Line 10: |
Line 10: |
| \PMlinkescapephrase{collection} | | \PMlinkescapephrase{collection} |
| \PMlinkescapephrase{Collection} | | \PMlinkescapephrase{Collection} |
| + | \PMlinkescapephrase{component} |
| + | \PMlinkescapephrase{Component} |
| \PMlinkescapephrase{cover} | | \PMlinkescapephrase{cover} |
| \PMlinkescapephrase{Cover} | | \PMlinkescapephrase{Cover} |
Line 16: |
Line 18: |
| \PMlinkescapephrase{divides} | | \PMlinkescapephrase{divides} |
| \PMlinkescapephrase{Divides} | | \PMlinkescapephrase{Divides} |
| + | \PMlinkescapephrase{entire} |
| + | \PMlinkescapephrase{Entire} |
| + | \PMlinkescapephrase{even} |
| + | \PMlinkescapephrase{Even} |
| \PMlinkescapephrase{language} | | \PMlinkescapephrase{language} |
| \PMlinkescapephrase{Language} | | \PMlinkescapephrase{Language} |
Line 192: |
Line 198: |
| \multicolumn{4}{c}{\textbf{Table 4. Propositional Calculus : Basic Notation}} \\[8pt] | | \multicolumn{4}{c}{\textbf{Table 4. Propositional Calculus : Basic Notation}} \\[8pt] |
| \hline | | \hline |
− | \textbf{Symbol} & \textbf{Notation} & \textbf{Description} & \textbf{Type} \\[4pt] | + | |
| + | \textbf{Symbol} & |
| + | \textbf{Notation} & |
| + | \textbf{Description} & |
| + | \textbf{Type} \\[4pt] |
| \hline | | \hline |
− | $\mathcal{A}$ & $\{ a_1, \ldots, a_n \}$ & Alphabet & $[n] = \mathbf{n}$ \\[4pt] | + | |
| + | $\mathfrak{A}$ & |
| + | $\{ \mathfrak{a}_1, \ldots, \mathfrak{a}_n \}$ & |
| + | Alphabet & |
| + | $[n] = \mathbf{n}$ \\[4pt] |
| \hline | | \hline |
− | $A_i$ & $\{ \overline{a_i}, a_i \}$ & Dimension $i$ & $\mathbb{B}$ \\[4pt] | + | |
| + | $\mathcal{A}$ & |
| + | $\{ a_1, \ldots, a_n \}$ |
| + | & Basis & |
| + | $[n] = \mathbf{n}$ \\[4pt] |
| \hline | | \hline |
| + | |
| + | $A_i$ & |
| + | $\{ \overline{a_i}, a_i \}$ & |
| + | Dimension $i$ & |
| + | $\mathbb{B}$ \\[4pt] |
| + | \hline |
| + | |
| $A$ & $\langle \mathcal{A} \rangle$ & Set of cells, & $\mathbb{B}^n$ \\[4pt] | | $A$ & $\langle \mathcal{A} \rangle$ & Set of cells, & $\mathbb{B}^n$ \\[4pt] |
| & $\langle a_1, \ldots, a_n \rangle$ & coordinate tuples, & \\[4pt] | | & $\langle a_1, \ldots, a_n \rangle$ & coordinate tuples, & \\[4pt] |
Line 204: |
Line 229: |
| & $\textstyle \prod_{i=1}^n A_i$ & of discourse & \\[4pt] | | & $\textstyle \prod_{i=1}^n A_i$ & of discourse & \\[4pt] |
| \hline | | \hline |
− | $A^*$ & $(\operatorname{hom} : A \to \mathbb{B})$ & Linear functions & | + | |
| + | $A^*$ & |
| + | $(\operatorname{hom} : A \to \mathbb{B})$ & |
| + | Linear functions & |
| $(\mathbb{B}^n)^* \cong \mathbb{B}^n$ \\[4pt] | | $(\mathbb{B}^n)^* \cong \mathbb{B}^n$ \\[4pt] |
| \hline | | \hline |
− | $A^\uparrow$ & $(A \to \mathbb{B})$ & Boolean functions & | + | |
| + | $A^\uparrow$ & |
| + | $(A \to \mathbb{B})$ & |
| + | Boolean functions & |
| $\mathbb{B}^n \to \mathbb{B}$ \\[4pt] | | $\mathbb{B}^n \to \mathbb{B}$ \\[4pt] |
| \hline | | \hline |
| + | |
| $A^\circ$ & $[ \mathcal{A} ]$ & Universe of discourse & | | $A^\circ$ & $[ \mathcal{A} ]$ & Universe of discourse & |
| $(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B}))$ \\[4pt] | | $(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B}))$ \\[4pt] |
Line 231: |
Line 263: |
| \textbf{Description} & | | \textbf{Description} & |
| \textbf{Type} \\[4pt] | | \textbf{Type} \\[4pt] |
| + | \hline |
| + | |
| + | $\operatorname{d}\mathfrak{A}$ & |
| + | $\{ \operatorname{d}\mathfrak{a}_1, \ldots, \operatorname{d}\mathfrak{a}_n \}$ & |
| + | Alphabet of differential symbols & |
| + | $[n] = \mathbf{n}$ \\[4pt] |
| \hline | | \hline |
| | | |
| $\operatorname{d}\mathcal{A}$ & | | $\operatorname{d}\mathcal{A}$ & |
| $\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}$ & | | $\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}$ & |
− | Alphabet of differential features &
| + | Basis of differential features & |
| $[n] = \mathbf{n}$ \\[4pt] | | $[n] = \mathbf{n}$ \\[4pt] |
| \hline | | \hline |