Line 398: |
Line 398: |
| | | |
| =Appendices @ PlanetMath : TeX Format= | | =Appendices @ PlanetMath : TeX Format= |
| + | |
| + | ==Table 1== |
| + | |
| + | <pre> |
| + | \begin{quote}\begin{tabular}{|c|c|c|c|c|c|c|} |
| + | \multicolumn{7}{c}{Table 1. Propositional Forms on Two Variables} \\ |
| + | \hline |
| + | $\mathcal{L}_1$ & |
| + | $\mathcal{L}_2$ && |
| + | $\mathcal{L}_3$ & |
| + | $\mathcal{L}_4$ & |
| + | $\mathcal{L}_5$ & |
| + | $\mathcal{L}_6$ \\ |
| + | \hline |
| + | & & $x =$ & 1 1 0 0 & & & \\ |
| + | & & $y =$ & 1 0 1 0 & & & \\ |
| + | \hline |
| + | $f_{0}$ & $f_{0000}$ & & 0 0 0 0 & $(~)$ & false & $0$ \\ |
| + | $f_{1}$ & $f_{0001}$ & & 0 0 0 1 & $(x)(y)$ & neither $x$ nor $y$ & $\lnot x \land \lnot y $ \\ |
| + | $f_{2}$ & $f_{0010}$ & & 0 0 1 0 & $(x)\ y$ & $y$ and not $x$ & $\lnot x \land y$ \\ |
| + | $f_{3}$ & $f_{0011}$ & & 0 0 1 1 & $(x)$ & not $x$ & $\lnot x$ \\ |
| + | $f_{4}$ & $f_{0100}$ & & 0 1 0 0 & $x\ (y)$ & $x$ and not $y$ & $x \land \lnot y$ \\ |
| + | $f_{5}$ & $f_{0101}$ & & 0 1 0 1 & $(y)$ & not $y$ & $\lnot y$ \\ |
| + | $f_{6}$ & $f_{0110}$ & & 0 1 1 0 & $(x,\ y)$ & $x$ not equal to $y$ & $x \ne y$ \\ |
| + | $f_{7}$ & $f_{0111}$ & & 0 1 1 1 & $(x\ y)$ & not both $x$ and $y$ & $\lnot x \lor \lnot y$ \\ |
| + | \hline |
| + | $f_{8}$ & $f_{1000}$ & & 1 0 0 0 & $x\ y$ & $x$ and $y$ & $x \land y$ \\ |
| + | $f_{9}$ & $f_{1001}$ & & 1 0 0 1 & $((x,\ y))$ & $x$ equal to $y$ & $x = y$ \\ |
| + | $f_{10}$ & $f_{1010}$ & & 1 0 1 0 & $y$ & $y$ & $y$ \\ |
| + | $f_{11}$ & $f_{1011}$ & & 1 0 1 1 & $(x\ (y))$ & not $x$ without $y$ & $x \Rightarrow y$ \\ |
| + | $f_{12}$ & $f_{1100}$ & & 1 1 0 0 & $x$ & $x$ & $x$ \\ |
| + | $f_{13}$ & $f_{1101}$ & & 1 1 0 1 & $((x)\ y)$ & not $y$ without $x$ & $x \Leftarrow y$ \\ |
| + | $f_{14}$ & $f_{1110}$ & & 1 1 1 0 & $((x)(y))$ & $x$ or $y$ & $x \lor y$ \\ |
| + | $f_{15}$ & $f_{1111}$ & & 1 1 1 1 & $((~))$ & true & $1$ \\ |
| + | \hline |
| + | \end{tabular}\end{quote} |
| + | </pre> |
| + | |
| + | ==Table 2== |
| + | |
| + | <pre> |
| + | \begin{quote}\begin{tabular}{|c|c|c|c|c|c|c|} |
| + | \multicolumn{7}{c}{Table 2. Propositional Forms on Two Variables} \\ |
| + | \hline |
| + | $\mathcal{L}_1$ & |
| + | $\mathcal{L}_2$ && |
| + | $\mathcal{L}_3$ & |
| + | $\mathcal{L}_4$ & |
| + | $\mathcal{L}_5$ & |
| + | $\mathcal{L}_6$ \\ |
| + | \hline |
| + | & & $x =$ & 1 1 0 0 & & & \\ |
| + | & & $y =$ & 1 0 1 0 & & & \\ |
| + | \hline |
| + | $f_{0}$ & $f_{0000}$ & & 0 0 0 0 & $(~)$ & false & $0$ \\ |
| + | \hline |
| + | $f_{1}$ & $f_{0001}$ & & 0 0 0 1 & $(x)(y)$ & neither $x$ nor $y$ & $\lnot x \land \lnot y $ \\ |
| + | $f_{2}$ & $f_{0010}$ & & 0 0 1 0 & $(x)\ y$ & $y$ and not $x$ & $\lnot x \land y$ \\ |
| + | $f_{4}$ & $f_{0100}$ & & 0 1 0 0 & $x\ (y)$ & $x$ and not $y$ & $x \land \lnot y$ \\ |
| + | $f_{8}$ & $f_{1000}$ & & 1 0 0 0 & $x\ y$ & $x$ and $y$ & $x \land y$ \\ |
| + | \hline |
| + | $f_{3}$ & $f_{0011}$ & & 0 0 1 1 & $(x)$ & not $x$ & $\lnot x$ \\ |
| + | $f_{12}$ & $f_{1100}$ & & 1 1 0 0 & $x$ & $x$ & $x$ \\ |
| + | \hline |
| + | $f_{6}$ & $f_{0110}$ & & 0 1 1 0 & $(x,\ y)$ & $x$ not equal to $y$ & $x \ne y$ \\ |
| + | $f_{9}$ & $f_{1001}$ & & 1 0 0 1 & $((x,\ y))$ & $x$ equal to $y$ & $x = y$ \\ |
| + | \hline |
| + | $f_{5}$ & $f_{0101}$ & & 0 1 0 1 & $(y)$ & not $y$ & $\lnot y$ \\ |
| + | $f_{10}$ & $f_{1010}$ & & 1 0 1 0 & $y$ & $y$ & $y$ \\ |
| + | \hline |
| + | $f_{7}$ & $f_{0111}$ & & 0 1 1 1 & $(x\ y)$ & not both $x$ and $y$ & $\lnot x \lor \lnot y$ \\ |
| + | $f_{11}$ & $f_{1011}$ & & 1 0 1 1 & $(x\ (y))$ & not $x$ without $y$ & $x \Rightarrow y$ \\ |
| + | $f_{13}$ & $f_{1101}$ & & 1 1 0 1 & $((x)\ y)$ & not $y$ without $x$ & $x \Leftarrow y$ \\ |
| + | $f_{14}$ & $f_{1110}$ & & 1 1 1 0 & $((x)(y))$ & $x$ or $y$ & $x \lor y$ \\ |
| + | \hline |
| + | $f_{15}$ & $f_{1111}$ & & 1 1 1 1 & $((~))$ & true & $1$ \\ |
| + | \hline |
| + | \end{tabular}\end{quote} |
| + | </pre> |
| | | |
| =Work Area 1= | | =Work Area 1= |