Changes

MyWikiBiz, Author Your Legacy — Friday January 10, 2025
Jump to navigationJump to search
Line 180: Line 180:     
\begin{center}\begin{tabular}{|l|l|l|l|}
 
\begin{center}\begin{tabular}{|l|l|l|l|}
\multicolumn{4}{c}{\textbf{Table 4.  Propositional Calculus : Basic Notation}} \\
+
\multicolumn{4}{c}{\textbf{Table 4.  Propositional Calculus : Basic Notation}} \\[8pt]
 
\hline
 
\hline
\textbf{Symbol} & \textbf{Notation} & \textbf{Description} & \textbf{Type} \\
+
\textbf{Symbol} & \textbf{Notation} & \textbf{Description} & \textbf{Type} \\[4pt]
 
\hline
 
\hline
$\mathcal{A}$ & $\{ a_1, \ldots, a_n \}$ & Alphabet & $[n] = \mathbf{n}$ \\
+
$\mathcal{A}$ & $\{ a_1, \ldots, a_n \}$ & Alphabet & $[n] = \mathbf{n}$ \\[4pt]
 
\hline
 
\hline
$A_i$ & $\{ \overline{a_i}, a_i \}$ & Dimension $i$ & $\mathbb{B}$ \\
+
$A_i$ & $\{ \overline{a_i}, a_i \}$ & Dimension $i$ & $\mathbb{B}$ \\[4pt]
 
\hline
 
\hline
$A$ & $\langle \mathcal{A} \rangle$      & Set of cells,      & $\mathbb{B}^n$ \\
+
$A$ & $\langle \mathcal{A} \rangle$      & Set of cells,      & $\mathbb{B}^n$ \\[4pt]
     & $\langle a_1, \ldots, a_n \rangle$ & coordinate tuples, & \\
+
     & $\langle a_1, \ldots, a_n \rangle$ & coordinate tuples, & \\[4pt]
     & $\{ (a_1, \ldots, a_n) \}$        & points, or vectors & \\
+
     & $\{ (a_1, \ldots, a_n) \}$        & points, or vectors & \\[4pt]
     & $A_1 \times \ldots \times A_n$    & in the universe    & \\
+
     & $A_1 \times \ldots \times A_n$    & in the universe    & \\[4pt]
     & $\textstyle \prod_{i=1}^n A_i$    & of discourse      & \\
+
     & $\textstyle \prod_{i=1}^n A_i$    & of discourse      & \\[4pt]
 
\hline
 
\hline
 
$A^*$ & $(\operatorname{hom} : A \to \mathbb{B})$ & Linear functions &
 
$A^*$ & $(\operatorname{hom} : A \to \mathbb{B})$ & Linear functions &
$(\mathbb{B}^n)^* \cong \mathbb{B}^n$ \\
+
$(\mathbb{B}^n)^* \cong \mathbb{B}^n$ \\[4pt]
 
\hline
 
\hline
 
$A^\uparrow$ & $(A \to \mathbb{B})$ & Boolean functions &
 
$A^\uparrow$ & $(A \to \mathbb{B})$ & Boolean functions &
$\mathbb{B}^n \to \mathbb{B}$ \\
+
$\mathbb{B}^n \to \mathbb{B}$ \\[4pt]
 
\hline
 
\hline
 
$A^\circ$ & $[ \mathcal{A} ]$        & Universe of discourse    &
 
$A^\circ$ & $[ \mathcal{A} ]$        & Universe of discourse    &
$(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B}))$                  \\
+
$(\mathbb{B}^n, (\mathbb{B}^n \to \mathbb{B}))$                  \\[4pt]
 
           & $(A, A^\uparrow)$        & based on the features    &
 
           & $(A, A^\uparrow)$        & based on the features    &
$(\mathbb{B}^n\ +\!\to \mathbb{B})$                              \\
+
$(\mathbb{B}^n\ +\!\to \mathbb{B})$                              \\[4pt]
 
           & $(A\ +\!\to \mathbb{B})$  & $\{ a_1, \ldots, a_n \}$ &
 
           & $(A\ +\!\to \mathbb{B})$  & $\{ a_1, \ldots, a_n \}$ &
$[\mathbb{B}^n]$                                                \\
+
$[\mathbb{B}^n]$                                                \\[4pt]
           & $(A, (A \to \mathbb{B}))$ & & \\
+
           & $(A, (A \to \mathbb{B}))$ & & \\[4pt]
           & $[ a_1, \ldots, a_n ]$    & & \\
+
           & $[ a_1, \ldots, a_n ]$    & & \\[4pt]
 
\hline
 
\hline
 
\end{tabular}\end{center}
 
\end{tabular}\end{center}
Line 214: Line 214:     
\begin{center}\begin{tabular}{|l|l|l|l|}
 
\begin{center}\begin{tabular}{|l|l|l|l|}
\multicolumn{4}{c}{\textbf{Table 5.  Differential Extension : Basic Notation}} \\
+
\multicolumn{4}{c}{\textbf{Table 5.  Differential Extension : Basic Notation}} \\[8pt]
 
\hline
 
\hline
   Line 220: Line 220:  
\textbf{Notation} &
 
\textbf{Notation} &
 
\textbf{Description} &
 
\textbf{Description} &
\textbf{Type} \\
+
\textbf{Type} \\[4pt]
 
\hline
 
\hline
   Line 226: Line 226:  
$\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}$ &
 
$\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}$ &
 
Alphabet of differential features &
 
Alphabet of differential features &
$[n] = \mathbf{n}$ \\
+
$[n] = \mathbf{n}$ \\[4pt]
 
\hline
 
\hline
   Line 232: Line 232:  
$\{ \overline{\operatorname{d}a_i}, \operatorname{d}a_i \}$ &
 
$\{ \overline{\operatorname{d}a_i}, \operatorname{d}a_i \}$ &
 
Differential dimension $i$ &
 
Differential dimension $i$ &
$\mathbb{D}$ \\
+
$\mathbb{D}$ \\[4pt]
 
\hline
 
\hline
   Line 238: Line 238:  
$\langle \operatorname{d}\mathcal{A} \rangle$ &
 
$\langle \operatorname{d}\mathcal{A} \rangle$ &
 
Tangent space at a point: &
 
Tangent space at a point: &
$\mathbb{D}^n$
+
$\mathbb{D}^n$ \\[4pt]
\\
   
&
 
&
 
$\langle \operatorname{d}a_1, \ldots, \operatorname{d}a_n \rangle$ &
 
$\langle \operatorname{d}a_1, \ldots, \operatorname{d}a_n \rangle$ &
 
Set of changes, &
 
Set of changes, &
\\
+
\\[4pt]
 
&
 
&
 
$\{ (\operatorname{d}a_1, \ldots, \operatorname{d}a_n) \}$ &
 
$\{ (\operatorname{d}a_1, \ldots, \operatorname{d}a_n) \}$ &
 
motions, steps, &
 
motions, steps, &
\\
+
\\[4pt]
 
&
 
&
 
$\operatorname{d}A_1 \times \ldots \times \operatorname{d}A_n$ &
 
$\operatorname{d}A_1 \times \ldots \times \operatorname{d}A_n$ &
 
tangent vectors &
 
tangent vectors &
\\
+
\\[4pt]
 
&
 
&
 
$\textstyle \prod_{i=1}^n \operatorname{d}A_i$ &
 
$\textstyle \prod_{i=1}^n \operatorname{d}A_i$ &
 
at a point &
 
at a point &
\\
+
\\[4pt]
 
\hline
 
\hline
   Line 261: Line 260:  
$(\operatorname{hom} : \operatorname{d}A \to \mathbb{B})$ &
 
$(\operatorname{hom} : \operatorname{d}A \to \mathbb{B})$ &
 
Linear functions on $\operatorname{d}A$ &
 
Linear functions on $\operatorname{d}A$ &
$(\mathbb{D}^n)^* \cong \mathbb{D}^n$ \\
+
$(\mathbb{D}^n)^* \cong \mathbb{D}^n$ \\[4pt]
 
\hline
 
\hline
   Line 267: Line 266:  
$(\operatorname{d}A \to \mathbb{B})$ &
 
$(\operatorname{d}A \to \mathbb{B})$ &
 
Boolean functions on $\operatorname{d}A$ &
 
Boolean functions on $\operatorname{d}A$ &
$\mathbb{D}^n \to \mathbb{B}$ \\
+
$\mathbb{D}^n \to \mathbb{B}$ \\[4pt]
 
\hline
 
\hline
   Line 273: Line 272:  
$[ \operatorname{d}\mathcal{A} ]$ &
 
$[ \operatorname{d}\mathcal{A} ]$ &
 
Tangent universe &
 
Tangent universe &
$(\mathbb{D}^n, (\mathbb{D}^n \to \mathbb{B}))$
+
$(\mathbb{D}^n, (\mathbb{D}^n \to \mathbb{B}))$ \\[4pt]
\\
   
&
 
&
 
$(\operatorname{d}A, \operatorname{d}A^\uparrow)$ &
 
$(\operatorname{d}A, \operatorname{d}A^\uparrow)$ &
 
at a point of $A^\circ,$ &
 
at a point of $A^\circ,$ &
$(\mathbb{D}^n\ +\!\to \mathbb{B})$
+
$(\mathbb{D}^n\ +\!\to \mathbb{B})$ \\[4pt]
\\
   
&
 
&
 
$(\operatorname{d}A\ +\!\to \mathbb{B})$ &
 
$(\operatorname{d}A\ +\!\to \mathbb{B})$ &
 
based on the &
 
based on the &
$[\mathbb{D}^n]$
+
$[\mathbb{D}^n]$ \\[4pt]
\\
   
&
 
&
 
$(\operatorname{d}A, (\operatorname{d}A \to \mathbb{B}))$ &
 
$(\operatorname{d}A, (\operatorname{d}A \to \mathbb{B}))$ &
 
tangent features &
 
tangent features &
\\
+
\\[4pt]
 
&
 
&
 
$[ \operatorname{d}a_1, \ldots, \operatorname{d}a_n ]$ &
 
$[ \operatorname{d}a_1, \ldots, \operatorname{d}a_n ]$ &
 
$\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}$ &
 
$\{ \operatorname{d}a_1, \ldots, \operatorname{d}a_n \}$ &
\\
+
\\[4pt]
 
\hline
 
\hline
 
\end{tabular}\end{center}
 
\end{tabular}\end{center}
12,080

edits

Navigation menu