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <math>\eta</math>''J'' : | | | <math>\eta</math>''J'' : |
| |- | | |- |
Line 5,107: |
Line 5,107: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <math>\eta</math>''J'' : | | | <math>\eta</math>''J'' : |
| |- | | |- |
Line 5,116: |
Line 5,116: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Enlargement | | | Enlargement |
| |- | | |- |
Line 5,122: |
Line 5,122: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | E : | | | E : |
| |- | | |- |
Line 5,130: |
Line 5,130: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | E''J'' : | | | E''J'' : |
| |- | | |- |
Line 5,138: |
Line 5,138: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | E''J'' : | | | E''J'' : |
| |- | | |- |
Line 5,147: |
Line 5,147: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Difference | | | Difference |
| |- | | |- |
Line 5,153: |
Line 5,153: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | D : | | | D : |
| |- | | |- |
Line 5,161: |
Line 5,161: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | D''J'' : | | | D''J'' : |
| |- | | |- |
Line 5,169: |
Line 5,169: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | D''J'' : | | | D''J'' : |
| |- | | |- |
Line 5,178: |
Line 5,178: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Differential | | | Differential |
| |- | | |- |
Line 5,184: |
Line 5,184: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | d : | | | d : |
| |- | | |- |
Line 5,192: |
Line 5,192: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | d''J'' : | | | d''J'' : |
| |- | | |- |
Line 5,200: |
Line 5,200: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | d''J'' : | | | d''J'' : |
| |- | | |- |
Line 5,209: |
Line 5,209: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Remainder | | | Remainder |
| |- | | |- |
Line 5,215: |
Line 5,215: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | r : | | | r : |
| |- | | |- |
Line 5,223: |
Line 5,223: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | r''J'' : | | | r''J'' : |
| |- | | |- |
Line 5,231: |
Line 5,231: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | r''J'' : | | | r''J'' : |
| |- | | |- |
Line 5,240: |
Line 5,240: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Radius | | | Radius |
| |- | | |- |
Line 5,246: |
Line 5,246: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› : | | | <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› : |
| |- | | |- |
Line 5,254: |
Line 5,254: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | | | | |
| |- | | |- |
Line 5,262: |
Line 5,262: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''e'''</font>''J'' : | | | <font face=georgia>'''e'''</font>''J'' : |
| |- | | |- |
Line 5,271: |
Line 5,271: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Secant | | | Secant |
| |- | | |- |
Line 5,277: |
Line 5,277: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› : | | | <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› : |
| |- | | |- |
Line 5,285: |
Line 5,285: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | | | | |
| |- | | |- |
Line 5,293: |
Line 5,293: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''E'''</font>''J'' : | | | <font face=georgia>'''E'''</font>''J'' : |
| |- | | |- |
Line 5,302: |
Line 5,302: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Chord | | | Chord |
| |- | | |- |
Line 5,308: |
Line 5,308: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› : | | | <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› : |
| |- | | |- |
Line 5,316: |
Line 5,316: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | | | | |
| |- | | |- |
Line 5,324: |
Line 5,324: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''D'''</font>''J'' : | | | <font face=georgia>'''D'''</font>''J'' : |
| |- | | |- |
Line 5,333: |
Line 5,333: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Tangent | | | Tangent |
| |- | | |- |
Line 5,339: |
Line 5,339: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› : | | | <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› : |
| |- | | |- |
Line 5,347: |
Line 5,347: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | d''J'' : | | | d''J'' : |
| |- | | |- |
Line 5,355: |
Line 5,355: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''T'''</font>''J'' : | | | <font face=georgia>'''T'''</font>''J'' : |
| |- | | |- |
Line 5,438: |
Line 5,438: |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | align="left" | ''F'' | | | align="left" | ''F'' |
| | = | | | = |
Line 5,482: |
Line 5,482: |
| But that's it, and no further. Neglect of these distinctions in range and target universes of higher dimensions is bound to cause a hopeless confusion. To guard against these adverse prospects, Tables 58 and 59 lay the groundwork for discussing a typical map ''F'' : ['''B'''<sup>2</sup>] → ['''B'''<sup>2</sup>], and begin to pave the way, to some extent, for discussing any transformation of the form ''F'' : ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>]. | | But that's it, and no further. Neglect of these distinctions in range and target universes of higher dimensions is bound to cause a hopeless confusion. To guard against these adverse prospects, Tables 58 and 59 lay the groundwork for discussing a typical map ''F'' : ['''B'''<sup>2</sup>] → ['''B'''<sup>2</sup>], and begin to pave the way, to some extent, for discussing any transformation of the form ''F'' : ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>]. |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:96%" |
| |+ '''Table 58. Cast of Characters: Expansive Subtypes of Objects and Operators''' | | |+ '''Table 58. Cast of Characters: Expansive Subtypes of Objects and Operators''' |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| ! Item | | ! Item |
| ! Notation | | ! Notation |
Line 5,497: |
Line 5,497: |
| | valign="top" | ''X''<sup> •</sup> | | | valign="top" | ''X''<sup> •</sup> |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="text-align:left; width:100%" |
| | <font face="courier new">= </font>[''x'', ''y''] | | | <font face="courier new">= </font>[''x'', ''y''] |
| |- | | |- |
Line 5,512: |
Line 5,512: |
| | valign="top" | E''X''<sup> •</sup> | | | valign="top" | E''X''<sup> •</sup> |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="text-align:left; width:100%" |
| | <font face="courier new">= </font>[''x'', ''y'', d''x'', d''y''] | | | <font face="courier new">= </font>[''x'', ''y'', d''x'', d''y''] |
| |- | | |- |
Line 5,526: |
Line 5,526: |
| |- | | |- |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | | | | |
| |- | | |- |
Line 5,534: |
Line 5,534: |
| |} | | |} |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | ''f'', ''g'' : ''U'' → '''B''' | | | ''f'', ''g'' : ''U'' → '''B''' |
| |- | | |- |
Line 5,542: |
Line 5,542: |
| |} | | |} |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Proposition | | | Proposition |
| |} | | |} |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100" |
| | '''B'''<sup>''n''</sup> → '''B''' | | | '''B'''<sup>''n''</sup> → '''B''' |
| |- | | |- |
Line 5,555: |
Line 5,555: |
| |- | | |- |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | W | | | W |
| |} | | |} |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | W : | | | W : |
| |- | | |- |
Line 5,577: |
Line 5,577: |
| |} | | |} |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Operator | | | Operator |
| |} | | |} |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100" |
| | | | | |
| |- | | |- |
Line 5,600: |
Line 5,600: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <math>\epsilon</math> | | | <math>\epsilon</math> |
| |- | | |- |
Line 5,613: |
Line 5,613: |
| | valign="top" | | | | valign="top" | |
| | colspan="2" | | | | colspan="2" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:60%" |
| | Tacit Extension Operator || <math>\epsilon</math> | | | Tacit Extension Operator || <math>\epsilon</math> |
| |- | | |- |
Line 5,626: |
Line 5,626: |
| |- | | |- |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''W'''</font> | | | <font face=georgia>'''W'''</font> |
| |} | | |} |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''W'''</font> : | | | <font face=georgia>'''W'''</font> : |
| |- | | |- |
Line 5,648: |
Line 5,648: |
| |} | | |} |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Operator | | | Operator |
| |} | | |} |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100" |
| | | | | |
| |- | | |- |
Line 5,671: |
Line 5,671: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''e'''</font> | | | <font face=georgia>'''e'''</font> |
| |- | | |- |
Line 5,682: |
Line 5,682: |
| | valign="top" | | | | valign="top" | |
| | colspan="2" | | | | colspan="2" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:60%" |
| | Radius Operator || <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› | | | Radius Operator || <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› |
| |- | | |- |
Line 5,693: |
Line 5,693: |
| |}<br> | | |}<br> |
| | | |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="text-align:left; width:96%" |
| |+ '''Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes''' | | |+ '''Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes''' |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| | | | | |
| | align="center" | '''Operator<br>or<br>Operand''' | | | align="center" | '''Operator<br>or<br>Operand''' |
Line 5,703: |
Line 5,703: |
| | Operand | | | Operand |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | ''F'' = ‹''F''<sub>1</sub>, ''F''<sub>2</sub>› | | | ''F'' = ‹''F''<sub>1</sub>, ''F''<sub>2</sub>› |
| |- | | |- |
Line 5,709: |
Line 5,709: |
| |} | | |} |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | ''F''<sub>''i''</sub> : 〈''u'', ''v''〉 → '''B''' | | | ''F''<sub>''i''</sub> : 〈''u'', ''v''〉 → '''B''' |
| |- | | |- |
Line 5,715: |
Line 5,715: |
| |} | | |} |
| | valign="top" | | | | valign="top" | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100" |
| | ''F'' : [''u'', ''v''] → [''x'', ''y''] | | | ''F'' : [''u'', ''v''] → [''x'', ''y''] |
| |- | | |- |
Line 5,722: |
Line 5,722: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Tacit | | | Tacit |
| |- | | |- |
Line 5,728: |
Line 5,728: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <math>\epsilon</math> : | | | <math>\epsilon</math> : |
| |- | | |- |
Line 5,736: |
Line 5,736: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <math>\epsilon</math>''F''<sub>''i''</sub> : | | | <math>\epsilon</math>''F''<sub>''i''</sub> : |
| |- | | |- |
Line 5,744: |
Line 5,744: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <math>\epsilon</math>''F'' : | | | <math>\epsilon</math>''F'' : |
| |- | | |- |
Line 5,753: |
Line 5,753: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Trope | | | Trope |
| |- | | |- |
Line 5,759: |
Line 5,759: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <math>\eta</math> : | | | <math>\eta</math> : |
| |- | | |- |
Line 5,767: |
Line 5,767: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <math>\eta</math>''F''<sub>''i''</sub> : | | | <math>\eta</math>''F''<sub>''i''</sub> : |
| |- | | |- |
Line 5,775: |
Line 5,775: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <math>\eta</math>''F'' : | | | <math>\eta</math>''F'' : |
| |- | | |- |
Line 5,784: |
Line 5,784: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Enlargement | | | Enlargement |
| |- | | |- |
Line 5,790: |
Line 5,790: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | E : | | | E : |
| |- | | |- |
Line 5,798: |
Line 5,798: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | E''F''<sub>''i''</sub> : | | | E''F''<sub>''i''</sub> : |
| |- | | |- |
Line 5,806: |
Line 5,806: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | E''F'' : | | | E''F'' : |
| |- | | |- |
Line 5,815: |
Line 5,815: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Difference | | | Difference |
| |- | | |- |
Line 5,821: |
Line 5,821: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | D : | | | D : |
| |- | | |- |
Line 5,829: |
Line 5,829: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | D''F''<sub>''i''</sub> : | | | D''F''<sub>''i''</sub> : |
| |- | | |- |
Line 5,837: |
Line 5,837: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | D''F'' : | | | D''F'' : |
| |- | | |- |
Line 5,846: |
Line 5,846: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Differential | | | Differential |
| |- | | |- |
Line 5,852: |
Line 5,852: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | d : | | | d : |
| |- | | |- |
Line 5,860: |
Line 5,860: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | d''F''<sub>''i''</sub> : | | | d''F''<sub>''i''</sub> : |
| |- | | |- |
Line 5,868: |
Line 5,868: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | d''F'' : | | | d''F'' : |
| |- | | |- |
Line 5,877: |
Line 5,877: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Remainder | | | Remainder |
| |- | | |- |
Line 5,883: |
Line 5,883: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | r : | | | r : |
| |- | | |- |
Line 5,891: |
Line 5,891: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | r''F''<sub>''i''</sub> : | | | r''F''<sub>''i''</sub> : |
| |- | | |- |
Line 5,899: |
Line 5,899: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | r''F'' : | | | r''F'' : |
| |- | | |- |
Line 5,908: |
Line 5,908: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Radius | | | Radius |
| |- | | |- |
Line 5,914: |
Line 5,914: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› : | | | <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› : |
| |- | | |- |
Line 5,922: |
Line 5,922: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | | | | |
| |- | | |- |
Line 5,930: |
Line 5,930: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''e'''</font>''F'' : | | | <font face=georgia>'''e'''</font>''F'' : |
| |- | | |- |
Line 5,939: |
Line 5,939: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Secant | | | Secant |
| |- | | |- |
Line 5,945: |
Line 5,945: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› : | | | <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› : |
| |- | | |- |
Line 5,953: |
Line 5,953: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | | | | |
| |- | | |- |
Line 5,961: |
Line 5,961: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''E'''</font>''F'' : | | | <font face=georgia>'''E'''</font>''F'' : |
| |- | | |- |
Line 5,970: |
Line 5,970: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Chord | | | Chord |
| |- | | |- |
Line 5,976: |
Line 5,976: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› : | | | <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› : |
| |- | | |- |
Line 5,984: |
Line 5,984: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | | | | |
| |- | | |- |
Line 5,992: |
Line 5,992: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''D'''</font>''F'' : | | | <font face=georgia>'''D'''</font>''F'' : |
| |- | | |- |
Line 6,001: |
Line 6,001: |
| |- | | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | Tangent | | | Tangent |
| |- | | |- |
Line 6,007: |
Line 6,007: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› : | | | <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› : |
| |- | | |- |
Line 6,015: |
Line 6,015: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | d''F''<sub>''i''</sub> : | | | d''F''<sub>''i''</sub> : |
| |- | | |- |
Line 6,023: |
Line 6,023: |
| |} | | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" |
| | <font face=georgia>'''T'''</font>''F'' : | | | <font face=georgia>'''T'''</font>''F'' : |
| |- | | |- |
Line 6,037: |
Line 6,037: |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | | | | |
| | ''x'' | | | ''x'' |
Line 6,062: |
Line 6,062: |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| | | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | | | | |
| | ‹''x'', ''y''› | | | ‹''x'', ''y''› |
Line 6,079: |
Line 6,079: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| |+ '''Table 60. Propositional Transformation''' | | |+ '''Table 60. Propositional Transformation''' |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| | width="25%" | ''u'' | | | width="25%" | ''u'' |
| | width="25%" | ''v'' | | | width="25%" | ''v'' |
Line 6,088: |
Line 6,088: |
| |- | | |- |
| | width="25%" | | | | width="25%" | |
− | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 | | | 0 |
| |- | | |- |
Line 6,098: |
Line 6,098: |
| |} | | |} |
| | width="25%" | | | | width="25%" | |
− | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 | | | 0 |
| |- | | |- |
Line 6,108: |
Line 6,108: |
| |} | | |} |
| | width="25%" | | | | width="25%" | |
− | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 | | | 0 |
| |- | | |- |
Line 6,118: |
Line 6,118: |
| |} | | |} |
| | width="25%" | | | | width="25%" | |
− | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 | | | 1 |
| |- | | |- |
Line 6,155: |
Line 6,155: |
| Table 64 shows how the action of the transformation ''F'' on cells or points is computed in terms of coordinates. | | Table 64 shows how the action of the transformation ''F'' on cells or points is computed in terms of coordinates. |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| |+ '''Table 64. Transformation of Positions''' | | |+ '''Table 64. Transformation of Positions''' |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| | ''u'' ''v'' | | | ''u'' ''v'' |
| | ''x'' | | | ''x'' |
Line 6,168: |
Line 6,168: |
| |- | | |- |
| | width="12%" | | | | width="12%" | |
− | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 0 | | | 0 0 |
| |- | | |- |
Line 6,178: |
Line 6,178: |
| |} | | |} |
| | width="12%" | | | | width="12%" | |
− | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 | | | 0 |
| |- | | |- |
Line 6,188: |
Line 6,188: |
| |} | | |} |
| | width="12%" | | | | width="12%" | |
− | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 | | | 1 |
| |- | | |- |
Line 6,198: |
Line 6,198: |
| |} | | |} |
| | width="12%" | | | | width="12%" | |
− | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 | | | 0 |
| |- | | |- |
Line 6,208: |
Line 6,208: |
| |} | | |} |
| | width="12%" | | | | width="12%" | |
− | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 | | | 0 |
| |- | | |- |
Line 6,218: |
Line 6,218: |
| |} | | |} |
| | width="12%" | | | | width="12%" | |
− | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 | | | 1 |
| |- | | |- |
Line 6,228: |
Line 6,228: |
| |} | | |} |
| | width="12%" | | | | width="12%" | |
− | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 | | | 0 |
| |- | | |- |
Line 6,238: |
Line 6,238: |
| |} | | |} |
| | width="12%" | | | | width="12%" | |
− | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | ↑ | | | ↑ |
| |- | | |- |
Line 6,262: |
Line 6,262: |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| |+ '''Table 65. Induced Transformation on Propositions''' | | |+ '''Table 65. Induced Transformation on Propositions''' |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| | ''X''<sup> •</sup> | | | ''X''<sup> •</sup> |
| | colspan="3" | | | | colspan="3" | |
− | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:80%" | + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%" |
| | ← | | | ← |
| | ''F'' = ‹''f'' , ''g''› | | | ''F'' = ‹''f'' , ''g''› |
Line 6,273: |
Line 6,273: |
| |} | | |} |
| | ''U''<sup> •</sup> | | | ''U''<sup> •</sup> |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| | rowspan="2" | ''f''<sub>''i''</sub>‹''x'', ''y''› | | | rowspan="2" | ''f''<sub>''i''</sub>‹''x'', ''y''› |
| | | | | |
− | {| align="right" style="background:paleturquoise; text-align:right" | + | {| align="right" style="background:ghostwhite; text-align:right" |
| | ''u'' = | | | ''u'' = |
| |- | | |- |
Line 6,282: |
Line 6,282: |
| |} | | |} |
| | | | | |
− | {| align="center" style="background:paleturquoise; text-align:center" | + | {| align="center" style="background:ghostwhite; text-align:center" |
| | 1 1 0 0 | | | 1 1 0 0 |
| |- | | |- |
Line 6,288: |
Line 6,288: |
| |} | | |} |
| | | | | |
− | {| align="left" style="background:paleturquoise; text-align:left" | + | {| align="left" style="background:ghostwhite; text-align:left" |
| | = ''u'' | | | = ''u'' |
| |- | | |- |
Line 6,294: |
Line 6,294: |
| |} | | |} |
| | rowspan="2" | ''f''<sub>''j''</sub>‹''u'', ''v''› | | | rowspan="2" | ''f''<sub>''j''</sub>‹''u'', ''v''› |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| | | | | |
− | {| align="right" style="background:paleturquoise; text-align:right" | + | {| align="right" style="background:ghostwhite; text-align:right" |
| | ''x'' = | | | ''x'' = |
| |- | | |- |
Line 6,302: |
Line 6,302: |
| |} | | |} |
| | | | | |
− | {| align="center" style="background:paleturquoise; text-align:center" | + | {| align="center" style="background:ghostwhite; text-align:center" |
| | 1 1 1 0 | | | 1 1 1 0 |
| |- | | |- |
Line 6,308: |
Line 6,308: |
| |} | | |} |
| | | | | |
− | {| align="left" style="background:paleturquoise; text-align:left" | + | {| align="left" style="background:ghostwhite; text-align:left" |
| | = ''f''‹''u'', ''v''› | | | = ''f''‹''u'', ''v''› |
| |- | | |- |
Line 6,315: |
Line 6,315: |
| |- | | |- |
| | | | | |
− | {| cellpadding="2" style="background:lightcyan" | + | {| cellpadding="2" |
| | ''f''<sub>0</sub> | | | ''f''<sub>0</sub> |
| |- | | |- |
Line 6,333: |
Line 6,333: |
| |} | | |} |
| | | | | |
− | {| cellpadding="2" style="background:lightcyan" | + | {| cellpadding="2" |
| | () | | | () |
| |- | | |- |
Line 6,351: |
Line 6,351: |
| |} | | |} |
| | | | | |
− | {| cellpadding="2" style="background:lightcyan" | + | {| cellpadding="2" |
| | 0 0 0 0 | | | 0 0 0 0 |
| |- | | |- |
Line 6,369: |
Line 6,369: |
| |} | | |} |
| | | | | |
− | {| cellpadding="2" style="background:lightcyan" | + | {| cellpadding="2" |
| | () | | | () |
| |- | | |- |
Line 6,387: |
Line 6,387: |
| |} | | |} |
| | | | | |
− | {| cellpadding="2" style="background:lightcyan" | + | {| cellpadding="2" |
| | ''f''<sub>0</sub> | | | ''f''<sub>0</sub> |
| |- | | |- |
Line 6,406: |
Line 6,406: |
| |- | | |- |
| | | | | |
− | {| cellpadding="2" style="background:lightcyan" | + | {| cellpadding="2" |
| | ''f''<sub>8</sub> | | | ''f''<sub>8</sub> |
| |- | | |- |
Line 6,424: |
Line 6,424: |
| |} | | |} |
| | | | | |
− | {| cellpadding="2" style="background:lightcyan" | + | {| cellpadding="2" |
| | ''x'' ''y'' | | | ''x'' ''y'' |
| |- | | |- |
Line 6,442: |
Line 6,442: |
| |} | | |} |
| | | | | |
− | {| cellpadding="2" style="background:lightcyan" | + | {| cellpadding="2" |
| | 1 0 0 0 | | | 1 0 0 0 |
| |- | | |- |
Line 6,460: |
Line 6,460: |
| |} | | |} |
| | | | | |
− | {| cellpadding="2" style="background:lightcyan" | + | {| cellpadding="2" |
| | ''u'' ''v'' | | | ''u'' ''v'' |
| |- | | |- |
Line 6,478: |
Line 6,478: |
| |} | | |} |
| | | | | |
− | {| cellpadding="2" style="background:lightcyan" | + | {| cellpadding="2" |
| | ''f''<sub>8</sub> | | | ''f''<sub>8</sub> |
| |- | | |- |
Line 6,507: |
Line 6,507: |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" |
| | | | | |
− | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="8%" | E''G''<sub>''i''</sub> | | | width="8%" | E''G''<sub>''i''</sub> |
| | width="4%" | = | | | width="4%" | = |
Line 6,520: |
Line 6,520: |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" |
| | | | | |
− | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="8%" | D''G''<sub>''i''</sub> | | | width="8%" | D''G''<sub>''i''</sub> |
| | width="4%" | = | | | width="4%" | = |
Line 6,545: |
Line 6,545: |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" |
| | | | | |
− | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="8%" | E''f'' | | | width="8%" | E''f'' |
| | width="4%" | = | | | width="4%" | = |
Line 6,560: |
Line 6,560: |
| <br> | | <br> |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:96%" |
| | | | | |
− | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="12" cellspacing="0" style="font-weight:bold; text-align:left; width:100%" |
| | width="8%" | D''f'' | | | width="8%" | D''f'' |
| | width="4%" | = | | | width="4%" | = |
Line 6,581: |
Line 6,581: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| |+ '''Table 66-i. Computation Summary for ''f''‹''u'', ''v''› = ((''u'')(''v''))''' | | |+ '''Table 66-i. Computation Summary for ''f''‹''u'', ''v''› = ((''u'')(''v''))''' |
| | | | | |
− | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="left" border="0" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | <math>\epsilon</math>''f'' | | | <math>\epsilon</math>''f'' |
| | = || ''uv'' || <math>\cdot</math> || 1 | | | = || ''uv'' || <math>\cdot</math> || 1 |
Line 6,619: |
Line 6,619: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| |+ '''Table 66-ii. Computation Summary for g‹''u'', ''v''› = ((''u'', ''v''))''' | | |+ '''Table 66-ii. Computation Summary for g‹''u'', ''v''› = ((''u'', ''v''))''' |
| | | | | |
− | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="left" border="0" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | <math>\epsilon</math>''g'' | | | <math>\epsilon</math>''g'' |
| | = || ''uv'' || <math>\cdot</math> || 1 | | | = || ''uv'' || <math>\cdot</math> || 1 |
Line 6,658: |
Line 6,658: |
| Table 67 shows how to compute the analytic series for ''F'' = ‹''f'', ''g''› = ‹((''u'')(''v'')), ((''u'', ''v''))› in terms of coordinates, and Table 68 recaps these results in symbolic terms, agreeing with earlier derivations. | | Table 67 shows how to compute the analytic series for ''F'' = ‹''f'', ''g''› = ‹((''u'')(''v'')), ((''u'', ''v''))› in terms of coordinates, and Table 68 recaps these results in symbolic terms, agreeing with earlier derivations. |
| | | |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| |+ '''Table 67. Computation of an Analytic Series in Terms of Coordinates''' | | |+ '''Table 67. Computation of an Analytic Series in Terms of Coordinates''' |
| | | | | |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | ''u'' | | | ''u'' |
| | ''v'' | | | ''v'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | d''u'' | | | d''u'' |
| | d''v'' | | | d''v'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | ''u''<font face="courier new">’</font> | | | ''u''<font face="courier new">’</font> |
| | ''v''<font face="courier new">’</font> | | | ''v''<font face="courier new">’</font> |
Line 6,679: |
Line 6,679: |
| |- | | |- |
| | valign="top" | | | | valign="top" | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 6,693: |
Line 6,693: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 6,704: |
Line 6,704: |
| |- | | |- |
| | valign="top" | | | | valign="top" | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 1 | | | 0 || 1 |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 6,718: |
Line 6,718: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 1 | | | 0 || 1 |
| |- | | |- |
Line 6,729: |
Line 6,729: |
| |- | | |- |
| | valign="top" | | | | valign="top" | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 0 | | | 1 || 0 |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 6,743: |
Line 6,743: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 0 | | | 1 || 0 |
| |- | | |- |
Line 6,754: |
Line 6,754: |
| |- | | |- |
| | valign="top" | | | | valign="top" | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 1 | | | 1 || 1 |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 1 | | | 1 || 1 |
| |- | | |- |
Line 6,768: |
Line 6,768: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 6,779: |
Line 6,779: |
| |} | | |} |
| | | | | |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | <math>\epsilon</math>''f'' | | | <math>\epsilon</math>''f'' |
| | <math>\epsilon</math>''g'' | | | <math>\epsilon</math>''g'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | E''f'' | | | E''f'' |
| | E''g'' | | | E''g'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | D''f'' | | | D''f'' |
| | D''g'' | | | D''g'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | d''f'' | | | d''f'' |
| | d''g'' | | | d''g'' |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%" |
| | d<sup>2</sup>''f'' | | | d<sup>2</sup>''f'' |
| | d<sup>2</sup>''g'' | | | d<sup>2</sup>''g'' |
Line 6,807: |
Line 6,807: |
| |- | | |- |
| | valign="top" | | | | valign="top" | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 1 | | | 0 || 1 |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 1 | | | 0 || 1 |
| |- | | |- |
Line 6,821: |
Line 6,821: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 6,831: |
Line 6,831: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 6,841: |
Line 6,841: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 6,852: |
Line 6,852: |
| |- | | |- |
| | valign="top" | | | | valign="top" | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 0 | | | 1 || 0 |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 0 | | | 1 || 0 |
| |- | | |- |
Line 6,866: |
Line 6,866: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 6,876: |
Line 6,876: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 6,886: |
Line 6,886: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 6,897: |
Line 6,897: |
| |- | | |- |
| | valign="top" | | | | valign="top" | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 0 | | | 1 || 0 |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 0 | | | 1 || 0 |
| |- | | |- |
Line 6,911: |
Line 6,911: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 6,921: |
Line 6,921: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 6,931: |
Line 6,931: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 6,942: |
Line 6,942: |
| |- | | |- |
| | valign="top" | | | | valign="top" | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 1 | | | 1 || 1 |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 1 || 1 | | | 1 || 1 |
| |- | | |- |
Line 6,956: |
Line 6,956: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 6,966: |
Line 6,966: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 6,976: |
Line 6,976: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 || 0 | | | 0 || 0 |
| |- | | |- |
Line 6,989: |
Line 6,989: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| |+ '''Table 68. Computation of an Analytic Series in Symbolic Terms''' | | |+ '''Table 68. Computation of an Analytic Series in Symbolic Terms''' |
− | |- style="background:paleturquoise" | + | |- style="background:ghostwhite" |
| | ''u'' ''v'' | | | ''u'' ''v'' |
| | ''f'' ''g'' | | | ''f'' ''g'' |
Line 7,002: |
Line 7,002: |
| |- | | |- |
| | | | | |
− | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 0 | | | 0 0 |
| |- | | |- |
Line 7,012: |
Line 7,012: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | 0 1 | | | 0 1 |
| |- | | |- |
Line 7,022: |
Line 7,022: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | ((d''u'')(d''v'')) | | | ((d''u'')(d''v'')) |
| |- | | |- |
Line 7,032: |
Line 7,032: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | (d''u'', d''v'') | | | (d''u'', d''v'') |
| |- | | |- |
Line 7,042: |
Line 7,042: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | (d''u'', d''v'') | | | (d''u'', d''v'') |
| |- | | |- |
Line 7,052: |
Line 7,052: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | (d''u'', d''v'') | | | (d''u'', d''v'') |
| |- | | |- |
Line 7,062: |
Line 7,062: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | d''u'' d''v'' | | | d''u'' d''v'' |
| |- | | |- |
Line 7,072: |
Line 7,072: |
| |} | | |} |
| | | | | |
− | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | ( ) | | | ( ) |
| |- | | |- |
Line 7,087: |
Line 7,087: |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| | | | | |
− | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="left" border="0" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | | | | |
| |- | | |- |
Line 7,118: |
Line 7,118: |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| | | | | |
− | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="left" border="0" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
| | | | | |
| |- | | |- |
Line 7,576: |
Line 7,576: |
| [[Category:Computer Science]] | | [[Category:Computer Science]] |
| [[Category:Cybernetics]] | | [[Category:Cybernetics]] |
| + | [[Category:Differential Logic]] |
| [[Category:Discrete Systems]] | | [[Category:Discrete Systems]] |
| [[Category:Dynamical Systems]] | | [[Category:Dynamical Systems]] |