MyWikiBiz, Author Your Legacy — Friday January 10, 2025
Jump to navigationJump to search
120 bytes removed
, 13:38, 21 May 2008
Line 606: |
Line 606: |
| thus giving <math>\operatorname{E}A</math> the type <math>\mathbb{B}^n \times \mathbb{D}^n.</math> | | thus giving <math>\operatorname{E}A</math> the type <math>\mathbb{B}^n \times \mathbb{D}^n.</math> |
| | | |
− | Finally, the tangent universe E''A''<sup> •</sup> = [E<font face="lucida calligraphy">A</font>] is constituted from the totality of points and maps, or interpretations and propositions, that are based on the extended set of features E<font face="lucida calligraphy">A</font>: | + | Finally, the tangent universe <math>\operatorname{E}A^\circ = [\operatorname{E}\mathcal{A}]</math> is constituted from the totality of points and maps, or interpretations and propositions, that are based on the extended set of features <math>\operatorname{E}\mathcal{A}:</math> |
| | | |
− | : E''A''<sup> •</sup> = [E<font face="lucida calligraphy">A</font>] = [''a''<sub>1</sub>, …, ''a''<sub>''n''</sub>, d''a''<sub>1</sub>, …, d''a''<sub>''n''</sub>], | + | : <math>\operatorname{E}A^\circ = [\operatorname{E}\mathcal{A}] = [a_1, \ldots, a_n, \operatorname{d}a_1, \ldots, \operatorname{d}a_n],</math> |
| | | |
− | thus giving the tangent universe E''A''<sup> •</sup> the type | + | thus giving the tangent universe <math>\operatorname{E}A^\circ</math> the type: |
− | ('''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> +→ '''B''') = ('''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>, ('''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''B''')). | + | |
| + | : <math>(\mathbb{B}^n \times \mathbb{D}^n\ +\!\to \mathbb{B}) = (\mathbb{B}^n \times \mathbb{D}^n, (\mathbb{B}^n \times \mathbb{D}^n \to \mathbb{B})).</math> |
| | | |
| A proposition in the tangent universe [E<font face="lucida calligraphy">A</font>] is called a ''differential proposition'' and forms the analogue of a system of differential equations, constraints, or relations in ordinary calculus. | | A proposition in the tangent universe [E<font face="lucida calligraphy">A</font>] is called a ''differential proposition'' and forms the analogue of a system of differential equations, constraints, or relations in ordinary calculus. |