Line 9,479: |
Line 9,479: |
| o--------o-------o-------o--------o-------o-------o-------o-------o | | o--------o-------o-------o--------o-------o-------o-------o-------o |
| </pre> | | </pre> |
| + | |
| + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | |+ Table 50. Computation of an Analytic Series in Terms of Coordinates |
| + | | |
| + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | ''u'' |
| + | | ''v'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | d''u'' |
| + | | d''v'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | ''u''<font face="courier new">’</font> |
| + | | ''v''<font face="courier new">’</font> |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | || |
| + | |- |
| + | | || |
| + | |- |
| + | | || |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 1 |
| + | |- |
| + | | || |
| + | |- |
| + | | || |
| + | |- |
| + | | || |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 0 |
| + | |- |
| + | | || |
| + | |- |
| + | | || |
| + | |- |
| + | | || |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 1 |
| + | |- |
| + | | || |
| + | |- |
| + | | || |
| + | |- |
| + | | || |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | |} |
| + | | |
| + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | <math>\epsilon</math>''J'' |
| + | | E''J'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | D''J'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | d''J'' |
| + | | d<sup>2</sup>''J'' |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | || 0 |
| + | |- |
| + | | || 0 |
| + | |- |
| + | | || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | || 0 |
| + | |- |
| + | | || 1 |
| + | |- |
| + | | || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | || 1 |
| + | |- |
| + | | || 0 |
| + | |- |
| + | | || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 1 |
| + | |- |
| + | | || 0 |
| + | |- |
| + | | || 0 |
| + | |- |
| + | | || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |} |
| + | |} |
| + | |} |
| + | <br> |
| | | |
| ===Table 68. Computation of an Analytic Series in Symbolic Terms=== | | ===Table 68. Computation of an Analytic Series in Symbolic Terms=== |