Line 985: |
Line 985: |
| | | |
| \begin{quote}\begin{tabular}{||c||c|c|c|c||} | | \begin{quote}\begin{tabular}{||c||c|c|c|c||} |
− | \multicolumn{5}{c}{Table A7. Detail of Calculation for $\operatorname{D}f = \operatorname{E}f + f$} \\[6pt] | + | \multicolumn{5}{c}{\textbf{Table A7. Detail of Calculation for} $\operatorname{D}f = \operatorname{E}f + f$} \\[6pt] |
| \hline\hline | | \hline\hline |
| & | | & |
Line 991: |
Line 991: |
| & \operatorname{E}f|_{\operatorname{d}x\ \operatorname{d}y} \\ | | & \operatorname{E}f|_{\operatorname{d}x\ \operatorname{d}y} \\ |
| + & f|_{\operatorname{d}x\ \operatorname{d}y} \\ | | + & f|_{\operatorname{d}x\ \operatorname{d}y} \\ |
| + | = & \operatorname{D}f|_{\operatorname{d}x\ \operatorname{d}y} \\ |
| \end{array}$ | | \end{array}$ |
| & | | & |
Line 996: |
Line 997: |
| & \operatorname{E}f|_{\operatorname{d}x\ (\operatorname{d}y)} \\ | | & \operatorname{E}f|_{\operatorname{d}x\ (\operatorname{d}y)} \\ |
| + & f|_{\operatorname{d}x\ (\operatorname{d}y)} \\ | | + & f|_{\operatorname{d}x\ (\operatorname{d}y)} \\ |
| + | = & \operatorname{D}f|_{\operatorname{d}x\ (\operatorname{d}y)} \\ |
| \end{array}$ | | \end{array}$ |
| & | | & |
Line 1,001: |
Line 1,003: |
| & \operatorname{E}f|_{(\operatorname{d}x)\ \operatorname{d}y} \\ | | & \operatorname{E}f|_{(\operatorname{d}x)\ \operatorname{d}y} \\ |
| + & f|_{(\operatorname{d}x)\ \operatorname{d}y} \\ | | + & f|_{(\operatorname{d}x)\ \operatorname{d}y} \\ |
| + | = & \operatorname{D}f|_{(\operatorname{d}x)\ \operatorname{d}y} \\ |
| \end{array}$ | | \end{array}$ |
| & | | & |
Line 1,006: |
Line 1,009: |
| & \operatorname{E}f|_{(\operatorname{d}x)(\operatorname{d}y)} \\ | | & \operatorname{E}f|_{(\operatorname{d}x)(\operatorname{d}y)} \\ |
| + & f|_{(\operatorname{d}x)(\operatorname{d}y)} \\ | | + & f|_{(\operatorname{d}x)(\operatorname{d}y)} \\ |
| + | = & \operatorname{D}f|_{(\operatorname{d}x)(\operatorname{d}y)} \\ |
| \end{array}$ \\[6pt] | | \end{array}$ \\[6pt] |
| \hline\hline | | \hline\hline |
− | $f_{0}$ & $0 + 0$ & $0 + 0$ & $0 + 0$ & $0 + 0$ \\[6pt] | + | $f_{0}$ & $0 + 0 = 0$ & $0 + 0 = 0$ & $0 + 0 = 0$ & $0 + 0 = 0$ \\[6pt] |
| \hline\hline | | \hline\hline |
| $f_{1}$ | | $f_{1}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & x & y & \operatorname{d}x & \operatorname{d}y \\ | + | & x\ y & \operatorname{d}x & \operatorname{d}y \\ |
− | + & (x) & (y) & \operatorname{d}x & \operatorname{d}y \\ | + | + & (x)(y) & \operatorname{d}x & \operatorname{d}y \\ |
| + | = & ((x, y)) & \operatorname{d}x & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & x & (y) & \operatorname{d}x & (\operatorname{d}y) \\ | + | & x\ (y) & \operatorname{d}x & (\operatorname{d}y) \\ |
− | + & (x) & (y) & \operatorname{d}x & (\operatorname{d}y) \\ | + | + & (x) (y) & \operatorname{d}x & (\operatorname{d}y) \\ |
| + | = & (y) & \operatorname{d}x & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x) & y & (\operatorname{d}x) & \operatorname{d}y \\ | + | & (x)\ y & (\operatorname{d}x) & \operatorname{d}y \\ |
− | + & (x) & (y) & (\operatorname{d}x) & \operatorname{d}y \\ | + | + & (x) (y) & (\operatorname{d}x) & \operatorname{d}y \\ |
| + | = & (x) & (\operatorname{d}x) & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x) & (y) & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | & (x)(y) & (\operatorname{d}x) & (\operatorname{d}y) \\ |
− | + & (x) & (y) & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | + & (x)(y) & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| + | = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ \\[6pt] | | \end{smallmatrix}$ \\[6pt] |
| \hline | | \hline |
Line 1,035: |
Line 1,043: |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & x & (y) & \operatorname{d}x & \operatorname{d}y \\ | + | & x\ (y) & \operatorname{d}x & \operatorname{d}y \\ |
− | + & (x) & y & \operatorname{d}x & \operatorname{d}y \\ | + | + & (x)\ y & \operatorname{d}x & \operatorname{d}y \\ |
| + | = & (x, y) & \operatorname{d}x & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & x & y & \operatorname{d}x & (\operatorname{d}y) \\ | + | & x\ y & \operatorname{d}x & (\operatorname{d}y) \\ |
− | + & (x) & y & \operatorname{d}x & (\operatorname{d}y) \\ | + | + & (x)\ y & \operatorname{d}x & (\operatorname{d}y) \\ |
| + | = & y & \operatorname{d}x & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x) & (y) & (\operatorname{d}x) & \operatorname{d}y \\ | + | & (x) (y) & (\operatorname{d}x) & \operatorname{d}y \\ |
− | + & (x) & y & (\operatorname{d}x) & \operatorname{d}y \\ | + | + & (x)\ y & (\operatorname{d}x) & \operatorname{d}y \\ |
| + | = & (x) & (\operatorname{d}x) & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x) & y & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | & (x)\ y & (\operatorname{d}x) & (\operatorname{d}y) \\ |
− | + & (x) & y & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | + & (x)\ y & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| + | = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ \\[6pt] | | \end{smallmatrix}$ \\[6pt] |
| \hline | | \hline |
Line 1,057: |
Line 1,069: |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x) & y & \operatorname{d}x & \operatorname{d}y \\ | + | & (x)\ y & \operatorname{d}x & \operatorname{d}y \\ |
− | + & x & (y) & \operatorname{d}x & \operatorname{d}y \\ | + | + & x\ (y) & \operatorname{d}x & \operatorname{d}y \\ |
| + | = & (x, y) & \operatorname{d}x & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x) & (y) & \operatorname{d}x & (\operatorname{d}y) \\ | + | & (x) (y) & \operatorname{d}x & (\operatorname{d}y) \\ |
− | + & x & (y) & \operatorname{d}x & (\operatorname{d}y) \\ | + | + & x\ (y) & \operatorname{d}x & (\operatorname{d}y) \\ |
| + | = & (y) & \operatorname{d}x & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & x & y & (\operatorname{d}x) & \operatorname{d}y \\ | + | & x\ y & (\operatorname{d}x) & \operatorname{d}y \\ |
− | + & x & (y) & (\operatorname{d}x) & \operatorname{d}y \\ | + | + & x\ (y) & (\operatorname{d}x) & \operatorname{d}y \\ |
| + | = & x & (\operatorname{d}x) & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & x & (y) & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | & x\ (y) & (\operatorname{d}x) & (\operatorname{d}y) \\ |
− | + & x & (y) & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | + & x\ (y) & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| + | = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ \\[6pt] | | \end{smallmatrix}$ \\[6pt] |
| \hline | | \hline |
Line 1,079: |
Line 1,095: |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x) & (y) & \operatorname{d}x & \operatorname{d}y \\ | + | & (x)(y) & \operatorname{d}x & \operatorname{d}y \\ |
− | + & x & y & \operatorname{d}x & \operatorname{d}y \\ | + | + & x\ y & \operatorname{d}x & \operatorname{d}y \\ |
| + | = & ((x, y)) & \operatorname{d}x & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x) & y & \operatorname{d}x & (\operatorname{d}y) \\ | + | & (x)\ y & \operatorname{d}x & (\operatorname{d}y) \\ |
− | + & x & y & \operatorname{d}x & (\operatorname{d}y) \\ | + | + & x\ y & \operatorname{d}x & (\operatorname{d}y) \\ |
| + | = & y & \operatorname{d}x & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & x & (y) & (\operatorname{d}x) & \operatorname{d}y \\ | + | & x\ (y) & (\operatorname{d}x) & \operatorname{d}y \\ |
− | + & x & y & (\operatorname{d}x) & \operatorname{d}y \\ | + | + & x\ y & (\operatorname{d}x) & \operatorname{d}y \\ |
| + | = & x & (\operatorname{d}x) & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & x & y & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | & x\ y & (\operatorname{d}x) & (\operatorname{d}y) \\ |
− | + & x & y & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | + & x\ y & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| + | = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ \\[6pt] | | \end{smallmatrix}$ \\[6pt] |
| \hline\hline | | \hline\hline |
Line 1,101: |
Line 1,121: |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & x & & \operatorname{d}x & \operatorname{d}y \\ | + | & x & \operatorname{d}x & \operatorname{d}y \\ |
− | + & (x) & & \operatorname{d}x & \operatorname{d}y \\ | + | + & (x) & \operatorname{d}x & \operatorname{d}y \\ |
| + | = & 1 & \operatorname{d}x & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & x & & \operatorname{d}x & (\operatorname{d}y) \\ | + | & x & \operatorname{d}x & (\operatorname{d}y) \\ |
− | + & (x) & & \operatorname{d}x & (\operatorname{d}y) \\ | + | + & (x) & \operatorname{d}x & (\operatorname{d}y) \\ |
| + | = & 1 & \operatorname{d}x & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x) & & (\operatorname{d}x) & \operatorname{d}y \\ | + | & (x) & (\operatorname{d}x) & \operatorname{d}y \\ |
− | + & (x) & & (\operatorname{d}x) & \operatorname{d}y \\ | + | + & (x) & (\operatorname{d}x) & \operatorname{d}y \\ |
| + | = & 0 & (\operatorname{d}x) & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x) & & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | & (x) & (\operatorname{d}x) & (\operatorname{d}y) \\ |
− | + & (x) & & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | + & (x) & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| + | = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ \\[6pt] | | \end{smallmatrix}$ \\[6pt] |
| \hline | | \hline |
Line 1,123: |
Line 1,147: |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x) & & \operatorname{d}x & \operatorname{d}y \\ | + | & (x) & \operatorname{d}x & \operatorname{d}y \\ |
− | + & x & & \operatorname{d}x & \operatorname{d}y \\ | + | + & x & \operatorname{d}x & \operatorname{d}y \\ |
| + | = & 1 & \operatorname{d}x & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x) & & \operatorname{d}x & (\operatorname{d}y) \\ | + | & (x) & \operatorname{d}x & (\operatorname{d}y) \\ |
− | + & x & & \operatorname{d}x & (\operatorname{d}y) \\ | + | + & x & \operatorname{d}x & (\operatorname{d}y) \\ |
| + | = & 1 & \operatorname{d}x & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & x & & (\operatorname{d}x) & \operatorname{d}y \\ | + | & x & (\operatorname{d}x) & \operatorname{d}y \\ |
− | + & x & & (\operatorname{d}x) & \operatorname{d}y \\ | + | + & x & (\operatorname{d}x) & \operatorname{d}y \\ |
| + | = & 0 & (\operatorname{d}x) & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & x & & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | & x & (\operatorname{d}x) & (\operatorname{d}y) \\ |
− | + & x & & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | + & x & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| + | = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ \\[6pt] | | \end{smallmatrix}$ \\[6pt] |
| \hline\hline | | \hline\hline |
Line 1,145: |
Line 1,173: |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x, & y) & \operatorname{d}x & \operatorname{d}y \\ | + | & (x, y) & \operatorname{d}x & \operatorname{d}y \\ |
− | + & (x, & y) & \operatorname{d}x & \operatorname{d}y \\ | + | + & (x, y) & \operatorname{d}x & \operatorname{d}y \\ |
| + | = & 0 & \operatorname{d}x & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & ((x, & y)) & \operatorname{d}x & (\operatorname{d}y) \\ | + | & ((x, y)) & \operatorname{d}x & (\operatorname{d}y) \\ |
− | + & (x, & y) & \operatorname{d}x & (\operatorname{d}y) \\ | + | + & (x, y) & \operatorname{d}x & (\operatorname{d}y) \\ |
| + | = & 1 & \operatorname{d}x & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & ((x, & y)) & (\operatorname{d}x) & \operatorname{d}y \\ | + | & ((x, y)) & (\operatorname{d}x) & \operatorname{d}y \\ |
− | + & (x, & y) & (\operatorname{d}x) & \operatorname{d}y \\ | + | + & (x, y) & (\operatorname{d}x) & \operatorname{d}y \\ |
| + | = & 1 & (\operatorname{d}x) & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x, & y) & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | & (x, y) & (\operatorname{d}x) & (\operatorname{d}y) \\ |
− | + & (x, & y) & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | + & (x, y) & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| + | = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ \\[6pt] | | \end{smallmatrix}$ \\[6pt] |
| \hline | | \hline |
Line 1,167: |
Line 1,199: |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & ((x, & y)) & \operatorname{d}x & \operatorname{d}y \\ | + | & ((x, y)) & \operatorname{d}x & \operatorname{d}y \\ |
− | + & ((x, & y)) & \operatorname{d}x & \operatorname{d}y \\ | + | + & ((x, y)) & \operatorname{d}x & \operatorname{d}y \\ |
| + | = & 0 & \operatorname{d}x & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x, & y) & \operatorname{d}x & (\operatorname{d}y) \\ | + | & (x, y) & \operatorname{d}x & (\operatorname{d}y) \\ |
− | + & ((x, & y)) & \operatorname{d}x & (\operatorname{d}y) \\ | + | + & ((x, y)) & \operatorname{d}x & (\operatorname{d}y) \\ |
| + | = & 1 & \operatorname{d}x & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x, & y) & (\operatorname{d}x) & \operatorname{d}y \\ | + | & (x, y) & (\operatorname{d}x) & \operatorname{d}y \\ |
− | + & ((x, & y)) & (\operatorname{d}x) & \operatorname{d}y \\ | + | + & ((x, y)) & (\operatorname{d}x) & \operatorname{d}y \\ |
| + | = & 1 & (\operatorname{d}x) & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & ((x, & y)) & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | & ((x, y)) & (\operatorname{d}x) & (\operatorname{d}y) \\ |
− | + & ((x, & y)) & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | + & ((x, y)) & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| + | = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ \\[6pt] | | \end{smallmatrix}$ \\[6pt] |
| \hline\hline | | \hline\hline |
Line 1,189: |
Line 1,225: |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & & y & \operatorname{d}x & \operatorname{d}y \\ | + | & y & \operatorname{d}x & \operatorname{d}y \\ |
− | + & & (y) & \operatorname{d}x & \operatorname{d}y \\ | + | + & (y) & \operatorname{d}x & \operatorname{d}y \\ |
| + | = & 1 & \operatorname{d}x & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & & (y) & \operatorname{d}x & (\operatorname{d}y) \\ | + | & (y) & \operatorname{d}x & (\operatorname{d}y) \\ |
− | + & & (y) & \operatorname{d}x & (\operatorname{d}y) \\ | + | + & (y) & \operatorname{d}x & (\operatorname{d}y) \\ |
| + | = & 0 & \operatorname{d}x & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & & y & (\operatorname{d}x) & \operatorname{d}y \\ | + | & y & (\operatorname{d}x) & \operatorname{d}y \\ |
− | + & & (y) & (\operatorname{d}x) & \operatorname{d}y \\ | + | + & (y) & (\operatorname{d}x) & \operatorname{d}y \\ |
| + | = & 1 & (\operatorname{d}x) & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & & (y) & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | & (y) & (\operatorname{d}x) & (\operatorname{d}y) \\ |
− | + & & (y) & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | + & (y) & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| + | = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ \\[6pt] | | \end{smallmatrix}$ \\[6pt] |
| \hline | | \hline |
Line 1,211: |
Line 1,251: |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & & (y) & \operatorname{d}x & \operatorname{d}y \\ | + | & (y) & \operatorname{d}x & \operatorname{d}y \\ |
− | + & & y & \operatorname{d}x & \operatorname{d}y \\ | + | + & y & \operatorname{d}x & \operatorname{d}y \\ |
| + | = & 1 & \operatorname{d}x & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & & y & \operatorname{d}x & (\operatorname{d}y) \\ | + | & y & \operatorname{d}x & (\operatorname{d}y) \\ |
− | + & & y & \operatorname{d}x & (\operatorname{d}y) \\ | + | + & y & \operatorname{d}x & (\operatorname{d}y) \\ |
| + | = & 0 & \operatorname{d}x & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & & (y) & (\operatorname{d}x) & \operatorname{d}y \\ | + | & (y) & (\operatorname{d}x) & \operatorname{d}y \\ |
− | + & & y & (\operatorname{d}x) & \operatorname{d}y \\ | + | + & y & (\operatorname{d}x) & \operatorname{d}y \\ |
| + | = & 1 & (\operatorname{d}x) & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & & y & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | & y & (\operatorname{d}x) & (\operatorname{d}y) \\ |
− | + & & y & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | + & y & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| + | = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ \\[6pt] | | \end{smallmatrix}$ \\[6pt] |
| \hline\hline | | \hline\hline |
Line 1,233: |
Line 1,277: |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & ((x) & (y)) & \operatorname{d}x & \operatorname{d}y \\ | + | & ((x)(y)) & \operatorname{d}x & \operatorname{d}y \\ |
− | + & (x & y) & \operatorname{d}x & \operatorname{d}y \\ | + | + & (x\ y) & \operatorname{d}x & \operatorname{d}y \\ |
| + | = & ((x, y)) & \operatorname{d}x & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & ((x) & y) & \operatorname{d}x & (\operatorname{d}y) \\ | + | & ((x)\ y) & \operatorname{d}x & (\operatorname{d}y) \\ |
− | + & (x & y) & \operatorname{d}x & (\operatorname{d}y) \\ | + | + & (x\ y) & \operatorname{d}x & (\operatorname{d}y) \\ |
| + | = & y & \operatorname{d}x & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x & (y)) & (\operatorname{d}x) & \operatorname{d}y \\ | + | & (x\ (y)) & (\operatorname{d}x) & \operatorname{d}y \\ |
− | + & (x & y) & (\operatorname{d}x) & \operatorname{d}y \\ | + | + & (x\ y) & (\operatorname{d}x) & \operatorname{d}y \\ |
| + | = & x & (\operatorname{d}x) & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x & y) & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | & (x\ y) & (\operatorname{d}x) & (\operatorname{d}y) \\ |
− | + & (x & y) & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | + & (x\ y) & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| + | = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ \\[6pt] | | \end{smallmatrix}$ \\[6pt] |
| \hline | | \hline |
Line 1,255: |
Line 1,303: |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & ((x) & y) & \operatorname{d}x & \operatorname{d}y \\ | + | & ((x)\ y) & \operatorname{d}x & \operatorname{d}y \\ |
− | + & (x & (y)) & \operatorname{d}x & \operatorname{d}y \\ | + | + & (x\ (y)) & \operatorname{d}x & \operatorname{d}y \\ |
| + | = & (x, y) & \operatorname{d}x & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & ((x) & (y)) & \operatorname{d}x & (\operatorname{d}y) \\ | + | & ((x) (y)) & \operatorname{d}x & (\operatorname{d}y) \\ |
− | + & (x & (y)) & \operatorname{d}x & (\operatorname{d}y) \\ | + | + & (x\ (y)) & \operatorname{d}x & (\operatorname{d}y) \\ |
| + | = & (y) & \operatorname{d}x & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x & y) & (\operatorname{d}x) & \operatorname{d}y \\ | + | & (x\ y) & (\operatorname{d}x) & \operatorname{d}y \\ |
− | + & (x & (y)) & (\operatorname{d}x) & \operatorname{d}y \\ | + | + & (x\ (y)) & (\operatorname{d}x) & \operatorname{d}y \\ |
| + | = & x & (\operatorname{d}x) & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x & (y)) & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | & (x\ (y)) & (\operatorname{d}x) & (\operatorname{d}y) \\ |
− | + & (x & (y)) & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | + & (x\ (y)) & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| + | = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ \\[6pt] | | \end{smallmatrix}$ \\[6pt] |
| \hline | | \hline |
Line 1,277: |
Line 1,329: |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x & (y)) & \operatorname{d}x & \operatorname{d}y \\ | + | & (x\ (y)) & \operatorname{d}x & \operatorname{d}y \\ |
− | + & ((x) & y) & \operatorname{d}x & \operatorname{d}y \\ | + | + & ((x)\ y) & \operatorname{d}x & \operatorname{d}y \\ |
| + | = & (x, y) & \operatorname{d}x & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x & y) & \operatorname{d}x & (\operatorname{d}y) \\ | + | & (x\ y) & \operatorname{d}x & (\operatorname{d}y) \\ |
− | + & ((x) & y) & \operatorname{d}x & (\operatorname{d}y) \\ | + | + & ((x)\ y) & \operatorname{d}x & (\operatorname{d}y) \\ |
| + | = & y & \operatorname{d}x & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & ((x) & (y)) & (\operatorname{d}x) & \operatorname{d}y \\ | + | & ((x) (y)) & (\operatorname{d}x) & \operatorname{d}y \\ |
− | + & ((x) & y) & (\operatorname{d}x) & \operatorname{d}y \\ | + | + & ((x)\ y) & (\operatorname{d}x) & \operatorname{d}y \\ |
| + | = & (x) & (\operatorname{d}x) & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & ((x) & y) & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | & ((x)\ y) & (\operatorname{d}x) & (\operatorname{d}y) \\ |
− | + & ((x) & y) & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | + & ((x)\ y) & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| + | = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ \\[6pt] | | \end{smallmatrix}$ \\[6pt] |
| \hline | | \hline |
Line 1,299: |
Line 1,355: |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x & y) & \operatorname{d}x & \operatorname{d}y \\ | + | & (x\ y) & \operatorname{d}x & \operatorname{d}y \\ |
− | + & ((x) & (y)) & \operatorname{d}x & \operatorname{d}y \\ | + | + & ((x)(y)) & \operatorname{d}x & \operatorname{d}y \\ |
| + | = & ((x, y)) & \operatorname{d}x & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & (x & (y)) & \operatorname{d}x & (\operatorname{d}y) \\ | + | & (x\ (y)) & \operatorname{d}x & (\operatorname{d}y) \\ |
− | + & ((x) & (y)) & \operatorname{d}x & (\operatorname{d}y) \\ | + | + & ((x) (y)) & \operatorname{d}x & (\operatorname{d}y) \\ |
| + | = & (y) & \operatorname{d}x & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & ((x) & y) & (\operatorname{d}x) & \operatorname{d}y \\ | + | & ((x)\ y) & (\operatorname{d}x) & \operatorname{d}y \\ |
− | + & ((x) & (y)) & (\operatorname{d}x) & \operatorname{d}y \\ | + | + & ((x) (y)) & (\operatorname{d}x) & \operatorname{d}y \\ |
| + | = & (x) & (\operatorname{d}x) & \operatorname{d}y \\ |
| \end{smallmatrix}$ | | \end{smallmatrix}$ |
| & | | & |
| $\begin{smallmatrix} | | $\begin{smallmatrix} |
− | & ((x) & (y)) & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | & ((x)(y)) & (\operatorname{d}x) & (\operatorname{d}y) \\ |
− | + & ((x) & (y)) & (\operatorname{d}x) & (\operatorname{d}y) \\ | + | + & ((x)(y)) & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| + | = & 0 & (\operatorname{d}x) & (\operatorname{d}y) \\ |
| \end{smallmatrix}$ \\[6pt] | | \end{smallmatrix}$ \\[6pt] |
| \hline\hline | | \hline\hline |
− | $f_{15}$ & $1 + 1$ & $1 + 1$ & $1 + 1$ & $1 + 1$ \\[6pt] | + | $f_{15}$ & $1 + 1 = 0$ & $1 + 1 = 0$ & $1 + 1 = 0$ & $1 + 1 = 0$ \\[6pt] |
| \hline\hline | | \hline\hline |
| \end{tabular}\end{quote} | | \end{tabular}\end{quote} |