Changes

MyWikiBiz, Author Your Legacy — Monday December 02, 2024
Jump to navigationJump to search
Line 28: Line 28:  
The briefest expression for logical truth is the empty word, usually denoted by <math>\varepsilon\!</math> or <math>\lambda\!</math> in formal languages, where it forms the identity element for concatenation.  To make it visible in this text, I denote it by the equivalent expression "<math>((~))\!</math>", or, especially if operating in an algebraic context, by a simple "<math>1\!</math>".  Also when working in an algebraic mode, I use the plus sign "<math>+\!</math>" for exclusive disjunction.  Thus, we may express the following paraphrases of algebraic forms:
 
The briefest expression for logical truth is the empty word, usually denoted by <math>\varepsilon\!</math> or <math>\lambda\!</math> in formal languages, where it forms the identity element for concatenation.  To make it visible in this text, I denote it by the equivalent expression "<math>((~))\!</math>", or, especially if operating in an algebraic context, by a simple "<math>1\!</math>".  Also when working in an algebraic mode, I use the plus sign "<math>+\!</math>" for exclusive disjunction.  Thus, we may express the following paraphrases of algebraic forms:
   −
:{| cellpadding="4"
+
<center>
| ''A'' + ''B''
+
<p><math>\begin{matrix}
| =
+
x + y & = & (x, y)
| (''A'', ''B'')
+
\end{matrix}</math></p>
|-
  −
| ''A'' + ''B'' + ''C''
  −
| =
  −
| ((''A'', ''B''), ''C'')
  −
| =
  −
| (''A'', (''B'', ''C''))
  −
|}
     −
One should be careful to observe that these last two expressions are not equivalent to the form (''A'',&nbsp;''B'',&nbsp;''C'').
+
<p><math>\begin{matrix}
 +
x + y + z & = & ((x, y), z) & = & (x, (y, z))
 +
\end{matrix}</math></p>
 +
</center>
 +
 
 +
It is important to note that the last expressions are not equivalent to the triple bracket expression <math>(x, y, z).\!</math>
    
<font face="courier new">
 
<font face="courier new">
12,080

edits

Navigation menu