| :* <p>Finally, the initial universe, <math>A^\circ = [ a_1, \ldots, a_n ],</math> is extended by a ''first order differential universe'' or ''tangent universe'', <math>\operatorname{d}A^\circ = [ \operatorname{d}a_1, \ldots, \operatorname{d}a_n ],</math> at each point of <math>A^\circ,</math> resulting in a ''first order extended universe'' or ''tangent bundle universe'', <math>\operatorname{E}A^\circ,</math> defined as follows:</p><blockquote><math>\operatorname{E}A^\circ = [ \operatorname{E}\mathcal{A} ] = [ \mathcal{A}\ \cup\ \operatorname{d}\mathcal{A} ] = [ a_1, \ldots, a_n, \operatorname{d}a_1, \ldots, \operatorname{d}a_n ].</math></blockquote><p>This gives <math>\operatorname{E}A^\circ</math> the type:</p><blockquote><math>[ \mathbb{B}^n \times \mathbb{D}^n ] = (\mathbb{B}^n \times \mathbb{D}^n\ +\!\to \mathbb{B}) = (\mathbb{B}^n \times \mathbb{D}^n, \mathbb{B}^n \times \mathbb{D}^n \to \mathbb{B}).</math></blockquote> | | :* <p>Finally, the initial universe, <math>A^\circ = [ a_1, \ldots, a_n ],</math> is extended by a ''first order differential universe'' or ''tangent universe'', <math>\operatorname{d}A^\circ = [ \operatorname{d}a_1, \ldots, \operatorname{d}a_n ],</math> at each point of <math>A^\circ,</math> resulting in a ''first order extended universe'' or ''tangent bundle universe'', <math>\operatorname{E}A^\circ,</math> defined as follows:</p><blockquote><math>\operatorname{E}A^\circ = [ \operatorname{E}\mathcal{A} ] = [ \mathcal{A}\ \cup\ \operatorname{d}\mathcal{A} ] = [ a_1, \ldots, a_n, \operatorname{d}a_1, \ldots, \operatorname{d}a_n ].</math></blockquote><p>This gives <math>\operatorname{E}A^\circ</math> the type:</p><blockquote><math>[ \mathbb{B}^n \times \mathbb{D}^n ] = (\mathbb{B}^n \times \mathbb{D}^n\ +\!\to \mathbb{B}) = (\mathbb{B}^n \times \mathbb{D}^n, \mathbb{B}^n \times \mathbb{D}^n \to \mathbb{B}).</math></blockquote> |