Line 47: |
Line 47: |
| ! Other Notations | | ! Other Notations |
| |- | | |- |
− | | | + | | <math>~</math> |
| | <math>\operatorname{True}</math> | | | <math>\operatorname{True}</math> |
| | <math>1\!</math> | | | <math>1\!</math> |
Line 55: |
Line 55: |
| | <math>0\!</math> | | | <math>0\!</math> |
| |- | | |- |
− | | <math>A\!</math> | + | | <math>x\!</math> |
− | | <math>A\!</math> | + | | <math>x\!</math> |
− | | <math>A\!</math> | + | | <math>x\!</math> |
| |- | | |- |
− | | <math>(A)\!</math> | + | | <math>(x)\!</math> |
− | | <math>\operatorname{Not}\ A</math> | + | | <math>\operatorname{Not}\ x</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ~A' \\
| + | x' \\ |
− | \tilde A \\ | + | \tilde{x} \\ |
− | \lnot A \\ | + | \lnot x \\ |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
− | | <math>A\ B\ C</math> | + | | <math>x\ y\ z</math> |
− | | <math>A\ \operatorname{and}\ B\ \operatorname{and}\ C</math> | + | | <math>x\ \operatorname{and}\ y\ \operatorname{and}\ z</math> |
− | | <math>A \land B \land C</math> | + | | <math>x \land y \land z</math> |
| |- | | |- |
− | | <math>((A)(B)(C))\!</math> | + | | <math>((x)(y)(z))\!</math> |
− | | <math>A\ \operatorname{or}\ B\ \operatorname{or}\ C</math> | + | | <math>x\ \operatorname{or}\ y\ \operatorname{or}\ z</math> |
− | | <math>A \lor B \lor C</math> | + | | <math>x \lor y \lor z</math> |
| |- | | |- |
− | | <math>(A (B))\!</math> | + | | <math>(x\ (y))\!</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | A\ \operatorname{implies}\ B \\
| + | x\ \operatorname{implies}\ y \\ |
− | \operatorname{If}\ A\ \operatorname{then}\ B \\ | + | \operatorname{If}\ x\ \operatorname{then}\ y \\ |
| \end{matrix}</math> | | \end{matrix}</math> |
− | | <math>A \Rightarrow B\!</math> | + | | <math>x \Rightarrow y\!</math> |
| |- | | |- |
− | | <math>(A, B)\!</math> | + | | <math>(x, y)\!</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | A\ \operatorname{not~equal~to}\ B \\
| + | x\ \operatorname{not~equal~to}\ y \\ |
− | A\ \operatorname{exclusive~or}\ B \\
| + | x\ \operatorname{exclusive~or}\ y \\ |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | A \neq B \\
| + | x \neq y \\ |
− | A + B \\
| + | x + y \\ |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
− | | <math>((A, B))\!</math> | + | | <math>((x, y))\!</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | A\ \operatorname{is~equal~to}\ B \\
| + | x\ \operatorname{is~equal~to}\ y \\ |
− | A\ \operatorname{if~and~only~if}\ B \\
| + | x\ \operatorname{if~and~only~if}\ y \\ |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | A = B \\
| + | x = y \\ |
− | A \Leftrightarrow B \\
| + | x \Leftrightarrow y \\ |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
− | | <math>(A, B, C)\!</math> | + | | <math>(x, y, z)\!</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
| \operatorname{Just~one~of} \\ | | \operatorname{Just~one~of} \\ |
− | A, B, C \\
| + | x, y, z \\ |
| \operatorname{is~false}. \\ | | \operatorname{is~false}. \\ |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | A'B~C~ & \lor \\
| + | x'y~z~ & \lor \\ |
− | A~B'C~ & \lor \\
| + | x~y'z~ & \lor \\ |
− | A~B~C' & \\
| + | x~y~z' & \\ |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
− | | <math>((A),(B),(C))\!</math> | + | | <math>((x),(y),(c))\!</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
| \operatorname{Just~one~of} \\ | | \operatorname{Just~one~of} \\ |
− | A, B, C \\
| + | x, y, z \\ |
| \operatorname{is~true}. \\ | | \operatorname{is~true}. \\ |
| & \\ | | & \\ |
| \operatorname{Partition~all} \\ | | \operatorname{Partition~all} \\ |
− | \operatorname{into}\ A, B, C. \\ | + | \operatorname{into}\ x, y, z. \\ |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | A~B'C' & \lor \\
| + | x~y'z' & \lor \\ |
− | A'B~C' & \lor \\
| + | x'y~z' & \lor \\ |
− | A'B'C~ & \\
| + | x'y'z~ & \\ |
| \end{matrix}</math> | | \end{matrix}</math> |
| |- | | |- |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | ((A, B), C) \\ | + | ((x, y), z) \\ |
| & \\ | | & \\ |
− | (A, (B, C)) \\ | + | (x, (y, z)) \\ |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
| \operatorname{Oddly~many~of} \\ | | \operatorname{Oddly~many~of} \\ |
− | A, B, C \\
| + | x, y, z \\ |
| \operatorname{are~true}. \\ | | \operatorname{are~true}. \\ |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
− | <p><math>A + B + C\!</math></p> | + | <p><math>x + y + z\!</math></p> |
| <br> | | <br> |
| <p><math>\begin{matrix} | | <p><math>\begin{matrix} |
− | A~B~C~ & \lor \\
| + | x~y~z~ & \lor \\ |
− | A~B'C' & \lor \\
| + | x~y'z' & \lor \\ |
− | A'B~C' & \lor \\
| + | x'y~z' & \lor \\ |
− | A'B'C~ & \\
| + | x'y'z~ & \\ |
| \end{matrix}</math></p> | | \end{matrix}</math></p> |
| |- | | |- |
− | | <math>(Q, (A),(B),(C))\!</math> | + | | <math>(w, (x),(y),(z))\!</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | \operatorname{Partition}\ Q \\ | + | \operatorname{Partition}\ w \\ |
− | \operatorname{into}\ A, B, C. \\ | + | \operatorname{into}\ x, y, z. \\ |
| & \\ | | & \\ |
− | \operatorname{Genus}\ Q\ \operatorname{comprises} \\ | + | \operatorname{Genus}\ w\ \operatorname{comprises} \\ |
− | \operatorname{species}\ A, B, C. \\ | + | \operatorname{species}\ x, y, z. \\ |
| \end{matrix}</math> | | \end{matrix}</math> |
| | | | | |
| <math>\begin{matrix} | | <math>\begin{matrix} |
− | Q'A'B'C' & \lor \\
| + | w'x'y'z' & \lor \\ |
− | Q~A~B'C' & \lor \\
| + | w~x~y'z' & \lor \\ |
− | Q~A'B~C' & \lor \\
| + | w~x'y~z' & \lor \\ |
− | Q~A'B'C~ & \\
| + | w~x'y'z~ & \\ |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |