Changes

MyWikiBiz, Author Your Legacy — Friday January 10, 2025
Jump to navigationJump to search
archive old work
Line 601: Line 601:  
<math>(\mathbb{B}^n\ +\!\to \mathbb{B})</math><br>
 
<math>(\mathbb{B}^n\ +\!\to \mathbb{B})</math><br>
 
<math>[\mathbb{B}^n]</math>
 
<math>[\mathbb{B}^n]</math>
|}<br>
+
|}
 +
<br>
    
====Differential Propositions====
 
====Differential Propositions====
Line 731: Line 732:  
<math>(\mathbb{D}^n\ +\!\to \mathbb{B})</math><br>
 
<math>(\mathbb{D}^n\ +\!\to \mathbb{B})</math><br>
 
<math>[\mathbb{D}^n]</math>
 
<math>[\mathbb{D}^n]</math>
|}<br>
+
|}
 +
<br>
    
'''&hellip;'''
 
'''&hellip;'''
Line 2,078: Line 2,080:  
<br>
 
<br>
   −
=Work Area 1=
+
=Archive 1=
    
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%"
 
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:center; width:96%"
Line 2,234: Line 2,236:  
<math>(\mathbb{B}^n\ +\!\to \mathbb{B})</math><br>
 
<math>(\mathbb{B}^n\ +\!\to \mathbb{B})</math><br>
 
<math>[\mathbb{B}^n]</math>
 
<math>[\mathbb{B}^n]</math>
|}<br>
+
|}
 +
<br>
    
A proposition in the tangent universe [E<font face="lucida calligraphy">A</font>] is called a ''differential proposition'' and forms the analogue of a system of differential equations, constraints, or relations in ordinary calculus.
 
A proposition in the tangent universe [E<font face="lucida calligraphy">A</font>] is called a ''differential proposition'' and forms the analogue of a system of differential equations, constraints, or relations in ordinary calculus.
Line 2,308: Line 2,311:  
<math>(\mathbb{D}^n\ +\!\to \mathbb{B})</math><br>
 
<math>(\mathbb{D}^n\ +\!\to \mathbb{B})</math><br>
 
<math>[\mathbb{D}^n]</math>
 
<math>[\mathbb{D}^n]</math>
|}<br>
+
|}
 +
<br>
   −
=Work Area 2=
+
=Archive 2=
    
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
Line 2,339: Line 2,343:  
| <math>f_{0000}\!</math>
 
| <math>f_{0000}\!</math>
 
| 0 0 0 0
 
| 0 0 0 0
| <math>(\!|~|\!)</math>
+
| <math>(~)\!</math>
 
| false
 
| false
 
| <math>0\!</math>
 
| <math>0\!</math>
Line 2,346: Line 2,350:  
| <math>f_{0001}\!</math>
 
| <math>f_{0001}\!</math>
 
| 0 0 0 1
 
| 0 0 0 1
| <math>(\!|x|\!)(\!|y|\!)</math>
+
| <math>(x)(y)\!</math>
 
| neither x nor y
 
| neither x nor y
| <math>\lnot x \land \lnot y</math>
+
| <math>\lnot x \land \lnot y\!</math>
 
|-
 
|-
 
| <math>f_{2}\!</math>
 
| <math>f_{2}\!</math>
 
| <math>f_{0010}\!</math>
 
| <math>f_{0010}\!</math>
 
| 0 0 1 0
 
| 0 0 1 0
| <math>(\!|x|\!)\ y</math>
+
| <math>(x)\ y\!</math>
 
| y and not x
 
| y and not x
| <math>\lnot x \land y</math>
+
| <math>\lnot x \land y\!</math>
 
|-
 
|-
 
| <math>f_{3}\!</math>
 
| <math>f_{3}\!</math>
 
| <math>f_{0011}\!</math>
 
| <math>f_{0011}\!</math>
 
| 0 0 1 1
 
| 0 0 1 1
| <math>(\!|x|\!)</math>
+
| <math>(x)\!</math>
 
| not x
 
| not x
| <math>\lnot x</math>
+
| <math>\lnot x\!</math>
 
|-
 
|-
 
| <math>f_{4}\!</math>
 
| <math>f_{4}\!</math>
 
| <math>f_{0100}\!</math>
 
| <math>f_{0100}\!</math>
 
| 0 1 0 0
 
| 0 1 0 0
| <math>x\ (\!|y|\!)</math>
+
| <math>x\ (y)\!</math>
 
| x and not y
 
| x and not y
| <math>x \land \lnot y</math>
+
| <math>x \land \lnot y\!</math>
 
|-
 
|-
 
| <math>f_{5}\!</math>
 
| <math>f_{5}\!</math>
 
| <math>f_{0101}\!</math>
 
| <math>f_{0101}\!</math>
 
| 0 1 0 1
 
| 0 1 0 1
| <math>(\!|y|\!)</math>
+
| <math>(y)\!</math>
 
| not y
 
| not y
| <math>\lnot y</math>
+
| <math>\lnot y\!</math>
 
|-
 
|-
 
| <math>f_{6}\!</math>
 
| <math>f_{6}\!</math>
 
| <math>f_{0110}\!</math>
 
| <math>f_{0110}\!</math>
 
| 0 1 1 0
 
| 0 1 1 0
| <math>(\!|x,\ y|\!)</math>
+
| <math>(x,\ y)\!</math>
 
| x not equal to y
 
| x not equal to y
| <math>x \ne y</math>
+
| <math>x \ne y\!</math>
 
|-
 
|-
 
| <math>f_{7}\!</math>
 
| <math>f_{7}\!</math>
 
| <math>f_{0111}\!</math>
 
| <math>f_{0111}\!</math>
 
| 0 1 1 1
 
| 0 1 1 1
| <math>(\!|x\ y|\!)</math>
+
| <math>(x\ y)\!</math>
 
| not both x and y
 
| not both x and y
| <math>\lnot x \lor \lnot y</math>
+
| <math>\lnot x \lor \lnot y\!</math>
 
|-
 
|-
 
| <math>f_{8}\!</math>
 
| <math>f_{8}\!</math>
 
| <math>f_{1000}\!</math>
 
| <math>f_{1000}\!</math>
 
| 1 0 0 0
 
| 1 0 0 0
| <math>x\ y</math>
+
| <math>x\ y\!</math>
 
| x and y
 
| x and y
| <math>x \land y</math>
+
| <math>x \land y\!</math>
 
|-
 
|-
 
| <math>f_{9}\!</math>
 
| <math>f_{9}\!</math>
 
| <math>f_{1001}\!</math>
 
| <math>f_{1001}\!</math>
 
| 1 0 0 1
 
| 1 0 0 1
| <math>(\!|(\!|x,\ y|\!)|\!)</math>
+
| <math>((x,\ y))\!</math>
 
| x equal to y
 
| x equal to y
 
| <math>x = y\!</math>
 
| <math>x = y\!</math>
Line 2,416: Line 2,420:  
| <math>f_{1011}\!</math>
 
| <math>f_{1011}\!</math>
 
| 1 0 1 1
 
| 1 0 1 1
| <math>(\!|x\ (\!|y|\!)|\!)</math>
+
| <math>(x\ (y))\!</math>
 
| not x without y
 
| not x without y
| <math>x \Rightarrow y</math>
+
| <math>x \Rightarrow y\!</math>
 
|-
 
|-
 
| <math>f_{12}\!</math>
 
| <math>f_{12}\!</math>
Line 2,430: Line 2,434:  
| <math>f_{1101}\!</math>
 
| <math>f_{1101}\!</math>
 
| 1 1 0 1
 
| 1 1 0 1
| <math>(\!|(\!|x|\!)\ y|\!)</math>
+
| <math>((x)\ y)\!</math>
 
| not y without x
 
| not y without x
| <math>x \Leftarrow y</math>
+
| <math>x \Leftarrow y\!</math>
 
|-
 
|-
 
| <math>f_{14}\!</math>
 
| <math>f_{14}\!</math>
 
| <math>f_{1110}\!</math>
 
| <math>f_{1110}\!</math>
 
| 1 1 1 0
 
| 1 1 1 0
| <math>(\!|(\!|x|\!)(\!|y|\!)|\!)</math>
+
| <math>((x)(y))\!</math>
 
| x or y
 
| x or y
| <math>x \lor y</math>
+
| <math>x \lor y\!</math>
 
|-
 
|-
 
| <math>f_{15}\!</math>
 
| <math>f_{15}\!</math>
 
| <math>f_{1111}\!</math>
 
| <math>f_{1111}\!</math>
 
| 1 1 1 1
 
| 1 1 1 1
| <math>(\!|(\!|~|\!)|\!)</math>
+
| <math>((~))\!</math>
 
| true
 
| true
 
| <math>1\!</math>
 
| <math>1\!</math>
|}<br>
+
|}
 +
<br>
    
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
|+ '''Table 2<math>\operatorname{E}f</math> Expanded Over Ordinary Features <math>\{ x, y \}\!</math>'''
+
|+ '''Table 1Propositional Forms on Two Variables'''
 
|- style="background:ghostwhite"
 
|- style="background:ghostwhite"
| style="width:16%" | &nbsp;
+
| style="width:16%" | <math>\mathcal{L}_1</math>
| style="width:16%" | <math>f\!</math>
+
| style="width:16%" | <math>\mathcal{L}_2</math>
| style="width:16%" | <math>\operatorname{E}f|_{xy}</math>
+
| style="width:16%" | <math>\mathcal{L}_3</math>
| style="width:16%" | <math>\operatorname{E}f|_{x(\!|y|\!)}</math>
+
| style="width:16%" | <math>\mathcal{L}_4</math>
| style="width:16%" | <math>\operatorname{E}f|_{(\!|x|\!)y}</math>
+
| style="width:16%" | <math>\mathcal{L}_5</math>
| style="width:16%" | <math>\operatorname{E}f|_{(\!|x|\!)(\!|y|\!)}</math>
+
| style="width:16%" | <math>\mathcal{L}_6</math>
 +
|- style="background:ghostwhite"
 +
| &nbsp;
 +
| align="right" | <math>x\!</math> :
 +
| 1 1 0 0
 +
| &nbsp;
 +
| &nbsp;
 +
| &nbsp;
 +
|- style="background:ghostwhite"
 +
| &nbsp;
 +
| align="right" | <math>y\!</math> :
 +
| 1 0 1 0
 +
| &nbsp;
 +
| &nbsp;
 +
| &nbsp;
 
|-
 
|-
 
| <math>f_{0}\!</math>
 
| <math>f_{0}\!</math>
 +
| <math>f_{0000}\!</math>
 +
| 0 0 0 0
 
| <math>(\!|~|\!)</math>
 
| <math>(\!|~|\!)</math>
| <math>(\!|~|\!)</math>
+
| false
| <math>(\!|~|\!)</math>
+
| <math>0\!</math>
| <math>(\!|~|\!)</math>
  −
| <math>(\!|~|\!)</math>
   
|-
 
|-
 
| <math>f_{1}\!</math>
 
| <math>f_{1}\!</math>
 +
| <math>f_{0001}\!</math>
 +
| 0 0 0 1
 
| <math>(\!|x|\!)(\!|y|\!)</math>
 
| <math>(\!|x|\!)(\!|y|\!)</math>
| <math>\operatorname{d}x\ \operatorname{d}y</math>
+
| neither x nor y
| <math>\operatorname{d}x (\!|\operatorname{d}y|\!)</math>
+
| <math>\lnot x \land \lnot y</math>
| <math>(\!|\operatorname{d}x|\!) \operatorname{d}y</math>
  −
| <math>(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)</math>
   
|-
 
|-
 
| <math>f_{2}\!</math>
 
| <math>f_{2}\!</math>
| <math>(\!|x|\!) y</math>
+
| <math>f_{0010}\!</math>
| <math>\operatorname{d}x (\!|\operatorname{d}y|\!)</math>
+
| 0 0 1 0
| <math>\operatorname{d}x\ \operatorname{d}y</math>
+
| <math>(\!|x|\!)\ y</math>
| <math>(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)</math>
+
| y and not x
| <math>(\!|\operatorname{d}x|\!) \operatorname{d}y</math>
+
| <math>\lnot x \land y</math>
|-
  −
| <math>f_{4}\!</math>
  −
| <math>x (\!|y|\!)</math>
  −
| <math>(\!|\operatorname{d}x|\!) \operatorname{d}y</math>
  −
| <math>(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)</math>
  −
| <math>\operatorname{d}x\ \operatorname{d}y</math>
  −
| <math>\operatorname{d}x (\!|\operatorname{d}y|\!)</math>
  −
|-
  −
| <math>f_{8}\!</math>
  −
| <math>x y\!</math>
  −
| <math>(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)</math>
  −
| <math>(\!|\operatorname{d}x|\!) \operatorname{d}y</math>
  −
| <math>\operatorname{d}x (\!|\operatorname{d}y|\!)</math>
  −
| <math>\operatorname{d}x\ \operatorname{d}y</math>
   
|-
 
|-
 
| <math>f_{3}\!</math>
 
| <math>f_{3}\!</math>
 +
| <math>f_{0011}\!</math>
 +
| 0 0 1 1
 
| <math>(\!|x|\!)</math>
 
| <math>(\!|x|\!)</math>
| <math>\operatorname{d}x</math>
+
| not x
| <math>\operatorname{d}x</math>
+
| <math>\lnot x</math>
| <math>(\!|\operatorname{d}x|\!)</math>
+
|-
| <math>(\!|\operatorname{d}x|\!)</math>
+
| <math>f_{4}\!</math>
 +
| <math>f_{0100}\!</math>
 +
| 0 1 0 0
 +
| <math>x\ (\!|y|\!)</math>
 +
| x and not y
 +
| <math>x \land \lnot y</math>
 
|-
 
|-
| <math>f_{12}\!</math>
+
| <math>f_{5}\!</math>
| <math>x\!</math>
+
| <math>f_{0101}\!</math>
| <math>(\!|\operatorname{d}x|\!)</math>
+
| 0 1 0 1
| <math>(\!|\operatorname{d}x|\!)</math>
+
| <math>(\!|y|\!)</math>
| <math>\operatorname{d}x</math>
+
| not y
| <math>\operatorname{d}x</math>
+
| <math>\lnot y</math>
 
|-
 
|-
 
| <math>f_{6}\!</math>
 
| <math>f_{6}\!</math>
| <math>(\!|x, y|\!)</math>
+
| <math>f_{0110}\!</math>
| <math>(\!|\operatorname{d}x, \operatorname{d}y|\!)</math>
+
| 0 1 1 0
| <math>(\!|(\!|\operatorname{d}x, \operatorname{d}y|\!)|\!)</math>
+
| <math>(\!|x,\ y|\!)</math>
| <math>(\!|(\!|\operatorname{d}x, \operatorname{d}y|\!)|\!)</math>
+
| x not equal to y
| <math>(\!|\operatorname{d}x, \operatorname{d}y|\!)</math>
+
| <math>x \ne y</math>
 +
|-
 +
| <math>f_{7}\!</math>
 +
| <math>f_{0111}\!</math>
 +
| 0 1 1 1
 +
| <math>(\!|x\ y|\!)</math>
 +
| not both x and y
 +
| <math>\lnot x \lor \lnot y</math>
 
|-
 
|-
| <math>f_{9}\!</math>
+
| <math>f_{8}\!</math>
| <math>(\!|(\!|x, y|\!)|\!)</math>
+
| <math>f_{1000}\!</math>
| <math>(\!|(\!|\operatorname{d}x, \operatorname{d}y|\!)|\!)</math>
+
| 1 0 0 0
| <math>(\!|\operatorname{d}x, \operatorname{d}y|\!)</math>
+
| <math>x\ y</math>
| <math>(\!|\operatorname{d}x, \operatorname{d}y|\!)</math>
+
| x and y
| <math>(\!|(\!|\operatorname{d}x, \operatorname{d}y|\!)|\!)</math>
+
| <math>x \land y</math>
 
|-
 
|-
| <math>f_{5}\!</math>
+
| <math>f_{9}\!</math>
| <math>(\!|y|\!)</math>
+
| <math>f_{1001}\!</math>
| <math>\operatorname{d}y</math>
+
| 1 0 0 1
| <math>(\!|\operatorname{d}y|\!)</math>
+
| <math>(\!|(\!|x,\ y|\!)|\!)</math>
| <math>\operatorname{d}y</math>
+
| x equal to y
| <math>(\!|\operatorname{d}y|\!)</math>
+
| <math>x = y\!</math>
 
|-
 
|-
 
| <math>f_{10}\!</math>
 
| <math>f_{10}\!</math>
 +
| <math>f_{1010}\!</math>
 +
| 1 0 1 0
 +
| <math>y\!</math>
 +
| y
 
| <math>y\!</math>
 
| <math>y\!</math>
| <math>(\!|\operatorname{d}y|\!)</math>
  −
| <math>\operatorname{d}y</math>
  −
| <math>(\!|\operatorname{d}y|\!)</math>
  −
| <math>\operatorname{d}y</math>
  −
|-
  −
| <math>f_{7}\!</math>
  −
| <math>(\!|x y|\!)</math>
  −
| <math>(\!|(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)|\!)</math>
  −
| <math>(\!|(\!|\operatorname{d}x|\!) \operatorname{d}y|\!)</math>
  −
| <math>(\!|\operatorname{d}x (\!|\operatorname{d}y|\!)|\!)</math>
  −
| <math>(\!|\operatorname{d}x\ \operatorname{d}y|\!)</math>
   
|-
 
|-
 
| <math>f_{11}\!</math>
 
| <math>f_{11}\!</math>
| <math>(\!|x (\!|y|\!)|\!)</math>
+
| <math>f_{1011}\!</math>
| <math>(\!|(\!|\operatorname{d}x|\!) \operatorname{d}y|\!)</math>
+
| 1 0 1 1
| <math>(\!|(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)|\!)</math>
+
| <math>(\!|x\ (\!|y|\!)|\!)</math>
| <math>(\!|\operatorname{d}x\ \operatorname{d}y|\!)</math>
+
| not x without y
| <math>(\!|\operatorname{d}x (\!|\operatorname{d}y|\!)|\!)</math>
+
| <math>x \Rightarrow y</math>
 +
|-
 +
| <math>f_{12}\!</math>
 +
| <math>f_{1100}\!</math>
 +
| 1 1 0 0
 +
| <math>x\!</math>
 +
| x
 +
| <math>x\!</math>
 
|-
 
|-
 
| <math>f_{13}\!</math>
 
| <math>f_{13}\!</math>
| <math>(\!|(\!|x|\!) y|\!)</math>
+
| <math>f_{1101}\!</math>
| <math>(\!|\operatorname{d}x (\!|\operatorname{d}y|\!)|\!)</math>
+
| 1 1 0 1
| <math>(\!|\operatorname{d}x\ \operatorname{d}y|\!)</math>
+
| <math>(\!|(\!|x|\!)\ y|\!)</math>
| <math>(\!|(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)|\!)</math>
+
| not y without x
| <math>(\!|(\!|\operatorname{d}x|\!) \operatorname{d}y|\!)</math>
+
| <math>x \Leftarrow y</math>
 
|-
 
|-
 
| <math>f_{14}\!</math>
 
| <math>f_{14}\!</math>
 +
| <math>f_{1110}\!</math>
 +
| 1 1 1 0
 
| <math>(\!|(\!|x|\!)(\!|y|\!)|\!)</math>
 
| <math>(\!|(\!|x|\!)(\!|y|\!)|\!)</math>
| <math>(\!|\operatorname{d}x\ \operatorname{d}y|\!)</math>
+
| x or y
| <math>(\!|\operatorname{d}x (\!|\operatorname{d}y|\!)|\!)</math>
+
| <math>x \lor y</math>
| <math>(\!|(\!|\operatorname{d}x|\!) \operatorname{d}y|\!)</math>
  −
| <math>(\!|(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)|\!)</math>
   
|-
 
|-
 
| <math>f_{15}\!</math>
 
| <math>f_{15}\!</math>
 +
| <math>f_{1111}\!</math>
 +
| 1 1 1 1
 
| <math>(\!|(\!|~|\!)|\!)</math>
 
| <math>(\!|(\!|~|\!)|\!)</math>
| <math>(\!|(\!|~|\!)|\!)</math>
+
| true
| <math>(\!|(\!|~|\!)|\!)</math>
+
| <math>1\!</math>
| <math>(\!|(\!|~|\!)|\!)</math>
+
|}
| <math>(\!|(\!|~|\!)|\!)</math>
+
<br>
|}<br>
     −
=Work Area 3=
+
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
+
|+ '''Table 2<math>\operatorname{E}f</math> Expanded Over Ordinary Features <math>\{ x, y \}\!</math>'''
==Propositional Forms on Two Variables==
  −
 
  −
To broaden our experience with simple examples, let us now contemplate the sixteen functions of concrete type <math>X \times Y \to \mathbb{B}</math> and abstract type <math>\mathbb{B} \times \mathbb{B} \to \mathbb{B}.</math>  For future reference, I will set here a few Tables that detail the actions of <math>\operatorname{E}</math> and <math>\operatorname{D}</math> on each of these functions, allowing us to view the results in several different ways.
  −
 
  −
By way of initial orientation, Table&nbsp;1 lists equivalent expressions for the sixteen functions in a number of different languages for zeroth order logic.
  −
 
  −
===Variant 1===
  −
 
  −
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
  −
|+ '''Table 1Propositional Forms on Two Variables'''
   
|- style="background:ghostwhite"
 
|- style="background:ghostwhite"
| style="width:16%" | <math>\mathcal{L}_1</math>
+
| style="width:16%" | &nbsp;
| style="width:16%" | <math>\mathcal{L}_2</math>
+
| style="width:16%" | <math>f\!</math>
| style="width:16%" | <math>\mathcal{L}_3</math>
+
| style="width:16%" | <math>\operatorname{E}f|_{xy}</math>
| style="width:16%" | <math>\mathcal{L}_4</math>
+
| style="width:16%" | <math>\operatorname{E}f|_{x(\!|y|\!)}</math>
| style="width:16%" | <math>\mathcal{L}_5</math>
+
| style="width:16%" | <math>\operatorname{E}f|_{(\!|x|\!)y}</math>
| style="width:16%" | <math>\mathcal{L}_6</math>
+
| style="width:16%" | <math>\operatorname{E}f|_{(\!|x|\!)(\!|y|\!)}</math>
|- style="background:ghostwhite"
  −
| &nbsp;
  −
| align="right" | <math>x\!</math> :
  −
| 1 1 0 0
  −
| &nbsp;
  −
| &nbsp;
  −
| &nbsp;
  −
|- style="background:ghostwhite"
  −
| &nbsp;
  −
| align="right" | <math>y\!</math> :
  −
| 1 0 1 0
  −
| &nbsp;
  −
| &nbsp;
  −
| &nbsp;
   
|-
 
|-
 
| <math>f_{0}\!</math>
 
| <math>f_{0}\!</math>
| <math>f_{0000}\!</math>
+
| <math>(\!|~|\!)</math>
| 0 0 0 0
+
| <math>(\!|~|\!)</math>
| <math>(~)\!</math>
+
| <math>(\!|~|\!)</math>
| false
+
| <math>(\!|~|\!)</math>
| <math>0\!</math>
+
| <math>(\!|~|\!)</math>
 
|-
 
|-
 
| <math>f_{1}\!</math>
 
| <math>f_{1}\!</math>
| <math>f_{0001}\!</math>
+
| <math>(\!|x|\!)(\!|y|\!)</math>
| 0 0 0 1
+
| <math>\operatorname{d}x\ \operatorname{d}y</math>
| <math>(x)(y)\!</math>
+
| <math>\operatorname{d}x (\!|\operatorname{d}y|\!)</math>
| neither x nor y
+
| <math>(\!|\operatorname{d}x|\!) \operatorname{d}y</math>
| <math>\lnot x \land \lnot y\!</math>
+
| <math>(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)</math>
 
|-
 
|-
 
| <math>f_{2}\!</math>
 
| <math>f_{2}\!</math>
| <math>f_{0010}\!</math>
+
| <math>(\!|x|\!) y</math>
| 0 0 1 0
+
| <math>\operatorname{d}x (\!|\operatorname{d}y|\!)</math>
| <math>(x)\ y\!</math>
+
| <math>\operatorname{d}x\ \operatorname{d}y</math>
| y and not x
+
| <math>(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)</math>
| <math>\lnot x \land y\!</math>
+
| <math>(\!|\operatorname{d}x|\!) \operatorname{d}y</math>
|-
  −
| <math>f_{3}\!</math>
  −
| <math>f_{0011}\!</math>
  −
| 0 0 1 1
  −
| <math>(x)\!</math>
  −
| not x
  −
| <math>\lnot x\!</math>
   
|-
 
|-
 
| <math>f_{4}\!</math>
 
| <math>f_{4}\!</math>
| <math>f_{0100}\!</math>
+
| <math>x (\!|y|\!)</math>
| 0 1 0 0
+
| <math>(\!|\operatorname{d}x|\!) \operatorname{d}y</math>
| <math>x\ (y)\!</math>
+
| <math>(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)</math>
| x and not y
+
| <math>\operatorname{d}x\ \operatorname{d}y</math>
| <math>x \land \lnot y\!</math>
+
| <math>\operatorname{d}x (\!|\operatorname{d}y|\!)</math>
 
|-
 
|-
| <math>f_{5}\!</math>
+
| <math>f_{8}\!</math>
| <math>f_{0101}\!</math>
+
| <math>x y\!</math>
| 0 1 0 1
+
| <math>(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)</math>
| <math>(y)\!</math>
+
| <math>(\!|\operatorname{d}x|\!) \operatorname{d}y</math>
| not y
+
| <math>\operatorname{d}x (\!|\operatorname{d}y|\!)</math>
| <math>\lnot y\!</math>
+
| <math>\operatorname{d}x\ \operatorname{d}y</math>
 
|-
 
|-
| <math>f_{6}\!</math>
+
| <math>f_{3}\!</math>
| <math>f_{0110}\!</math>
+
| <math>(\!|x|\!)</math>
| 0 1 1 0
+
| <math>\operatorname{d}x</math>
| <math>(x,\ y)\!</math>
+
| <math>\operatorname{d}x</math>
| x not equal to y
+
| <math>(\!|\operatorname{d}x|\!)</math>
| <math>x \ne y\!</math>
+
| <math>(\!|\operatorname{d}x|\!)</math>
 
|-
 
|-
| <math>f_{7}\!</math>
+
| <math>f_{12}\!</math>
| <math>f_{0111}\!</math>
+
| <math>x\!</math>
| 0 1 1 1
+
| <math>(\!|\operatorname{d}x|\!)</math>
| <math>(x\ y)\!</math>
+
| <math>(\!|\operatorname{d}x|\!)</math>
| not both x and y
+
| <math>\operatorname{d}x</math>
| <math>\lnot x \lor \lnot y\!</math>
+
| <math>\operatorname{d}x</math>
 
|-
 
|-
| <math>f_{8}\!</math>
+
| <math>f_{6}\!</math>
| <math>f_{1000}\!</math>
+
| <math>(\!|x, y|\!)</math>
| 1 0 0 0
+
| <math>(\!|\operatorname{d}x, \operatorname{d}y|\!)</math>
| <math>x\ y\!</math>
+
| <math>(\!|(\!|\operatorname{d}x, \operatorname{d}y|\!)|\!)</math>
| x and y
+
| <math>(\!|(\!|\operatorname{d}x, \operatorname{d}y|\!)|\!)</math>
| <math>x \land y\!</math>
+
| <math>(\!|\operatorname{d}x, \operatorname{d}y|\!)</math>
 
|-
 
|-
 
| <math>f_{9}\!</math>
 
| <math>f_{9}\!</math>
| <math>f_{1001}\!</math>
+
| <math>(\!|(\!|x, y|\!)|\!)</math>
| 1 0 0 1
+
| <math>(\!|(\!|\operatorname{d}x, \operatorname{d}y|\!)|\!)</math>
| <math>((x,\ y))\!</math>
+
| <math>(\!|\operatorname{d}x, \operatorname{d}y|\!)</math>
| x equal to y
+
| <math>(\!|\operatorname{d}x, \operatorname{d}y|\!)</math>
| <math>x = y\!</math>
+
| <math>(\!|(\!|\operatorname{d}x, \operatorname{d}y|\!)|\!)</math>
 
|-
 
|-
| <math>f_{10}\!</math>
+
| <math>f_{5}\!</math>
| <math>f_{1010}\!</math>
+
| <math>(\!|y|\!)</math>
| 1 0 1 0
+
| <math>\operatorname{d}y</math>
| <math>y\!</math>
+
| <math>(\!|\operatorname{d}y|\!)</math>
| y
+
| <math>\operatorname{d}y</math>
 +
| <math>(\!|\operatorname{d}y|\!)</math>
 +
|-
 +
| <math>f_{10}\!</math>
 
| <math>y\!</math>
 
| <math>y\!</math>
 +
| <math>(\!|\operatorname{d}y|\!)</math>
 +
| <math>\operatorname{d}y</math>
 +
| <math>(\!|\operatorname{d}y|\!)</math>
 +
| <math>\operatorname{d}y</math>
 +
|-
 +
| <math>f_{7}\!</math>
 +
| <math>(\!|x y|\!)</math>
 +
| <math>(\!|(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)|\!)</math>
 +
| <math>(\!|(\!|\operatorname{d}x|\!) \operatorname{d}y|\!)</math>
 +
| <math>(\!|\operatorname{d}x (\!|\operatorname{d}y|\!)|\!)</math>
 +
| <math>(\!|\operatorname{d}x\ \operatorname{d}y|\!)</math>
 
|-
 
|-
 
| <math>f_{11}\!</math>
 
| <math>f_{11}\!</math>
| <math>f_{1011}\!</math>
+
| <math>(\!|x (\!|y|\!)|\!)</math>
| 1 0 1 1
+
| <math>(\!|(\!|\operatorname{d}x|\!) \operatorname{d}y|\!)</math>
| <math>(x\ (y))\!</math>
+
| <math>(\!|(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)|\!)</math>
| not x without y
+
| <math>(\!|\operatorname{d}x\ \operatorname{d}y|\!)</math>
| <math>x \Rightarrow y\!</math>
+
| <math>(\!|\operatorname{d}x (\!|\operatorname{d}y|\!)|\!)</math>
|-
  −
| <math>f_{12}\!</math>
  −
| <math>f_{1100}\!</math>
  −
| 1 1 0 0
  −
| <math>x\!</math>
  −
| x
  −
| <math>x\!</math>
   
|-
 
|-
 
| <math>f_{13}\!</math>
 
| <math>f_{13}\!</math>
| <math>f_{1101}\!</math>
+
| <math>(\!|(\!|x|\!) y|\!)</math>
| 1 1 0 1
+
| <math>(\!|\operatorname{d}x (\!|\operatorname{d}y|\!)|\!)</math>
| <math>((x)\ y)\!</math>
+
| <math>(\!|\operatorname{d}x\ \operatorname{d}y|\!)</math>
| not y without x
+
| <math>(\!|(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)|\!)</math>
| <math>x \Leftarrow y\!</math>
+
| <math>(\!|(\!|\operatorname{d}x|\!) \operatorname{d}y|\!)</math>
 
|-
 
|-
 
| <math>f_{14}\!</math>
 
| <math>f_{14}\!</math>
| <math>f_{1110}\!</math>
+
| <math>(\!|(\!|x|\!)(\!|y|\!)|\!)</math>
| 1 1 1 0
+
| <math>(\!|\operatorname{d}x\ \operatorname{d}y|\!)</math>
| <math>((x)(y))\!</math>
+
| <math>(\!|\operatorname{d}x (\!|\operatorname{d}y|\!)|\!)</math>
| x or y
+
| <math>(\!|(\!|\operatorname{d}x|\!) \operatorname{d}y|\!)</math>
| <math>x \lor y\!</math>
+
| <math>(\!|(\!|\operatorname{d}x|\!)(\!|\operatorname{d}y|\!)|\!)</math>
 
|-
 
|-
 
| <math>f_{15}\!</math>
 
| <math>f_{15}\!</math>
| <math>f_{1111}\!</math>
+
| <math>(\!|(\!|~|\!)|\!)</math>
| 1 1 1 1
+
| <math>(\!|(\!|~|\!)|\!)</math>
| <math>((~))\!</math>
+
| <math>(\!|(\!|~|\!)|\!)</math>
| true
+
| <math>(\!|(\!|~|\!)|\!)</math>
| <math>1\!</math>
+
| <math>(\!|(\!|~|\!)|\!)</math>
 
|}
 
|}
 
<br>
 
<br>
   −
===Variant 2===
+
=Work Area 1=
 +
 
 +
==Propositional Forms on Two Variables==
 +
 
 +
To broaden our experience with simple examples, let us now contemplate the sixteen functions of concrete type <math>X \times Y \to \mathbb{B}</math> and abstract type <math>\mathbb{B} \times \mathbb{B} \to \mathbb{B}.</math>  For future reference, I will set here a few Tables that detail the actions of <math>\operatorname{E}</math> and <math>\operatorname{D}</math> on each of these functions, allowing us to view the results in several different ways.
 +
 
 +
By way of initial orientation, Table&nbsp;1 lists equivalent expressions for the sixteen functions in a number of different languages for zeroth order logic.
 +
 
 +
===Variant 1===
    
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
Line 2,860: Line 2,864:  
<br>
 
<br>
   −
===Variant 3===
+
===Variant 2===
    
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
Line 3,104: Line 3,108:  
<br>
 
<br>
   −
===Variant 4===
+
===Variant 3===
    
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
Line 3,348: Line 3,352:  
<br>
 
<br>
   −
===Variant 5===
+
===Variant 4===
    
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
 
{| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
Line 3,691: Line 3,695:  
| <math>((~))\!</math>
 
| <math>((~))\!</math>
 
| <math>((~))\!</math>
 
| <math>((~))\!</math>
|}<br>
+
|}
 +
<br>
    
<pre>
 
<pre>
12,080

edits

Navigation menu