Line 3,480: |
Line 3,480: |
| | | |
| =Work Area 1= | | =Work Area 1= |
| + | |
| + | ==Orbit Table Template== |
| + | |
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| + | |+ '''Orbit Table Template''' |
| + | |- style="background:ghostwhite; height:36px" |
| + | | |
| + | | <math>f\!</math> |
| + | | <math>\operatorname{F}f|_{xy}</math> |
| + | | <math>\operatorname{F}f|_{x(y)}</math> |
| + | | <math>\operatorname{F}f|_{(x)y}</math> |
| + | | <math>\operatorname{F}f|_{(x)(y)}</math> |
| + | |- style="height:36px" |
| + | | <math>f_{0}\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | |- |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>f_{1}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{2}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{4}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{8}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>(x)(y)\!</math> |
| + | |- |
| + | | height="36px" | <math>(x)\ y\!</math> |
| + | |- |
| + | | height="36px" | <math>x\ (y)\!</math> |
| + | |- |
| + | | height="36px" | <math>x\ y\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>f_{3}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{12}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>(x)\!</math> |
| + | |- |
| + | | height="36px" | <math>x\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>f_{6}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{9}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>(x,\ y)\!</math> |
| + | |- |
| + | | height="36px" | <math>((x,\ y))\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>f_{5}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{10}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>(y)\!</math> |
| + | |- |
| + | | height="36px" | <math>y\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>f_{7}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{11}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{13}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{14}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>(x\ y)\!</math> |
| + | |- |
| + | | height="36px" | <math>(x\ (y))\!</math> |
| + | |- |
| + | | height="36px" | <math>((x)\ y)\!</math> |
| + | |- |
| + | | height="36px" | <math>((x)(y))\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | |- style="height:36px" |
| + | | <math>f_{15}\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | |} |
| + | <br> |
| | | |
| ==Propositional Forms on Two Variables== | | ==Propositional Forms on Two Variables== |
Line 3,786: |
Line 4,077: |
| | <p><math>(~)\!</math></p> | | | <p><math>(~)\!</math></p> |
| | <p><math>\operatorname{false}</math></p> | | | <p><math>\operatorname{false}</math></p> |
− | | <p><math>0\!</math></p> | + | | <p><math>1\!</math></p> |
| |- | | |- |
| | | | | |
Line 4,409: |
Line 4,700: |
| o------o------------o------------o------------o------------o------------o | | o------o------------o------------o------------o------------o------------o |
| </pre> | | </pre> |
| + | |
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| + | |+ '''Table 4. <math>\operatorname{D}f</math> Expanded Over Ordinary Features <math>\{ x, y \}\!</math>''' |
| + | |- style="background:ghostwhite; height:36px" |
| + | | |
| + | | <math>f\!</math> |
| + | | <math>\operatorname{D}f|_{xy}</math> |
| + | | <math>\operatorname{D}f|_{x(y)}</math> |
| + | | <math>\operatorname{D}f|_{(x)y}</math> |
| + | | <math>\operatorname{D}f|_{(x)(y)}</math> |
| + | |- style="height:36px" |
| + | | <math>f_{0}\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | |- |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>f_{1}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{2}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{4}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{8}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>(x)(y)\!</math> |
| + | |- |
| + | | height="36px" | <math>(x)\ y\!</math> |
| + | |- |
| + | | height="36px" | <math>x\ (y)\!</math> |
| + | |- |
| + | | height="36px" | <math>x\ y\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>f_{3}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{12}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>(x)\!</math> |
| + | |- |
| + | | height="36px" | <math>x\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>f_{6}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{9}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>(x,\ y)\!</math> |
| + | |- |
| + | | height="36px" | <math>((x,\ y))\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>f_{5}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{10}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>(y)\!</math> |
| + | |- |
| + | | height="36px" | <math>y\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>f_{7}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{11}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{13}\!</math> |
| + | |- |
| + | | height="36px" | <math>f_{14}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | <math>(x\ y)\!</math> |
| + | |- |
| + | | height="36px" | <math>(x\ (y))\!</math> |
| + | |- |
| + | | height="36px" | <math>((x)\ y)\!</math> |
| + | |- |
| + | | height="36px" | <math>((x)(y))\!</math> |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | | |
| + | {| align="center" |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |- |
| + | | height="36px" | |
| + | |} |
| + | |- style="height:36px" |
| + | | <math>f_{15}\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | |} |
| + | <br> |
| | | |
| ===Table 5=== | | ===Table 5=== |