Line 985:
Line 985:
\begin{quote}\begin{tabular}{||c||c|c|c|c||}
\begin{quote}\begin{tabular}{||c||c|c|c|c||}
−
\multicolumn{5}{c}{Table A7. Detail of Calculation for $\operatorname{D}f = \operatorname{E}f + f$} \\[6pt]
+
\multicolumn{5}{c}{\textbf{Table A7. Detail of Calculation for} $\operatorname{D}f = \operatorname{E}f + f$} \\[6pt]
\hline\hline
\hline\hline
&
&
Line 991:
Line 991:
& \operatorname{E}f|_{\operatorname{d}x\ \operatorname{d}y} \\
& \operatorname{E}f|_{\operatorname{d}x\ \operatorname{d}y} \\
+ & f|_{\operatorname{d}x\ \operatorname{d}y} \\
+ & f|_{\operatorname{d}x\ \operatorname{d}y} \\
+
= & \operatorname{D}f|_{\operatorname{d}x\ \operatorname{d}y} \\
\end{array}$
\end{array}$
&
&
Line 996:
Line 997:
& \operatorname{E}f|_{\operatorname{d}x\ (\operatorname{d}y)} \\
& \operatorname{E}f|_{\operatorname{d}x\ (\operatorname{d}y)} \\
+ & f|_{\operatorname{d}x\ (\operatorname{d}y)} \\
+ & f|_{\operatorname{d}x\ (\operatorname{d}y)} \\
+
= & \operatorname{D}f|_{\operatorname{d}x\ (\operatorname{d}y)} \\
\end{array}$
\end{array}$
&
&
Line 1,001:
Line 1,003:
& \operatorname{E}f|_{(\operatorname{d}x)\ \operatorname{d}y} \\
& \operatorname{E}f|_{(\operatorname{d}x)\ \operatorname{d}y} \\
+ & f|_{(\operatorname{d}x)\ \operatorname{d}y} \\
+ & f|_{(\operatorname{d}x)\ \operatorname{d}y} \\
+
= & \operatorname{D}f|_{(\operatorname{d}x)\ \operatorname{d}y} \\
\end{array}$
\end{array}$
&
&
Line 1,006:
Line 1,009:
& \operatorname{E}f|_{(\operatorname{d}x)(\operatorname{d}y)} \\
& \operatorname{E}f|_{(\operatorname{d}x)(\operatorname{d}y)} \\
+ & f|_{(\operatorname{d}x)(\operatorname{d}y)} \\
+ & f|_{(\operatorname{d}x)(\operatorname{d}y)} \\
+
= & \operatorname{D}f|_{(\operatorname{d}x)(\operatorname{d}y)} \\
\end{array}$ \\[6pt]
\end{array}$ \\[6pt]
\hline\hline
\hline\hline
−
$f_{0}$ & $0 + 0$ & $0 + 0$ & $0 + 0$ & $0 + 0$ \\[6pt]
+
$f_{0}$ & $0 + 0 = 0$ & $0 + 0 = 0$ & $0 + 0 = 0$ & $0 + 0 = 0$ \\[6pt]
\hline\hline
\hline\hline
$f_{1}$
$f_{1}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& x & y & \operatorname{d}x & \operatorname{d}y \\
+
& x\ y & \operatorname{d}x & \operatorname{d}y \\
−
+ & (x) & (y) & \operatorname{d}x & \operatorname{d}y \\
+
+ & (x)(y) & \operatorname{d}x & \operatorname{d}y \\
+
= & ((x, y)) & \operatorname{d}x & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& x & (y) & \operatorname{d}x & (\operatorname{d}y) \\
+
& x\ (y) & \operatorname{d}x & (\operatorname{d}y) \\
−
+ & (x) & (y) & \operatorname{d}x & (\operatorname{d}y) \\
+
+ & (x) (y) & \operatorname{d}x & (\operatorname{d}y) \\
+
= & (y) & \operatorname{d}x & (\operatorname{d}y) \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x) & y & (\operatorname{d}x) & \operatorname{d}y \\
+
& (x)\ y & (\operatorname{d}x) & \operatorname{d}y \\
−
+ & (x) & (y) & (\operatorname{d}x) & \operatorname{d}y \\
+
+ & (x) (y) & (\operatorname{d}x) & \operatorname{d}y \\
+
= & (x) & (\operatorname{d}x) & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x) & (y) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
& (x)(y) & (\operatorname{d}x) & (\operatorname{d}y) \\
−
+ & (x) & (y) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
+ & (x)(y) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
= & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\
\end{smallmatrix}$ \\[6pt]
\end{smallmatrix}$ \\[6pt]
\hline
\hline
Line 1,035:
Line 1,043:
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& x & (y) & \operatorname{d}x & \operatorname{d}y \\
+
& x\ (y) & \operatorname{d}x & \operatorname{d}y \\
−
+ & (x) & y & \operatorname{d}x & \operatorname{d}y \\
+
+ & (x)\ y & \operatorname{d}x & \operatorname{d}y \\
+
= & (x, y) & \operatorname{d}x & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& x & y & \operatorname{d}x & (\operatorname{d}y) \\
+
& x\ y & \operatorname{d}x & (\operatorname{d}y) \\
−
+ & (x) & y & \operatorname{d}x & (\operatorname{d}y) \\
+
+ & (x)\ y & \operatorname{d}x & (\operatorname{d}y) \\
+
= & y & \operatorname{d}x & (\operatorname{d}y) \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x) & (y) & (\operatorname{d}x) & \operatorname{d}y \\
+
& (x) (y) & (\operatorname{d}x) & \operatorname{d}y \\
−
+ & (x) & y & (\operatorname{d}x) & \operatorname{d}y \\
+
+ & (x)\ y & (\operatorname{d}x) & \operatorname{d}y \\
+
= & (x) & (\operatorname{d}x) & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x) & y & (\operatorname{d}x) & (\operatorname{d}y) \\
+
& (x)\ y & (\operatorname{d}x) & (\operatorname{d}y) \\
−
+ & (x) & y & (\operatorname{d}x) & (\operatorname{d}y) \\
+
+ & (x)\ y & (\operatorname{d}x) & (\operatorname{d}y) \\
+
= & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\
\end{smallmatrix}$ \\[6pt]
\end{smallmatrix}$ \\[6pt]
\hline
\hline
Line 1,057:
Line 1,069:
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x) & y & \operatorname{d}x & \operatorname{d}y \\
+
& (x)\ y & \operatorname{d}x & \operatorname{d}y \\
−
+ & x & (y) & \operatorname{d}x & \operatorname{d}y \\
+
+ & x\ (y) & \operatorname{d}x & \operatorname{d}y \\
+
= & (x, y) & \operatorname{d}x & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x) & (y) & \operatorname{d}x & (\operatorname{d}y) \\
+
& (x) (y) & \operatorname{d}x & (\operatorname{d}y) \\
−
+ & x & (y) & \operatorname{d}x & (\operatorname{d}y) \\
+
+ & x\ (y) & \operatorname{d}x & (\operatorname{d}y) \\
+
= & (y) & \operatorname{d}x & (\operatorname{d}y) \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& x & y & (\operatorname{d}x) & \operatorname{d}y \\
+
& x\ y & (\operatorname{d}x) & \operatorname{d}y \\
−
+ & x & (y) & (\operatorname{d}x) & \operatorname{d}y \\
+
+ & x\ (y) & (\operatorname{d}x) & \operatorname{d}y \\
+
= & x & (\operatorname{d}x) & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& x & (y) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
& x\ (y) & (\operatorname{d}x) & (\operatorname{d}y) \\
−
+ & x & (y) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
+ & x\ (y) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
= & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\
\end{smallmatrix}$ \\[6pt]
\end{smallmatrix}$ \\[6pt]
\hline
\hline
Line 1,079:
Line 1,095:
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x) & (y) & \operatorname{d}x & \operatorname{d}y \\
+
& (x)(y) & \operatorname{d}x & \operatorname{d}y \\
−
+ & x & y & \operatorname{d}x & \operatorname{d}y \\
+
+ & x\ y & \operatorname{d}x & \operatorname{d}y \\
+
= & ((x, y)) & \operatorname{d}x & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x) & y & \operatorname{d}x & (\operatorname{d}y) \\
+
& (x)\ y & \operatorname{d}x & (\operatorname{d}y) \\
−
+ & x & y & \operatorname{d}x & (\operatorname{d}y) \\
+
+ & x\ y & \operatorname{d}x & (\operatorname{d}y) \\
+
= & y & \operatorname{d}x & (\operatorname{d}y) \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& x & (y) & (\operatorname{d}x) & \operatorname{d}y \\
+
& x\ (y) & (\operatorname{d}x) & \operatorname{d}y \\
−
+ & x & y & (\operatorname{d}x) & \operatorname{d}y \\
+
+ & x\ y & (\operatorname{d}x) & \operatorname{d}y \\
+
= & x & (\operatorname{d}x) & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& x & y & (\operatorname{d}x) & (\operatorname{d}y) \\
+
& x\ y & (\operatorname{d}x) & (\operatorname{d}y) \\
−
+ & x & y & (\operatorname{d}x) & (\operatorname{d}y) \\
+
+ & x\ y & (\operatorname{d}x) & (\operatorname{d}y) \\
+
= & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\
\end{smallmatrix}$ \\[6pt]
\end{smallmatrix}$ \\[6pt]
\hline\hline
\hline\hline
Line 1,101:
Line 1,121:
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& x & & \operatorname{d}x & \operatorname{d}y \\
+
& x & \operatorname{d}x & \operatorname{d}y \\
−
+ & (x) & & \operatorname{d}x & \operatorname{d}y \\
+
+ & (x) & \operatorname{d}x & \operatorname{d}y \\
+
= & 1 & \operatorname{d}x & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& x & & \operatorname{d}x & (\operatorname{d}y) \\
+
& x & \operatorname{d}x & (\operatorname{d}y) \\
−
+ & (x) & & \operatorname{d}x & (\operatorname{d}y) \\
+
+ & (x) & \operatorname{d}x & (\operatorname{d}y) \\
+
= & 1 & \operatorname{d}x & (\operatorname{d}y) \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x) & & (\operatorname{d}x) & \operatorname{d}y \\
+
& (x) & (\operatorname{d}x) & \operatorname{d}y \\
−
+ & (x) & & (\operatorname{d}x) & \operatorname{d}y \\
+
+ & (x) & (\operatorname{d}x) & \operatorname{d}y \\
+
= & 0 & (\operatorname{d}x) & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x) & & (\operatorname{d}x) & (\operatorname{d}y) \\
+
& (x) & (\operatorname{d}x) & (\operatorname{d}y) \\
−
+ & (x) & & (\operatorname{d}x) & (\operatorname{d}y) \\
+
+ & (x) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
= & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\
\end{smallmatrix}$ \\[6pt]
\end{smallmatrix}$ \\[6pt]
\hline
\hline
Line 1,123:
Line 1,147:
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x) & & \operatorname{d}x & \operatorname{d}y \\
+
& (x) & \operatorname{d}x & \operatorname{d}y \\
−
+ & x & & \operatorname{d}x & \operatorname{d}y \\
+
+ & x & \operatorname{d}x & \operatorname{d}y \\
+
= & 1 & \operatorname{d}x & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x) & & \operatorname{d}x & (\operatorname{d}y) \\
+
& (x) & \operatorname{d}x & (\operatorname{d}y) \\
−
+ & x & & \operatorname{d}x & (\operatorname{d}y) \\
+
+ & x & \operatorname{d}x & (\operatorname{d}y) \\
+
= & 1 & \operatorname{d}x & (\operatorname{d}y) \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& x & & (\operatorname{d}x) & \operatorname{d}y \\
+
& x & (\operatorname{d}x) & \operatorname{d}y \\
−
+ & x & & (\operatorname{d}x) & \operatorname{d}y \\
+
+ & x & (\operatorname{d}x) & \operatorname{d}y \\
+
= & 0 & (\operatorname{d}x) & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& x & & (\operatorname{d}x) & (\operatorname{d}y) \\
+
& x & (\operatorname{d}x) & (\operatorname{d}y) \\
−
+ & x & & (\operatorname{d}x) & (\operatorname{d}y) \\
+
+ & x & (\operatorname{d}x) & (\operatorname{d}y) \\
+
= & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\
\end{smallmatrix}$ \\[6pt]
\end{smallmatrix}$ \\[6pt]
\hline\hline
\hline\hline
Line 1,145:
Line 1,173:
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x, & y) & \operatorname{d}x & \operatorname{d}y \\
+
& (x, y) & \operatorname{d}x & \operatorname{d}y \\
−
+ & (x, & y) & \operatorname{d}x & \operatorname{d}y \\
+
+ & (x, y) & \operatorname{d}x & \operatorname{d}y \\
+
= & 0 & \operatorname{d}x & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& ((x, & y)) & \operatorname{d}x & (\operatorname{d}y) \\
+
& ((x, y)) & \operatorname{d}x & (\operatorname{d}y) \\
−
+ & (x, & y) & \operatorname{d}x & (\operatorname{d}y) \\
+
+ & (x, y) & \operatorname{d}x & (\operatorname{d}y) \\
+
= & 1 & \operatorname{d}x & (\operatorname{d}y) \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& ((x, & y)) & (\operatorname{d}x) & \operatorname{d}y \\
+
& ((x, y)) & (\operatorname{d}x) & \operatorname{d}y \\
−
+ & (x, & y) & (\operatorname{d}x) & \operatorname{d}y \\
+
+ & (x, y) & (\operatorname{d}x) & \operatorname{d}y \\
+
= & 1 & (\operatorname{d}x) & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x, & y) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
& (x, y) & (\operatorname{d}x) & (\operatorname{d}y) \\
−
+ & (x, & y) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
+ & (x, y) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
= & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\
\end{smallmatrix}$ \\[6pt]
\end{smallmatrix}$ \\[6pt]
\hline
\hline
Line 1,167:
Line 1,199:
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& ((x, & y)) & \operatorname{d}x & \operatorname{d}y \\
+
& ((x, y)) & \operatorname{d}x & \operatorname{d}y \\
−
+ & ((x, & y)) & \operatorname{d}x & \operatorname{d}y \\
+
+ & ((x, y)) & \operatorname{d}x & \operatorname{d}y \\
+
= & 0 & \operatorname{d}x & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x, & y) & \operatorname{d}x & (\operatorname{d}y) \\
+
& (x, y) & \operatorname{d}x & (\operatorname{d}y) \\
−
+ & ((x, & y)) & \operatorname{d}x & (\operatorname{d}y) \\
+
+ & ((x, y)) & \operatorname{d}x & (\operatorname{d}y) \\
+
= & 1 & \operatorname{d}x & (\operatorname{d}y) \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x, & y) & (\operatorname{d}x) & \operatorname{d}y \\
+
& (x, y) & (\operatorname{d}x) & \operatorname{d}y \\
−
+ & ((x, & y)) & (\operatorname{d}x) & \operatorname{d}y \\
+
+ & ((x, y)) & (\operatorname{d}x) & \operatorname{d}y \\
+
= & 1 & (\operatorname{d}x) & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& ((x, & y)) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
& ((x, y)) & (\operatorname{d}x) & (\operatorname{d}y) \\
−
+ & ((x, & y)) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
+ & ((x, y)) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
= & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\
\end{smallmatrix}$ \\[6pt]
\end{smallmatrix}$ \\[6pt]
\hline\hline
\hline\hline
Line 1,189:
Line 1,225:
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& & y & \operatorname{d}x & \operatorname{d}y \\
+
& y & \operatorname{d}x & \operatorname{d}y \\
−
+ & & (y) & \operatorname{d}x & \operatorname{d}y \\
+
+ & (y) & \operatorname{d}x & \operatorname{d}y \\
+
= & 1 & \operatorname{d}x & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& & (y) & \operatorname{d}x & (\operatorname{d}y) \\
+
& (y) & \operatorname{d}x & (\operatorname{d}y) \\
−
+ & & (y) & \operatorname{d}x & (\operatorname{d}y) \\
+
+ & (y) & \operatorname{d}x & (\operatorname{d}y) \\
+
= & 0 & \operatorname{d}x & (\operatorname{d}y) \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& & y & (\operatorname{d}x) & \operatorname{d}y \\
+
& y & (\operatorname{d}x) & \operatorname{d}y \\
−
+ & & (y) & (\operatorname{d}x) & \operatorname{d}y \\
+
+ & (y) & (\operatorname{d}x) & \operatorname{d}y \\
+
= & 1 & (\operatorname{d}x) & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& & (y) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
& (y) & (\operatorname{d}x) & (\operatorname{d}y) \\
−
+ & & (y) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
+ & (y) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
= & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\
\end{smallmatrix}$ \\[6pt]
\end{smallmatrix}$ \\[6pt]
\hline
\hline
Line 1,211:
Line 1,251:
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& & (y) & \operatorname{d}x & \operatorname{d}y \\
+
& (y) & \operatorname{d}x & \operatorname{d}y \\
−
+ & & y & \operatorname{d}x & \operatorname{d}y \\
+
+ & y & \operatorname{d}x & \operatorname{d}y \\
+
= & 1 & \operatorname{d}x & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& & y & \operatorname{d}x & (\operatorname{d}y) \\
+
& y & \operatorname{d}x & (\operatorname{d}y) \\
−
+ & & y & \operatorname{d}x & (\operatorname{d}y) \\
+
+ & y & \operatorname{d}x & (\operatorname{d}y) \\
+
= & 0 & \operatorname{d}x & (\operatorname{d}y) \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& & (y) & (\operatorname{d}x) & \operatorname{d}y \\
+
& (y) & (\operatorname{d}x) & \operatorname{d}y \\
−
+ & & y & (\operatorname{d}x) & \operatorname{d}y \\
+
+ & y & (\operatorname{d}x) & \operatorname{d}y \\
+
= & 1 & (\operatorname{d}x) & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& & y & (\operatorname{d}x) & (\operatorname{d}y) \\
+
& y & (\operatorname{d}x) & (\operatorname{d}y) \\
−
+ & & y & (\operatorname{d}x) & (\operatorname{d}y) \\
+
+ & y & (\operatorname{d}x) & (\operatorname{d}y) \\
+
= & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\
\end{smallmatrix}$ \\[6pt]
\end{smallmatrix}$ \\[6pt]
\hline\hline
\hline\hline
Line 1,233:
Line 1,277:
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& ((x) & (y)) & \operatorname{d}x & \operatorname{d}y \\
+
& ((x)(y)) & \operatorname{d}x & \operatorname{d}y \\
−
+ & (x & y) & \operatorname{d}x & \operatorname{d}y \\
+
+ & (x\ y) & \operatorname{d}x & \operatorname{d}y \\
+
= & ((x, y)) & \operatorname{d}x & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& ((x) & y) & \operatorname{d}x & (\operatorname{d}y) \\
+
& ((x)\ y) & \operatorname{d}x & (\operatorname{d}y) \\
−
+ & (x & y) & \operatorname{d}x & (\operatorname{d}y) \\
+
+ & (x\ y) & \operatorname{d}x & (\operatorname{d}y) \\
+
= & y & \operatorname{d}x & (\operatorname{d}y) \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x & (y)) & (\operatorname{d}x) & \operatorname{d}y \\
+
& (x\ (y)) & (\operatorname{d}x) & \operatorname{d}y \\
−
+ & (x & y) & (\operatorname{d}x) & \operatorname{d}y \\
+
+ & (x\ y) & (\operatorname{d}x) & \operatorname{d}y \\
+
= & x & (\operatorname{d}x) & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x & y) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
& (x\ y) & (\operatorname{d}x) & (\operatorname{d}y) \\
−
+ & (x & y) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
+ & (x\ y) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
= & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\
\end{smallmatrix}$ \\[6pt]
\end{smallmatrix}$ \\[6pt]
\hline
\hline
Line 1,255:
Line 1,303:
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& ((x) & y) & \operatorname{d}x & \operatorname{d}y \\
+
& ((x)\ y) & \operatorname{d}x & \operatorname{d}y \\
−
+ & (x & (y)) & \operatorname{d}x & \operatorname{d}y \\
+
+ & (x\ (y)) & \operatorname{d}x & \operatorname{d}y \\
+
= & (x, y) & \operatorname{d}x & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& ((x) & (y)) & \operatorname{d}x & (\operatorname{d}y) \\
+
& ((x) (y)) & \operatorname{d}x & (\operatorname{d}y) \\
−
+ & (x & (y)) & \operatorname{d}x & (\operatorname{d}y) \\
+
+ & (x\ (y)) & \operatorname{d}x & (\operatorname{d}y) \\
+
= & (y) & \operatorname{d}x & (\operatorname{d}y) \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x & y) & (\operatorname{d}x) & \operatorname{d}y \\
+
& (x\ y) & (\operatorname{d}x) & \operatorname{d}y \\
−
+ & (x & (y)) & (\operatorname{d}x) & \operatorname{d}y \\
+
+ & (x\ (y)) & (\operatorname{d}x) & \operatorname{d}y \\
+
= & x & (\operatorname{d}x) & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x & (y)) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
& (x\ (y)) & (\operatorname{d}x) & (\operatorname{d}y) \\
−
+ & (x & (y)) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
+ & (x\ (y)) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
= & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\
\end{smallmatrix}$ \\[6pt]
\end{smallmatrix}$ \\[6pt]
\hline
\hline
Line 1,277:
Line 1,329:
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x & (y)) & \operatorname{d}x & \operatorname{d}y \\
+
& (x\ (y)) & \operatorname{d}x & \operatorname{d}y \\
−
+ & ((x) & y) & \operatorname{d}x & \operatorname{d}y \\
+
+ & ((x)\ y) & \operatorname{d}x & \operatorname{d}y \\
+
= & (x, y) & \operatorname{d}x & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x & y) & \operatorname{d}x & (\operatorname{d}y) \\
+
& (x\ y) & \operatorname{d}x & (\operatorname{d}y) \\
−
+ & ((x) & y) & \operatorname{d}x & (\operatorname{d}y) \\
+
+ & ((x)\ y) & \operatorname{d}x & (\operatorname{d}y) \\
+
= & y & \operatorname{d}x & (\operatorname{d}y) \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& ((x) & (y)) & (\operatorname{d}x) & \operatorname{d}y \\
+
& ((x) (y)) & (\operatorname{d}x) & \operatorname{d}y \\
−
+ & ((x) & y) & (\operatorname{d}x) & \operatorname{d}y \\
+
+ & ((x)\ y) & (\operatorname{d}x) & \operatorname{d}y \\
+
= & (x) & (\operatorname{d}x) & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& ((x) & y) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
& ((x)\ y) & (\operatorname{d}x) & (\operatorname{d}y) \\
−
+ & ((x) & y) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
+ & ((x)\ y) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
= & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\
\end{smallmatrix}$ \\[6pt]
\end{smallmatrix}$ \\[6pt]
\hline
\hline
Line 1,299:
Line 1,355:
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x & y) & \operatorname{d}x & \operatorname{d}y \\
+
& (x\ y) & \operatorname{d}x & \operatorname{d}y \\
−
+ & ((x) & (y)) & \operatorname{d}x & \operatorname{d}y \\
+
+ & ((x)(y)) & \operatorname{d}x & \operatorname{d}y \\
+
= & ((x, y)) & \operatorname{d}x & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& (x & (y)) & \operatorname{d}x & (\operatorname{d}y) \\
+
& (x\ (y)) & \operatorname{d}x & (\operatorname{d}y) \\
−
+ & ((x) & (y)) & \operatorname{d}x & (\operatorname{d}y) \\
+
+ & ((x) (y)) & \operatorname{d}x & (\operatorname{d}y) \\
+
= & (y) & \operatorname{d}x & (\operatorname{d}y) \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& ((x) & y) & (\operatorname{d}x) & \operatorname{d}y \\
+
& ((x)\ y) & (\operatorname{d}x) & \operatorname{d}y \\
−
+ & ((x) & (y)) & (\operatorname{d}x) & \operatorname{d}y \\
+
+ & ((x) (y)) & (\operatorname{d}x) & \operatorname{d}y \\
+
= & (x) & (\operatorname{d}x) & \operatorname{d}y \\
\end{smallmatrix}$
\end{smallmatrix}$
&
&
$\begin{smallmatrix}
$\begin{smallmatrix}
−
& ((x) & (y)) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
& ((x)(y)) & (\operatorname{d}x) & (\operatorname{d}y) \\
−
+ & ((x) & (y)) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
+ & ((x)(y)) & (\operatorname{d}x) & (\operatorname{d}y) \\
+
= & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\
\end{smallmatrix}$ \\[6pt]
\end{smallmatrix}$ \\[6pt]
\hline\hline
\hline\hline
−
$f_{15}$ & $1 + 1$ & $1 + 1$ & $1 + 1$ & $1 + 1$ \\[6pt]
+
$f_{15}$ & $1 + 1 = 0$ & $1 + 1 = 0$ & $1 + 1 = 0$ & $1 + 1 = 0$ \\[6pt]
\hline\hline
\hline\hline
\end{tabular}\end{quote}
\end{tabular}\end{quote}