MyWikiBiz, Author Your Legacy — Sunday February 16, 2025
Jump to navigationJump to search
188 bytes added
, 21:32, 16 March 2008
Line 77: |
Line 77: |
| ::: <math>\Omega_1 = \{ \lnot \} \,,</math> | | ::: <math>\Omega_1 = \{ \lnot \} \,,</math> |
| | | |
− | ::: <math>\Omega_2 = \{ \rightarrow \} \,.</math> | + | ::: <math>\Omega_2 = \{ \Rightarrow \} \,.</math> |
| | | |
| An axiom system discovered by [[Jan Łukasiewicz|Jan Lukasiewicz]] formulates a propositional calculus in this language as follows: | | An axiom system discovered by [[Jan Łukasiewicz|Jan Lukasiewicz]] formulates a propositional calculus in this language as follows: |
| | | |
− | ::* <math>p \to (q \to p)</math> | + | ::* <math>p \Rightarrow (q \Rightarrow p)</math> |
| | | |
− | ::* <math>(p \to (q \to r)) \to ((p \to q) \to (p \to r))</math> | + | ::* <math>(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))</math> |
| | | |
− | ::* <math>(\neg p \to \neg q) \to (q \to p)</math> | + | ::* <math>(\neg p \Rightarrow \neg q) \Rightarrow (q \Rightarrow p)</math> |
| | | |
− | The inference rule is [[modus ponens]], from p, (p → q), infer q. Then a ∨ b is defined as ¬a → b, and a ∧ b is defined as ¬(a → ¬b). | + | The inference rule is ''[[modus ponens]]'': |
| + | |
| + | ::* From ''p'', (''p'' ⇒ ''q''), infer ''q''. |
| + | |
| + | Then we have the following definitions: |
| + | |
| + | ::* ''p'' ∨ ''q'' is defined as ¬''p'' ⇒ ''q''. |
| + | |
| + | ::* ''p'' ∧ ''q'' is defined as ¬(''p'' ⇒ ¬''q''). |
| | | |
| ==Example 2. Natural deduction system== | | ==Example 2. Natural deduction system== |