Line 1,304: |
Line 1,304: |
| | | |
| <pre> | | <pre> |
| + | \tableofcontents |
| | | |
| + | \subsection{Taylor Series Expansion} |
| + | |
| + | \begin{center}\begin{tabular}{|c|c|c||c|c|c|c|} |
| + | \multicolumn{7}{c}{\textbf{Taylor Series Expansion $\operatorname{D}f = \operatorname{d}f + \operatorname{d}^2 f$}} \\ |
| + | \hline |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}f = \\ |
| + | \partial_x f \cdot \operatorname{d}x\ +\ \partial_y f \cdot \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}^2 f = \\ |
| + | \partial_{xy} f \cdot \operatorname{d}x\, \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\operatorname{d}f|_{x\ y}$ & |
| + | $\operatorname{d}f|_{x\ (y)}$ & |
| + | $\operatorname{d}f|_{(x)\ y}$ & |
| + | $\operatorname{d}f|_{(x)(y)}$ \\ |
| + | \hline |
| + | $f_0$ & $0$ & $0$ & $0$ & $0$ & $0$ & $0$ \\ |
| + | \hline |
| + | $\begin{matrix} |
| + | f_{1} \\ |
| + | f_{2} \\ |
| + | f_{4} \\ |
| + | f_{8} \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | (y) & \operatorname{d}x & + & (x) & \operatorname{d}y \\ |
| + | y & \operatorname{d}x & + & (x) & \operatorname{d}y \\ |
| + | (y) & \operatorname{d}x & + & x & \operatorname{d}y \\ |
| + | y & \operatorname{d}x & + & x & \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}x\ \operatorname{d}y \\ |
| + | \operatorname{d}x\ \operatorname{d}y \\ |
| + | \operatorname{d}x\ \operatorname{d}y \\ |
| + | \operatorname{d}x\ \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | 0 \\ |
| + | \operatorname{d}x \\ |
| + | \operatorname{d}y \\ |
| + | \operatorname{d}x + \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}x \\ |
| + | 0 \\ |
| + | \operatorname{d}x + \operatorname{d}y \\ |
| + | \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}y \\ |
| + | \operatorname{d}x + \operatorname{d}y \\ |
| + | 0 \\ |
| + | \operatorname{d}x \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}x + \operatorname{d}y \\ |
| + | \operatorname{d}y \\ |
| + | \operatorname{d}x \\ |
| + | 0 \\ |
| + | \end{matrix}$ \\ |
| + | \hline |
| + | $\begin{matrix} |
| + | f_{3} \\ |
| + | f_{12} \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}x \\ |
| + | \operatorname{d}x \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | 0 \\ |
| + | 0 \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}x \\ |
| + | \operatorname{d}x \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}x \\ |
| + | \operatorname{d}x \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}x \\ |
| + | \operatorname{d}x \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}x \\ |
| + | \operatorname{d}x \\ |
| + | \end{matrix}$ \\ |
| + | \hline |
| + | $\begin{matrix} |
| + | f_{6} \\ |
| + | f_{9} \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}x + \operatorname{d}y \\ |
| + | \operatorname{d}x + \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | 0 \\ |
| + | 0 \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}x + \operatorname{d}y \\ |
| + | \operatorname{d}x + \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}x + \operatorname{d}y \\ |
| + | \operatorname{d}x + \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}x + \operatorname{d}y \\ |
| + | \operatorname{d}x + \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}x + \operatorname{d}y \\ |
| + | \operatorname{d}x + \operatorname{d}y \\ |
| + | \end{matrix}$ \\ |
| + | \hline |
| + | $\begin{matrix} |
| + | f_{5} \\ |
| + | f_{10} \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}y \\ |
| + | \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | 0 \\ |
| + | 0 \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}y \\ |
| + | \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}y \\ |
| + | \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}y \\ |
| + | \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}y \\ |
| + | \operatorname{d}y \\ |
| + | \end{matrix}$ \\ |
| + | \hline |
| + | $\begin{matrix} |
| + | f_{7} \\ |
| + | f_{11} \\ |
| + | f_{13} \\ |
| + | f_{14} \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | y & \operatorname{d}x & + & x & \operatorname{d}y \\ |
| + | (y) & \operatorname{d}x & + & x & \operatorname{d}y \\ |
| + | y & \operatorname{d}x & + & (x) & \operatorname{d}y \\ |
| + | (y) & \operatorname{d}x & + & (x) & \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}x\ \operatorname{d}y \\ |
| + | \operatorname{d}x\ \operatorname{d}y \\ |
| + | \operatorname{d}x\ \operatorname{d}y \\ |
| + | \operatorname{d}x\ \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}x + \operatorname{d}y \\ |
| + | \operatorname{d}y \\ |
| + | \operatorname{d}x \\ |
| + | 0 \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}y \\ |
| + | \operatorname{d}x + \operatorname{d}y \\ |
| + | 0 \\ |
| + | \operatorname{d}x \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | \operatorname{d}x \\ |
| + | 0 \\ |
| + | \operatorname{d}x + \operatorname{d}y \\ |
| + | \operatorname{d}y \\ |
| + | \end{matrix}$ |
| + | & |
| + | $\begin{matrix} |
| + | 0 \\ |
| + | \operatorname{d}x \\ |
| + | \operatorname{d}y \\ |
| + | \operatorname{d}x + \operatorname{d}y \\ |
| + | \end{matrix}$ \\ |
| + | \hline |
| + | $f_{15}$ & $0$ & $0$ & $0$ & $0$ & $0$ & $0$ \\ |
| + | \hline |
| + | \end{tabular}\end{center} |
| </pre> | | </pre> |
| | | |