Line 3,201: |
Line 3,201: |
| The next four Tables expand the expressions of <math>\operatorname{E}f</math> and <math>\operatorname{D}f</math> in two different ways, for each of the sixteen functions. Notice that the functions are given in a different order, here being collected into a set of seven natural classes. | | The next four Tables expand the expressions of <math>\operatorname{E}f</math> and <math>\operatorname{D}f</math> in two different ways, for each of the sixteen functions. Notice that the functions are given in a different order, here being collected into a set of seven natural classes. |
| | | |
− | <pre>
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" |
− | Table 2. Ef Expanded Over Ordinary Features {x, y} | + | |+ '''Table 2. <math>\operatorname{E}f</math> Expanded Over Ordinary Features <math>\{ x, y \}\!</math>''' |
− | o------o------------o------------o------------o------------o------------o
| + | |- style="background:ghostwhite" |
− | | | | | | | | | + | | style="width:16%" | |
− | | | f | Ef | xy | Ef | x(y) | Ef | (x)y | Ef | (x)(y)| | + | | style="width:16%" | <math>f\!</math> |
− | | | | | | | | | + | | style="width:16%" | <math>\operatorname{E}f|_{xy}</math> |
− | o------o------------o------------o------------o------------o------------o
| + | | style="width:16%" | <math>\operatorname{E}f|_{x(\!|y|\!)}</math> |
− | | | | | | | | | + | | style="width:16%" | <math>\operatorname{E}f|_{(\!|x|\!)y}</math> |
− | | f_0 | () | () | () | () | () | | + | | style="width:16%" | <math>\operatorname{E}f|_{(\!|x|\!)(\!|y|\!)}</math> |
− | | | | | | | | | + | |- |
− | o------o------------o------------o------------o------------o------------o
| + | | f_0 |
− | | | | | | | | | + | | () |
− | | f_1 | (x)(y) | dx dy | dx (dy) | (dx) dy | (dx)(dy) | | + | | () |
− | | | | | | | | | + | | () |
− | | f_2 | (x) y | dx (dy) | dx dy | (dx)(dy) | (dx) dy | | + | | () |
− | | | | | | | | | + | | () |
− | | f_4 | x (y) | (dx) dy | (dx)(dy) | dx dy | dx (dy) | | + | |- |
− | | | | | | | | | + | | f_1 |
− | | f_8 | x y | (dx)(dy) | (dx) dy | dx (dy) | dx dy | | + | | (x)(y) |
− | | | | | | | | | + | | dx dy |
− | o------o------------o------------o------------o------------o------------o
| + | | dx (dy) |
− | | | | | | | | | + | | (dx) dy |
− | | f_3 | (x) | dx | dx | (dx) | (dx) | | + | | (dx)(dy) |
− | | | | | | | | | + | |- |
− | | f_12 | x | (dx) | (dx) | dx | dx | | + | | f_2 |
− | | | | | | | | | + | | (x) y |
− | o------o------------o------------o------------o------------o------------o
| + | | dx (dy) |
− | | | | | | | | | + | | dx dy |
− | | f_6 | (x, y) | (dx, dy) | ((dx, dy)) | ((dx, dy)) | (dx, dy) | | + | | (dx)(dy) |
− | | | | | | | | | + | | (dx) dy |
− | | f_9 | ((x, y)) | ((dx, dy)) | (dx, dy) | (dx, dy) | ((dx, dy)) | | + | |- |
− | | | | | | | | | + | | f_4 |
− | o------o------------o------------o------------o------------o------------o
| + | | x (y) |
− | | | | | | | | | + | | (dx) dy |
− | | f_5 | (y) | dy | (dy) | dy | (dy) | | + | | (dx)(dy) |
− | | | | | | | | | + | | dx dy |
− | | f_10 | y | (dy) | dy | (dy) | dy | | + | | dx (dy) |
− | | | | | | | | | + | |- |
− | o------o------------o------------o------------o------------o------------o
| + | | f_8 |
− | | | | | | | | | + | | x y |
− | | f_7 | (x y) | ((dx)(dy)) | ((dx) dy) | (dx (dy)) | (dx dy) | | + | | (dx)(dy) |
− | | | | | | | | | + | | (dx) dy |
− | | f_11 | (x (y)) | ((dx) dy) | ((dx)(dy)) | (dx dy) | (dx (dy)) | | + | | dx (dy) |
− | | | | | | | | | + | | dx dy |
− | | f_13 | ((x) y) | (dx (dy)) | (dx dy) | ((dx)(dy)) | ((dx) dy) | | + | |- |
− | | | | | | | | | + | | f_3 |
− | | f_14 | ((x)(y)) | (dx dy) | (dx (dy)) | ((dx) dy) | ((dx)(dy)) | | + | | (x) |
− | | | | | | | | | + | | dx |
− | o------o------------o------------o------------o------------o------------o
| + | | dx |
− | | | | | | | | | + | | (dx) |
− | | f_15 | (()) | (()) | (()) | (()) | (()) | | + | | (dx) |
− | | | | | | | | | + | |- |
− | o------o------------o------------o------------o------------o------------o
| + | | f_12 |
− | </pre> | + | | x |
| + | | (dx) |
| + | | (dx) |
| + | | dx |
| + | | dx |
| + | |- |
| + | | f_6 |
| + | | (x, y) |
| + | | (dx, dy) |
| + | | ((dx, dy)) |
| + | | ((dx, dy)) |
| + | | (dx, dy) |
| + | |- |
| + | | f_9 |
| + | | ((x, y)) |
| + | | ((dx, dy)) |
| + | | (dx, dy) |
| + | | (dx, dy) |
| + | | ((dx, dy)) |
| + | |- |
| + | | f_5 |
| + | | (y) |
| + | | dy |
| + | | (dy) |
| + | | dy |
| + | | (dy) |
| + | |- |
| + | | f_10 |
| + | | y |
| + | | (dy) |
| + | | dy |
| + | | (dy) |
| + | | dy |
| + | |- |
| + | | f_7 |
| + | | (x y) |
| + | | ((dx)(dy)) |
| + | | ((dx) dy) |
| + | | (dx (dy)) |
| + | | (dx dy) |
| + | |- |
| + | | f_11 |
| + | | (x (y)) |
| + | | ((dx) dy) |
| + | | ((dx)(dy)) |
| + | | (dx dy) |
| + | | (dx (dy)) |
| + | |- |
| + | | f_13 |
| + | | ((x) y) |
| + | | (dx (dy)) |
| + | | (dx dy) |
| + | | ((dx)(dy)) |
| + | | ((dx) dy) |
| + | |- |
| + | | f_14 |
| + | | ((x)(y)) |
| + | | (dx dy) |
| + | | (dx (dy)) |
| + | | ((dx) dy) |
| + | | ((dx)(dy)) |
| + | |- |
| + | | f_15 |
| + | | (()) |
| + | | (()) |
| + | | (()) |
| + | | (()) |
| + | | (()) |
| + | |}<br> |
| + | |
| <pre> | | <pre> |
| Table 3. Df Expanded Over Ordinary Features {x, y} | | Table 3. Df Expanded Over Ordinary Features {x, y} |