Line 2,724: |
Line 2,724: |
| By way of initial orientation, Table 1 lists equivalent expressions for the sixteen functions in a number of different languages for zeroth order logic. | | By way of initial orientation, Table 1 lists equivalent expressions for the sixteen functions in a number of different languages for zeroth order logic. |
| | | |
− | ===Table 1=== | + | ===Table 1 : Variant 1=== |
| | | |
| {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
Line 2,861: |
Line 2,861: |
| | <math>\operatorname{true}</math> | | | <math>\operatorname{true}</math> |
| | <math>1\!</math> | | | <math>1\!</math> |
| + | |} |
| + | <br> |
| + | |
| + | ===Table 1 : Variant 2=== |
| + | |
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
| + | |+ '''Table 2. Propositional Forms on Two Variables''' |
| + | |- style="background:ghostwhite" |
| + | | <math>\mathcal{L}_1</math> |
| + | | <math>\mathcal{L}_2</math> |
| + | | <math>\mathcal{L}_3</math> |
| + | | <math>\mathcal{L}_4</math> |
| + | | <math>\mathcal{L}_5</math> |
| + | | <math>\mathcal{L}_6</math> |
| + | |- |
| + | | |
| + | {| align="center" style="background:ghostwhite" |
| + | | |
| + | |- |
| + | | |
| + | |} |
| + | | |
| + | {| align="right" style="background:ghostwhite; text-align:right" |
| + | | <math>x\!</math> : |
| + | |- |
| + | | <math>y\!</math> : |
| + | |} |
| + | | |
| + | {| align="center" style="background:ghostwhite" |
| + | | 1 1 0 0 |
| + | |- |
| + | | 1 0 1 0 |
| + | |} |
| + | | |
| + | {| align="center" style="background:ghostwhite" |
| + | | |
| + | |- |
| + | | |
| + | |} |
| + | | |
| + | {| align="center" style="background:ghostwhite" |
| + | | |
| + | |- |
| + | | |
| + | |} |
| + | | |
| + | {| align="center" style="background:ghostwhite" |
| + | | |
| + | |- |
| + | | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" cellpadding="2" |
| + | | <math>f_{0}\!</math> |
| + | |- |
| + | | <math>f_{1}\!</math> |
| + | |- |
| + | | <math>f_{2}\!</math> |
| + | |- |
| + | | <math>f_{3}\!</math> |
| + | |- |
| + | | <math>f_{4}\!</math> |
| + | |- |
| + | | <math>f_{5}\!</math> |
| + | |- |
| + | | <math>f_{6}\!</math> |
| + | |- |
| + | | <math>f_{7}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" cellpadding="2" |
| + | | <math>f_{0000}\!</math> |
| + | |- |
| + | | <math>f_{0001}\!</math> |
| + | |- |
| + | | <math>f_{0010}\!</math> |
| + | |- |
| + | | <math>f_{0011}\!</math> |
| + | |- |
| + | | <math>f_{0100}\!</math> |
| + | |- |
| + | | <math>f_{0101}\!</math> |
| + | |- |
| + | | <math>f_{0110}\!</math> |
| + | |- |
| + | | <math>f_{0111}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" cellpadding="2" |
| + | | 0 0 0 0 |
| + | |- |
| + | | 0 0 0 1 |
| + | |- |
| + | | 0 0 1 0 |
| + | |- |
| + | | 0 0 1 1 |
| + | |- |
| + | | 0 1 0 0 |
| + | |- |
| + | | 0 1 0 1 |
| + | |- |
| + | | 0 1 1 0 |
| + | |- |
| + | | 0 1 1 1 |
| + | |} |
| + | | |
| + | {| align="center" cellpadding="2" |
| + | | <math>(~)\!</math> |
| + | |- |
| + | | <math>(x)(y)\!</math> |
| + | |- |
| + | | <math>(x)\ y\!</math> |
| + | |- |
| + | | <math>(x)\!</math> |
| + | |- |
| + | | <math>x\ (y)\!</math> |
| + | |- |
| + | | <math>(y)\!</math> |
| + | |- |
| + | | <math>(x,\ y)\!</math> |
| + | |- |
| + | | <math>(x\ y)\!</math> |
| + | |} |
| + | | |
| + | {| align="center" cellpadding="2" |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |} |
| + | | |
| + | {| align="left" cellpadding="2" style="text-align:left" |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" cellpadding="2" |
| + | | <math>f_{8}\!</math> |
| + | |- |
| + | | <math>f_{9}\!</math> |
| + | |- |
| + | | <math>f_{10}\!</math> |
| + | |- |
| + | | <math>f_{11}\!</math> |
| + | |- |
| + | | <math>f_{12}\!</math> |
| + | |- |
| + | | <math>f_{13}\!</math> |
| + | |- |
| + | | <math>f_{14}\!</math> |
| + | |- |
| + | | <math>f_{15}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" cellpadding="2" |
| + | | <math>f_{1000}\!</math> |
| + | |- |
| + | | <math>f_{1001}\!</math> |
| + | |- |
| + | | <math>f_{1010}\!</math> |
| + | |- |
| + | | <math>f_{1011}\!</math> |
| + | |- |
| + | | <math>f_{1100}\!</math> |
| + | |- |
| + | | <math>f_{1101}\!</math> |
| + | |- |
| + | | <math>f_{1110}\!</math> |
| + | |- |
| + | | <math>f_{1111}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" cellpadding="2" |
| + | | 1 0 0 0 |
| + | |- |
| + | | 1 0 0 1 |
| + | |- |
| + | | 1 0 1 0 |
| + | |- |
| + | | 1 0 1 1 |
| + | |- |
| + | | 1 1 0 0 |
| + | |- |
| + | | 1 1 0 1 |
| + | |- |
| + | | 1 1 1 0 |
| + | |- |
| + | | 1 1 1 1 |
| + | |} |
| + | | |
| + | {| align="center" cellpadding="2" |
| + | | <math>x\ y\!</math> |
| + | |- |
| + | | <math>((x,\ y))\!</math> |
| + | |- |
| + | | <math>y\!</math> |
| + | |- |
| + | | <math>(x\ (y))\!</math> |
| + | |- |
| + | | <math>x\!</math> |
| + | |- |
| + | | <math>((x)\ y)\!</math> |
| + | |- |
| + | | <math>((x)(y))\!</math> |
| + | |- |
| + | | <math>((~))\!</math> |
| + | |} |
| + | | |
| + | {| align="center" cellpadding="2" |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |} |
| + | | |
| + | {| align="left" cellpadding="2" style="text-align:left" |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |} |
| |} | | |} |
| <br> | | <br> |
Line 3,376: |
Line 3,645: |
| | <math>\mathcal{L}_4</math> | | | <math>\mathcal{L}_4</math> |
| | <math>\mathcal{L}_5</math> | | | <math>\mathcal{L}_5</math> |
| + | | <math>\mathcal{L}_6</math> |
| |- | | |- |
| + | | |
| + | {| align="center" style="background:ghostwhite" |
| + | | |
| + | |- |
| + | | |
| + | |} |
| | | | | |
| {| align="right" style="background:ghostwhite; text-align:right" | | {| align="right" style="background:ghostwhite; text-align:right" |
Line 3,425: |
Line 3,701: |
| |- | | |- |
| | <math>f_{7}\!</math> | | | <math>f_{7}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" cellpadding="2" |
| + | | <math>f_{0000}\!</math> |
| + | |- |
| + | | <math>f_{0001}\!</math> |
| + | |- |
| + | | <math>f_{0010}\!</math> |
| + | |- |
| + | | <math>f_{0011}\!</math> |
| + | |- |
| + | | <math>f_{0100}\!</math> |
| + | |- |
| + | | <math>f_{0101}\!</math> |
| + | |- |
| + | | <math>f_{0110}\!</math> |
| + | |- |
| + | | <math>f_{0111}\!</math> |
| |} | | |} |
| | | | | |
Line 3,516: |
Line 3,810: |
| |- | | |- |
| | <math>f_{15}\!</math> | | | <math>f_{15}\!</math> |
| + | |} |
| + | | |
| + | {| align="center" cellpadding="2" |
| + | | <math>f_{1000}\!</math> |
| + | |- |
| + | | <math>f_{1001}\!</math> |
| + | |- |
| + | | <math>f_{1010}\!</math> |
| + | |- |
| + | | <math>f_{1011}\!</math> |
| + | |- |
| + | | <math>f_{1100}\!</math> |
| + | |- |
| + | | <math>f_{1101}\!</math> |
| + | |- |
| + | | <math>f_{1110}\!</math> |
| + | |- |
| + | | <math>f_{1111}\!</math> |
| |} | | |} |
| | | | | |