Line 180: |
Line 180: |
| | | |
| \begin{center}\begin{tabular}{|l|l|l|l|} | | \begin{center}\begin{tabular}{|l|l|l|l|} |
− | \multicolumn{4}{c}{\textbf{Table 4. Propositional Calculus : Basic Notation}} \\ | + | \multicolumn{4}{c}{\textbf{Table 4. Propositional Calculus : Basic Notation}} \\[8pt] |
| \hline | | \hline |
− | \textbf{Symbol} & \textbf{Notation} & \textbf{Description} & \textbf{Type} \\ | + | \textbf{Symbol} & \textbf{Notation} & \textbf{Description} & \textbf{Type} \\[4pt] |
| \hline | | \hline |
− | $\mathcal{A}$ & $\{ a_1, \ldots, a_n \}$ & Alphabet & $[n] = \mathbf{n}$ \\ | + | $\mathcal{A}$ & $\{ a_1, \ldots, a_n \}$ & Alphabet & $[n] = \mathbf{n}$ \\[4pt] |
| \hline | | \hline |
− | $A_i$ & $\{ \overline{a_i}, a_i \}$ & Dimension $i$ & $\mathbb{B}$ \\ | + | $A_i$ & $\{ \overline{a_i}, a_i \}$ & Dimension $i$ & $\mathbb{B}$ \\[4pt] |
| \hline | | \hline |
− | $A$ & $\langle \mathcal{A} \rangle$ & Set of cells, & $\mathbb{B}^n$ \\ | + | $A$ & $\langle \mathcal{A} \rangle$ & Set of cells, & $\mathbb{B}^n$ \\[4pt] |
− | & $\langle a_1, \ldots, a_n \rangle$ & coordinate tuples, & \\ | + | & $\langle a_1, \ldots, a_n \rangle$ & coordinate tuples, & \\[4pt] |
− | & $\{ (a_1, \ldots, a_n) \}$ & points, or vectors & \\ | + | & $\{ (a_1, \ldots, a_n) \}$ & points, or vectors & \\[4pt] |
− | & $A_1 \times \ldots \times A_n$ & in the universe & \\ | + | & $A_1 \times \ldots \times A_n$ & in the universe & \\[4pt] |
− | & $\textstyle \prod_{i=1}^n A_i$ & of discourse & \\ | + | & $\textstyle \prod_{i=1}^n A_i$ & of discourse & \\[4pt] |
| \hline | | \hline |
| $A^*$ & $(\operatorname{hom} : A \to \mathbb{B})$ & Linear functions & | | $A^*$ & $(\operatorname{hom} : A \to \mathbb{B})$ & Linear functions & |
− | $(\mathbb{B}^n)^* \cong \mathbb{B}^n$ \\ | + | $(\mathbb{B}^n)^* \cong \mathbb{B}^n$ \\[4pt] |
| \hline | | \hline |
| $A^\uparrow$ & $(A \to \mathbb{B})$ & Boolean functions & | | $A^\uparrow$ & $(A \to \mathbb{B})$ & Boolean functions & |
− | $\mathbb{B}^n \to \mathbb{B}$ \\ | + | $\mathbb{B}^n \to \mathbb{B}$ \\[4pt] |
| \hline | | \hline |
| $A^\circ$ & $[ \mathcal{A} ]$ & Universe of discourse & | | $A^\circ$ & $[ \mathcal{A} ]$ & Universe of discourse & |
− | $(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B}))$ \\ | + | $(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B}))$ \\[4pt] |
| & $(A, A^\uparrow)$ & based on the features & | | & $(A, A^\uparrow)$ & based on the features & |
− | $(\mathbb{B}^n\ +\!\to \mathbb{B})$ \\ | + | $(\mathbb{B}^n\ +\!\to \mathbb{B})$ \\[4pt] |
| & $(A\ +\!\to \mathbb{B})$ & $\{ a_1, \ldots, a_n \}$ & | | & $(A\ +\!\to \mathbb{B})$ & $\{ a_1, \ldots, a_n \}$ & |
− | $[\mathbb{B}^n]$ \\ | + | $[\mathbb{B}^n]$ \\[4pt] |
− | & $(A, (A \to \mathbb{B}))$ & & \\ | + | & $(A, (A \to \mathbb{B}))$ & & \\[4pt] |
− | & $[ a_1, \ldots, a_n ]$ & & \\ | + | & $[ a_1, \ldots, a_n ]$ & & \\[4pt] |
| \hline | | \hline |
| \end{tabular}\end{center} | | \end{tabular}\end{center} |
Line 214: |
Line 214: |
| | | |
| \begin{center}\begin{tabular}{|l|l|l|l|} | | \begin{center}\begin{tabular}{|l|l|l|l|} |
− | \multicolumn{4}{c}{\textbf{Table 5. Differential Extension : Basic Notation}} \\ | + | \multicolumn{4}{c}{\textbf{Table 5. Differential Extension : Basic Notation}} \\[8pt] |
| \hline | | \hline |
| | | |
Line 220: |
Line 220: |
| \textbf{Notation} & | | \textbf{Notation} & |
| \textbf{Description} & | | \textbf{Description} & |
− | \textbf{Type} \\ | + | \textbf{Type} \\[4pt] |
| \hline | | \hline |
| | | |
Line 226: |
Line 226: |
| $\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}$ & | | $\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}$ & |
| Alphabet of differential features & | | Alphabet of differential features & |
− | $[n] = \mathbf{n}$ \\ | + | $[n] = \mathbf{n}$ \\[4pt] |
| \hline | | \hline |
| | | |
Line 232: |
Line 232: |
| $\{ \overline{\operatorname{d}a_i}, \operatorname{d}a_i \}$ & | | $\{ \overline{\operatorname{d}a_i}, \operatorname{d}a_i \}$ & |
| Differential dimension $i$ & | | Differential dimension $i$ & |
− | $\mathbb{D}$ \\ | + | $\mathbb{D}$ \\[4pt] |
| \hline | | \hline |
| | | |
Line 238: |
Line 238: |
| $\langle \operatorname{d}\mathcal{A} \rangle$ & | | $\langle \operatorname{d}\mathcal{A} \rangle$ & |
| Tangent space at a point: & | | Tangent space at a point: & |
− | $\mathbb{D}^n$ | + | $\mathbb{D}^n$ \\[4pt] |
− | \\ | |
| & | | & |
| $\langle \operatorname{d}a_1, \ldots, \operatorname{d}a_n \rangle$ & | | $\langle \operatorname{d}a_1, \ldots, \operatorname{d}a_n \rangle$ & |
| Set of changes, & | | Set of changes, & |
− | \\ | + | \\[4pt] |
| & | | & |
| $\{ (\operatorname{d}a_1, \ldots, \operatorname{d}a_n) \}$ & | | $\{ (\operatorname{d}a_1, \ldots, \operatorname{d}a_n) \}$ & |
| motions, steps, & | | motions, steps, & |
− | \\ | + | \\[4pt] |
| & | | & |
| $\operatorname{d}A_1 \times \ldots \times \operatorname{d}A_n$ & | | $\operatorname{d}A_1 \times \ldots \times \operatorname{d}A_n$ & |
| tangent vectors & | | tangent vectors & |
− | \\ | + | \\[4pt] |
| & | | & |
| $\textstyle \prod_{i=1}^n \operatorname{d}A_i$ & | | $\textstyle \prod_{i=1}^n \operatorname{d}A_i$ & |
| at a point & | | at a point & |
− | \\ | + | \\[4pt] |
| \hline | | \hline |
| | | |
Line 261: |
Line 260: |
| $(\operatorname{hom} : \operatorname{d}A \to \mathbb{B})$ & | | $(\operatorname{hom} : \operatorname{d}A \to \mathbb{B})$ & |
| Linear functions on $\operatorname{d}A$ & | | Linear functions on $\operatorname{d}A$ & |
− | $(\mathbb{D}^n)^* \cong \mathbb{D}^n$ \\ | + | $(\mathbb{D}^n)^* \cong \mathbb{D}^n$ \\[4pt] |
| \hline | | \hline |
| | | |
Line 267: |
Line 266: |
| $(\operatorname{d}A \to \mathbb{B})$ & | | $(\operatorname{d}A \to \mathbb{B})$ & |
| Boolean functions on $\operatorname{d}A$ & | | Boolean functions on $\operatorname{d}A$ & |
− | $\mathbb{D}^n \to \mathbb{B}$ \\ | + | $\mathbb{D}^n \to \mathbb{B}$ \\[4pt] |
| \hline | | \hline |
| | | |
Line 273: |
Line 272: |
| $[ \operatorname{d}\mathcal{A} ]$ & | | $[ \operatorname{d}\mathcal{A} ]$ & |
| Tangent universe & | | Tangent universe & |
− | $(\mathbb{D}^n, (\mathbb{D}^n \to \mathbb{B}))$ | + | $(\mathbb{D}^n, (\mathbb{D}^n \to \mathbb{B}))$ \\[4pt] |
− | \\ | |
| & | | & |
| $(\operatorname{d}A, \operatorname{d}A^\uparrow)$ & | | $(\operatorname{d}A, \operatorname{d}A^\uparrow)$ & |
| at a point of $A^\circ,$ & | | at a point of $A^\circ,$ & |
− | $(\mathbb{D}^n\ +\!\to \mathbb{B})$ | + | $(\mathbb{D}^n\ +\!\to \mathbb{B})$ \\[4pt] |
− | \\ | |
| & | | & |
| $(\operatorname{d}A\ +\!\to \mathbb{B})$ & | | $(\operatorname{d}A\ +\!\to \mathbb{B})$ & |
| based on the & | | based on the & |
− | $[\mathbb{D}^n]$ | + | $[\mathbb{D}^n]$ \\[4pt] |
− | \\ | |
| & | | & |
| $(\operatorname{d}A, (\operatorname{d}A \to \mathbb{B}))$ & | | $(\operatorname{d}A, (\operatorname{d}A \to \mathbb{B}))$ & |
| tangent features & | | tangent features & |
− | \\ | + | \\[4pt] |
| & | | & |
| $[ \operatorname{d}a_1, \ldots, \operatorname{d}a_n ]$ & | | $[ \operatorname{d}a_1, \ldots, \operatorname{d}a_n ]$ & |
| $\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}$ & | | $\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}$ & |
− | \\ | + | \\[4pt] |
| \hline | | \hline |
| \end{tabular}\end{center} | | \end{tabular}\end{center} |