Line 1,141: |
Line 1,141: |
| Figure 12. The Anchor | | Figure 12. The Anchor |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 12 -- The Anchor.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 12. The Anchor'''</font></center></p> |
| | | |
| ===Figure 13. The Tiller=== | | ===Figure 13. The Tiller=== |
Line 1,174: |
Line 1,178: |
| Figure 13. The Tiller | | Figure 13. The Tiller |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 13 -- The Tiller.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 13. The Tiller'''</font></center></p> |
| | | |
| ===Table 14. Differential Propositions=== | | ===Table 14. Differential Propositions=== |
Line 1,667: |
Line 1,675: |
| |} | | |} |
| </font><br> | | </font><br> |
| + | |
| + | ===Figure 16. A Couple of Fourth Gear Orbits=== |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 16 -- A Couple of Fourth Gear Orbits.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 16. A Couple of Fourth Gear Orbits'''</font></center></p> |
| | | |
| ===Figure 16-a. A Couple of Fourth Gear Orbits: 1=== | | ===Figure 16-a. A Couple of Fourth Gear Orbits: 1=== |
Line 2,064: |
Line 2,078: |
| Figure 18-a. Extension from 1 to 2 Dimensions: Areal | | Figure 18-a. Extension from 1 to 2 Dimensions: Areal |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 18-a -- Extension from 1 to 2 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 18-a. Extension from 1 to 2 Dimensions: Areal'''</font></center></p> |
| | | |
| ===Figure 18-b. Extension from 1 to 2 Dimensions: Bundle=== | | ===Figure 18-b. Extension from 1 to 2 Dimensions: Bundle=== |
Line 2,093: |
Line 2,111: |
| Figure 18-b. Extension from 1 to 2 Dimensions: Bundle | | Figure 18-b. Extension from 1 to 2 Dimensions: Bundle |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 18-b -- Extension from 1 to 2 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 18-b. Extension from 1 to 2 Dimensions: Bundle'''</font></center></p> |
| | | |
| ===Figure 18-c. Extension from 1 to 2 Dimensions: Compact=== | | ===Figure 18-c. Extension from 1 to 2 Dimensions: Compact=== |
Line 2,124: |
Line 2,146: |
| Figure 18-c. Extension from 1 to 2 Dimensions: Compact | | Figure 18-c. Extension from 1 to 2 Dimensions: Compact |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 18-c -- Extension from 1 to 2 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 18-c. Extension from 1 to 2 Dimensions: Compact'''</font></center></p> |
| | | |
| ===Figure 18-d. Extension from 1 to 2 Dimensions: Digraph=== | | ===Figure 18-d. Extension from 1 to 2 Dimensions: Digraph=== |
Line 2,143: |
Line 2,169: |
| Figure 18-d. Extension from 1 to 2 Dimensions: Digraph | | Figure 18-d. Extension from 1 to 2 Dimensions: Digraph |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 18-d -- Extension from 1 to 2 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 18-d. Extension from 1 to 2 Dimensions: Digraph'''</font></center></p> |
| | | |
| ===Figure 19-a. Extension from 2 to 4 Dimensions: Areal=== | | ===Figure 19-a. Extension from 2 to 4 Dimensions: Areal=== |
Line 2,186: |
Line 2,216: |
| Figure 19-a. Extension from 2 to 4 Dimensions: Areal | | Figure 19-a. Extension from 2 to 4 Dimensions: Areal |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 19-a -- Extension from 2 to 4 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 19-a. Extension from 2 to 4 Dimensions: Areal'''</font></center></p> |
| | | |
| ===Figure 19-b. Extension from 2 to 4 Dimensions: Bundle=== | | ===Figure 19-b. Extension from 2 to 4 Dimensions: Bundle=== |
Line 2,247: |
Line 2,281: |
| Figure 19-b. Extension from 2 to 4 Dimensions: Bundle | | Figure 19-b. Extension from 2 to 4 Dimensions: Bundle |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 19-b -- Extension from 2 to 4 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 19-b. Extension from 2 to 4 Dimensions: Bundle'''</font></center></p> |
| | | |
| ===Figure 19-c. Extension from 2 to 4 Dimensions: Compact=== | | ===Figure 19-c. Extension from 2 to 4 Dimensions: Compact=== |
Line 2,287: |
Line 2,325: |
| Figure 19-c. Extension from 2 to 4 Dimensions: Compact | | Figure 19-c. Extension from 2 to 4 Dimensions: Compact |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 19-c -- Extension from 2 to 4 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 19-c. Extension from 2 to 4 Dimensions: Compact'''</font></center></p> |
| | | |
| ===Figure 19-d. Extension from 2 to 4 Dimensions: Digraph=== | | ===Figure 19-d. Extension from 2 to 4 Dimensions: Digraph=== |
Line 2,330: |
Line 2,372: |
| Figure 19-d. Extension from 2 to 4 Dimensions: Digraph | | Figure 19-d. Extension from 2 to 4 Dimensions: Digraph |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 19-d -- Extension from 2 to 4 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 19-d. Extension from 2 to 4 Dimensions: Digraph'''</font></center></p> |
| | | |
| ===Figure 20-i. Thematization of Conjunction (Stage 1)=== | | ===Figure 20-i. Thematization of Conjunction (Stage 1)=== |
Line 2,360: |
Line 2,406: |
| Figure 20-i. Thematization of Conjunction (Stage 1) | | Figure 20-i. Thematization of Conjunction (Stage 1) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 20-i -- Thematization of Conjunction (Stage 1).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 20-i. Thematization of Conjunction (Stage 1)'''</font></center></p> |
| | | |
| ===Figure 20-ii. Thematization of Conjunction (Stage 2)=== | | ===Figure 20-ii. Thematization of Conjunction (Stage 2)=== |
Line 2,407: |
Line 2,457: |
| Figure 20-ii. Thematization of Conjunction (Stage 2) | | Figure 20-ii. Thematization of Conjunction (Stage 2) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 20-ii -- Thematization of Conjunction (Stage 2).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 20-ii. Thematization of Conjunction (Stage 2)'''</font></center></p> |
| | | |
| ===Figure 20-iii. Thematization of Conjunction (Stage 3)=== | | ===Figure 20-iii. Thematization of Conjunction (Stage 3)=== |
Line 2,450: |
Line 2,504: |
| Figure 20-iii. Thematization of Conjunction (Stage 3) | | Figure 20-iii. Thematization of Conjunction (Stage 3) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 20-iii -- Thematization of Conjunction (Stage 3).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 20-iii. Thematization of Conjunction (Stage 3)'''</font></center></p> |
| | | |
| ===Figure 21. Thematization of Disjunction and Equality=== | | ===Figure 21. Thematization of Disjunction and Equality=== |
Line 2,516: |
Line 2,574: |
| Figure 21. Thematization of Disjunction and Equality | | Figure 21. Thematization of Disjunction and Equality |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 21 -- Thematization of Disjunction and Equality.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 21. Thematization of Disjunction and Equality'''</font></center></p> |
| | | |
| ===Table 22. Disjunction ''f'' and Equality ''g''=== | | ===Table 22. Disjunction ''f'' and Equality ''g''=== |
Line 3,673: |
Line 3,735: |
| Figure 30. Generic Frame of a Logical Transformation | | Figure 30. Generic Frame of a Logical Transformation |
| </pre> | | </pre> |
| + | |
| + | '''Note.''' The following image was corrupted in transit between software platforms. |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 30 -- Generic Frame of a Logical Transformation.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 30. Generic Frame of a Logical Transformation'''</font></center></p> |
| | | |
| ===Formula Display 3=== | | ===Formula Display 3=== |
Line 3,729: |
Line 3,797: |
| Figure 31. Operator Diagram (1) | | Figure 31. Operator Diagram (1) |
| </pre> | | </pre> |
| + | |
| + | '''Note.''' The following image was corrupted in transit between software platforms. |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 31 -- Operator Diagram (1).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 31. Operator Diagram (1)'''</font></center></p> |
| | | |
| ===Figure 32. Operator Diagram (2)=== | | ===Figure 32. Operator Diagram (2)=== |
Line 3,754: |
Line 3,828: |
| Figure 32. Operator Diagram (2) | | Figure 32. Operator Diagram (2) |
| </pre> | | </pre> |
| + | |
| + | '''Note.''' The following image was corrupted in transit between software platforms. |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 32 -- Operator Diagram (2).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 32. Operator Diagram (2)'''</font></center></p> |
| | | |
| ===Figure 33-i. Analytic Diagram (1)=== | | ===Figure 33-i. Analytic Diagram (1)=== |
Line 3,774: |
Line 3,854: |
| Figure 33-i. Analytic Diagram (1) | | Figure 33-i. Analytic Diagram (1) |
| </pre> | | </pre> |
| + | |
| + | '''Note.''' The following image was corrupted in transit between software platforms. |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 33-i -- Analytic Diagram (1).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 33-i. Analytic Diagram (1)'''</font></center></p> |
| | | |
| ===Figure 33-ii. Analytic Diagram (2)=== | | ===Figure 33-ii. Analytic Diagram (2)=== |
Line 3,794: |
Line 3,880: |
| Figure 33-ii. Analytic Diagram (2) | | Figure 33-ii. Analytic Diagram (2) |
| </pre> | | </pre> |
| + | |
| + | '''Note.''' The following image was corrupted in transit between software platforms. |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 33-ii -- Analytic Diagram (2).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 33-ii. Analytic Diagram (2)'''</font></center></p> |
| | | |
| ===Formula Display 4=== | | ===Formula Display 4=== |
Line 4,012: |
Line 4,104: |
| Figure 34. Tangent Functor Diagram | | Figure 34. Tangent Functor Diagram |
| </pre> | | </pre> |
| + | |
| + | '''Note.''' The following image was corrupted in transit between software platforms. |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 34 -- Tangent Functor Diagram.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 34. Tangent Functor Diagram'''</font></center></p> |
| | | |
| ===Figure 35. Conjunction as Transformation=== | | ===Figure 35. Conjunction as Transformation=== |
Line 4,067: |
Line 4,165: |
| Figure 35. Conjunction as Transformation | | Figure 35. Conjunction as Transformation |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 35 -- A Conjunction Viewed as a Transformation.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 35. Conjunction as Transformation'''</font></center></p> |
| | | |
| ===Table 36. Computation of !e!J=== | | ===Table 36. Computation of !e!J=== |
Line 4,140: |
Line 4,242: |
| </font><br> | | </font><br> |
| | | |
− | ===Figure 37-a. Tacit Extension of J (Areal)=== | + | ===Figure 37-a. Tacit Extension of ''J'' (Areal)=== |
| | | |
| <pre> | | <pre> |
Line 4,183: |
Line 4,285: |
| </pre> | | </pre> |
| | | |
− | ===Figure 37-b. Tacit Extension of J (Bundle)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 37-a -- Tacit Extension of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 37-a. Tacit Extension of ''J'' (Areal)'''</font></center></p> |
| + | |
| + | ===Figure 37-b. Tacit Extension of ''J'' (Bundle)=== |
| | | |
| <pre> | | <pre> |
Line 4,252: |
Line 4,358: |
| </pre> | | </pre> |
| | | |
− | ===Figure 37-c. Tacit Extension of J (Compact)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 37-b -- Tacit Extension of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 37-b. Tacit Extension of ''J'' (Bundle)'''</font></center></p> |
| + | |
| + | ===Figure 37-c. Tacit Extension of ''J'' (Compact)=== |
| | | |
| <pre> | | <pre> |
Line 4,292: |
Line 4,402: |
| </pre> | | </pre> |
| | | |
− | ===Figure 37-d. Tacit Extension of J (Digraph)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 37-c -- Tacit Extension of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 37-c. Tacit Extension of ''J'' (Compact)'''</font></center></p> |
| + | |
| + | ===Figure 37-d. Tacit Extension of ''J'' (Digraph)=== |
| | | |
| <pre> | | <pre> |
Line 4,333: |
Line 4,447: |
| Figure 37-d. Tacit Extension of J (Digraph) | | Figure 37-d. Tacit Extension of J (Digraph) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 37-d -- Tacit Extension of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 37-d. Tacit Extension of ''J'' (Digraph)'''</font></center></p> |
| | | |
| ===Table 38. Computation of EJ (Method 1)=== | | ===Table 38. Computation of EJ (Method 1)=== |
Line 4,504: |
Line 4,622: |
| </font><br> | | </font><br> |
| | | |
− | ===Figure 40-a. Enlargement of J (Areal)=== | + | ===Figure 40-a. Enlargement of ''J'' (Areal)=== |
| | | |
| <pre> | | <pre> |
Line 4,547: |
Line 4,665: |
| </pre> | | </pre> |
| | | |
− | ===Figure 40-b. Enlargement of J (Bundle)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 40-a -- Enlargement of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 40-a. Enlargement of ''J'' (Areal)'''</font></center></p> |
| + | |
| + | ===Figure 40-b. Enlargement of ''J'' (Bundle)=== |
| | | |
| <pre> | | <pre> |
Line 4,616: |
Line 4,738: |
| </pre> | | </pre> |
| | | |
− | ===Figure 40-c. Enlargement of J (Compact)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 40-b -- Enlargement of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 40-b. Enlargement of ''J'' (Bundle)'''</font></center></p> |
| + | |
| + | ===Figure 40-c. Enlargement of ''J'' (Compact)=== |
| | | |
| <pre> | | <pre> |
Line 4,656: |
Line 4,782: |
| </pre> | | </pre> |
| | | |
− | ===Figure 40-d. Enlargement of J (Digraph)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 40-c -- Enlargement of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 40-c. Enlargement of ''J'' (Compact)'''</font></center></p> |
| + | |
| + | ===Figure 40-d. Enlargement of ''J'' (Digraph)=== |
| | | |
| <pre> | | <pre> |
Line 4,697: |
Line 4,827: |
| Figure 40-d. Enlargement of J (Digraph) | | Figure 40-d. Enlargement of J (Digraph) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 40-d -- Enlargement of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 40-d. Enlargement of ''J'' (Digraph)'''</font></center></p> |
| | | |
| ===Table 41. Computation of DJ (Method 1)=== | | ===Table 41. Computation of DJ (Method 1)=== |
Line 4,964: |
Line 5,098: |
| </font><br> | | </font><br> |
| | | |
− | ===Figure 44-a. Difference Map of J (Areal)=== | + | ===Figure 44-a. Difference Map of ''J'' (Areal)=== |
| | | |
| <pre> | | <pre> |
Line 5,007: |
Line 5,141: |
| </pre> | | </pre> |
| | | |
− | ===Figure 44-b. Difference Map of J (Bundle)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 44-a -- Difference Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 44-a. Difference Map of ''J'' (Areal)'''</font></center></p> |
| + | |
| + | ===Figure 44-b. Difference Map of ''J'' (Bundle)=== |
| | | |
| <pre> | | <pre> |
Line 5,076: |
Line 5,214: |
| </pre> | | </pre> |
| | | |
− | ===Figure 44-c. Difference Map of J (Compact)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 44-b -- Difference Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 44-b. Difference Map of ''J'' (Bundle)'''</font></center></p> |
| + | |
| + | ===Figure 44-c. Difference Map of ''J'' (Compact)=== |
| | | |
| <pre> | | <pre> |
Line 5,117: |
Line 5,259: |
| </pre> | | </pre> |
| | | |
− | ===Figure 44-d. Difference Map of J (Digraph)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 44-c -- Difference Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 44-c. Difference Map of ''J'' (Compact)'''</font></center></p> |
| + | |
| + | ===Figure 44-d. Difference Map of ''J'' (Digraph)=== |
| | | |
| <pre> | | <pre> |
Line 5,155: |
Line 5,301: |
| Figure 44-d. Difference Map of J (Digraph) | | Figure 44-d. Difference Map of J (Digraph) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 44-d -- Difference Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 44-d. Difference Map of ''J'' (Digraph)'''</font></center></p> |
| | | |
| ===Table 45. Computation of dJ=== | | ===Table 45. Computation of dJ=== |
Line 5,193: |
Line 5,343: |
| </font><br> | | </font><br> |
| | | |
− | ===Figure 46-a. Differential of J (Areal)=== | + | ===Figure 46-a. Differential of ''J'' (Areal)=== |
| | | |
| <pre> | | <pre> |
Line 5,236: |
Line 5,386: |
| </pre> | | </pre> |
| | | |
− | ===Figure 46-b. Differential of J (Bundle)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 46-a -- Differential of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 46-a. Differential of ''J'' (Areal)'''</font></center></p> |
| + | |
| + | ===Figure 46-b. Differential of ''J'' (Bundle)=== |
| | | |
| <pre> | | <pre> |
Line 5,305: |
Line 5,459: |
| </pre> | | </pre> |
| | | |
− | ===Figure 46-c. Differential of J (Compact)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 46-b -- Differential of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 46-b. Differential of ''J'' (Bundle)'''</font></center></p> |
| + | |
| + | ===Figure 46-c. Differential of ''J'' (Compact)=== |
| | | |
| <pre> | | <pre> |
Line 5,342: |
Line 5,500: |
| </pre> | | </pre> |
| | | |
− | ===Figure 46-d. Differential of J (Digraph)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 46-c -- Differential of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 46-c. Differential of ''J'' (Compact)'''</font></center></p> |
| + | |
| + | ===Figure 46-d. Differential of ''J'' (Digraph)=== |
| | | |
| <pre> | | <pre> |
Line 5,378: |
Line 5,540: |
| Figure 46-d. Differential of J (Digraph) | | Figure 46-d. Differential of J (Digraph) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 46-d -- Differential of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 46-d. Differential of ''J'' (Digraph)'''</font></center></p> |
| | | |
| ===Table 47. Computation of rJ=== | | ===Table 47. Computation of rJ=== |
Line 5,439: |
Line 5,605: |
| </font><br> | | </font><br> |
| | | |
− | ===Figure 48-a. Remainder of J (Areal)=== | + | ===Figure 48-a. Remainder of ''J'' (Areal)=== |
| | | |
| <pre> | | <pre> |
Line 5,482: |
Line 5,648: |
| </pre> | | </pre> |
| | | |
− | ===Figure 48-b. Remainder of J (Bundle)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 48-a -- Remainder of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 48-a. Remainder of ''J'' (Areal)'''</font></center></p> |
| + | |
| + | ===Figure 48-b. Remainder of ''J'' (Bundle)=== |
| | | |
| <pre> | | <pre> |
Line 5,551: |
Line 5,721: |
| </pre> | | </pre> |
| | | |
− | ===Figure 48-c. Remainder of J (Compact)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 48-b -- Remainder of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 48-b. Remainder of ''J'' (Bundle)'''</font></center></p> |
| + | |
| + | ===Figure 48-c. Remainder of ''J'' (Compact)=== |
| | | |
| <pre> | | <pre> |
Line 5,591: |
Line 5,765: |
| </pre> | | </pre> |
| | | |
− | ===Figure 48-d. Remainder of J (Digraph)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 48-c -- Remainder of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 48-c. Remainder of ''J'' (Compact)'''</font></center></p> |
| + | |
| + | ===Figure 48-d. Remainder of ''J'' (Digraph)=== |
| | | |
| <pre> | | <pre> |
Line 5,627: |
Line 5,805: |
| Figure 48-d. Remainder of J (Digraph) | | Figure 48-d. Remainder of J (Digraph) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 48-d -- Remainder of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 48-d. Remainder of ''J'' (Digraph)'''</font></center></p> |
| | | |
| ===Table 49. Computation Summary for J=== | | ===Table 49. Computation Summary for J=== |
Line 6,228: |
Line 6,410: |
| Figure 52. Decomposition of the Enlarged Conjunction EJ = (J, DJ) | | Figure 52. Decomposition of the Enlarged Conjunction EJ = (J, DJ) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 52 -- Decomposition of EJ.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 52. Decomposition of E''J'''''</font></center></p> |
| | | |
| ===Figure 53. Decomposition of the Differed Conjunction DJ = (dJ, ddJ)=== | | ===Figure 53. Decomposition of the Differed Conjunction DJ = (dJ, ddJ)=== |
Line 6,279: |
Line 6,465: |
| Figure 53. Decomposition of the Differed Conjunction DJ = (dJ, ddJ) | | Figure 53. Decomposition of the Differed Conjunction DJ = (dJ, ddJ) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 53 -- Decomposition of DJ.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 53. Decomposition of D''J'''''</font></center></p> |
| | | |
| ===Table 54. Cast of Characters: Expansive Subtypes of Objects and Operators=== | | ===Table 54. Cast of Characters: Expansive Subtypes of Objects and Operators=== |
Line 6,981: |
Line 7,171: |
| Figure 56-a1. Radius Map of the Conjunction J = uv | | Figure 56-a1. Radius Map of the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-a1 -- Radius Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-a1. Radius Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 56-a2. Secant Map of the Conjunction J = uv=== | | ===Figure 56-a2. Secant Map of the Conjunction J = uv=== |
Line 7,049: |
Line 7,243: |
| Figure 56-a2. Secant Map of the Conjunction J = uv | | Figure 56-a2. Secant Map of the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-a2 -- Secant Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-a2. Secant Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 56-a3. Chord Map of the Conjunction J = uv=== | | ===Figure 56-a3. Chord Map of the Conjunction J = uv=== |
Line 7,117: |
Line 7,315: |
| Figure 56-a3. Chord Map of the Conjunction J = uv | | Figure 56-a3. Chord Map of the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-a3 -- Chord Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-a3. Chord Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 56-a4. Tangent Map of the Conjunction J = uv=== | | ===Figure 56-a4. Tangent Map of the Conjunction J = uv=== |
Line 7,185: |
Line 7,387: |
| Figure 56-a4. Tangent Map of the Conjunction J = uv | | Figure 56-a4. Tangent Map of the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-a4 -- Tangent Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-a4. Tangent Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 56-b1. Radius Map of the Conjunction J = uv=== | | ===Figure 56-b1. Radius Map of the Conjunction J = uv=== |
Line 7,285: |
Line 7,491: |
| Figure 56-b1. Radius Map of the Conjunction J = uv | | Figure 56-b1. Radius Map of the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-b1 -- Radius Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-b1. Radius Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 56-b2. Secant Map of the Conjunction J = uv=== | | ===Figure 56-b2. Secant Map of the Conjunction J = uv=== |
Line 7,385: |
Line 7,595: |
| Figure 56-b2. Secant Map of the Conjunction J = uv | | Figure 56-b2. Secant Map of the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-b2 -- Secant Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-b2. Secant Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 56-b3. Chord Map of the Conjunction J = uv=== | | ===Figure 56-b3. Chord Map of the Conjunction J = uv=== |
Line 7,485: |
Line 7,699: |
| Figure 56-b3. Chord Map of the Conjunction J = uv | | Figure 56-b3. Chord Map of the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-b3 -- Chord Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-b3. Chord Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 56-b4. Tangent Map of the Conjunction J = uv=== | | ===Figure 56-b4. Tangent Map of the Conjunction J = uv=== |
Line 7,585: |
Line 7,803: |
| Figure 56-b4. Tangent Map of the Conjunction J = uv | | Figure 56-b4. Tangent Map of the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-b4 -- Tangent Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-b4. Tangent Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 57-1. Radius Operator Diagram for the Conjunction J = uv=== | | ===Figure 57-1. Radius Operator Diagram for the Conjunction J = uv=== |
Line 7,655: |
Line 7,877: |
| Figure 57-1. Radius Operator Diagram for the Conjunction J = uv | | Figure 57-1. Radius Operator Diagram for the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 57-1 -- Radius Operator Diagram for J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 57-1. Radius Operator Diagram for the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 57-2. Secant Operator Diagram for the Conjunction J = uv=== | | ===Figure 57-2. Secant Operator Diagram for the Conjunction J = uv=== |
Line 7,725: |
Line 7,951: |
| Figure 57-2. Secant Operator Diagram for the Conjunction J = uv | | Figure 57-2. Secant Operator Diagram for the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 57-2 -- Secant Operator Diagram for J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 57-2. Secant Operator Diagram for the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 57-3. Chord Operator Diagram for the Conjunction J = uv=== | | ===Figure 57-3. Chord Operator Diagram for the Conjunction J = uv=== |
Line 7,795: |
Line 8,025: |
| Figure 57-3. Chord Operator Diagram for the Conjunction J = uv | | Figure 57-3. Chord Operator Diagram for the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 57-3 -- Chord Operator Diagram for J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 57-3. Chord Operator Diagram for the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 57-4. Tangent Functor Diagram for the Conjunction J = uv=== | | ===Figure 57-4. Tangent Functor Diagram for the Conjunction J = uv=== |
Line 7,865: |
Line 8,099: |
| Figure 57-4. Tangent Functor Diagram for the Conjunction J = uv | | Figure 57-4. Tangent Functor Diagram for the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 57-4 -- Tangent Functor Diagram for J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 57-4. Tangent Functor Diagram for the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Formula Display 11=== | | ===Formula Display 11=== |
Line 8,328: |
Line 8,566: |
| </pre> | | </pre> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; text-align:left; width:96%" |
− | |+ '''Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes | + | |+ '''Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes''' |
− | ''' | |
| |- style="background:paleturquoise" | | |- style="background:paleturquoise" |
| | | | | |
Line 8,337: |
Line 8,574: |
| | align="center" | '''Transformation<br>or<br>Mapping''' | | | align="center" | '''Transformation<br>or<br>Mapping''' |
| |- | | |- |
− | | valign="top" | Operand
| + | | Operand |
| | valign="top" | | | | valign="top" | |
| {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
Line 8,367: |
Line 8,604: |
| | <math>\epsilon</math> : | | | <math>\epsilon</math> : |
| |- | | |- |
− | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , | + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| |- | | |- |
− | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → ''X''<sup> •</sup>) | + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → ''X''<sup> •</sup>) |
| |} | | |} |
| | | | | |
Line 8,404: |
Line 8,641: |
| | | | | |
| {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | <math>\eta</math>''J'' : | + | | <math>\eta</math>''F''<sub>''i''</sub> : |
| |- | | |- |
| | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' | | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| |- | | |- |
− | | '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D''' | + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
| |} | | |} |
| | | | | |
| {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | <math>\eta</math>''J'' : | + | | <math>\eta</math>''F'' : |
| |- | | |- |
− | | [''u'', ''v'', d''u'', d''v''] → [d''x''] | + | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y''] |
| |- | | |- |
− | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''D'''<sup>1</sup>] | + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>] |
| |} | | |} |
| |- | | |- |
Line 8,435: |
Line 8,672: |
| | | | | |
| {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | E''J'' : | + | | E''F''<sub>''i''</sub> : |
| |- | | |- |
| | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' | | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| |- | | |- |
− | | '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D''' | + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
| |} | | |} |
| | | | | |
| {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | E''J'' : | + | | E''F'' : |
| |- | | |- |
− | | [''u'', ''v'', d''u'', d''v''] → [d''x''] | + | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y''] |
| |- | | |- |
− | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''D'''<sup>1</sup>] | + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>] |
| |} | | |} |
| |- | | |- |
Line 8,466: |
Line 8,703: |
| | | | | |
| {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | D''J'' : | + | | D''F''<sub>''i''</sub> : |
| |- | | |- |
| | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' | | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| |- | | |- |
− | | '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D''' | + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
| |} | | |} |
| | | | | |
| {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | D''J'' : | + | | D''F'' : |
| |- | | |- |
− | | [''u'', ''v'', d''u'', d''v''] → [d''x''] | + | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y''] |
| |- | | |- |
− | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''D'''<sup>1</sup>] | + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>] |
| |} | | |} |
| |- | | |- |
Line 8,497: |
Line 8,734: |
| | | | | |
| {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | d''J'' : | + | | d''F''<sub>''i''</sub> : |
| |- | | |- |
| | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' | | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| |- | | |- |
− | | '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D''' | + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
| |} | | |} |
| | | | | |
| {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | d''J'' : | + | | d''F'' : |
| |- | | |- |
− | | [''u'', ''v'', d''u'', d''v''] → [d''x''] | + | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y''] |
| |- | | |- |
− | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''D'''<sup>1</sup>] | + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>] |
| |} | | |} |
| |- | | |- |
Line 8,528: |
Line 8,765: |
| | | | | |
| {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | r''J'' : | + | | r''F''<sub>''i''</sub> : |
| |- | | |- |
| | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' | | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| |- | | |- |
− | | '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D''' | + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
| |} | | |} |
| | | | | |
| {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | r''J'' : | + | | r''F'' : |
| |- | | |- |
− | | [''u'', ''v'', d''u'', d''v''] → [d''x''] | + | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y''] |
| |- | | |- |
− | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''D'''<sup>1</sup>] | + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>] |
| |} | | |} |
| |- | | |- |
Line 8,567: |
Line 8,804: |
| | | | | |
| {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | <font face=georgia>'''e'''</font>''J'' : | + | | <font face=georgia>'''e'''</font>''F'' : |
| |- | | |- |
− | | [''u'', ''v'', d''u'', d''v''] → [''x'', d''x''] | + | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y''] |
| |- | | |- |
− | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B''' × '''D'''] | + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] |
| |} | | |} |
| |- | | |- |
Line 8,598: |
Line 8,835: |
| | | | | |
| {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | <font face=georgia>'''E'''</font>''J'' : | + | | <font face=georgia>'''E'''</font>''F'' : |
| |- | | |- |
− | | [''u'', ''v'', d''u'', d''v''] → [''x'', d''x''] | + | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y''] |
| |- | | |- |
− | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B''' × '''D'''] | + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] |
| |} | | |} |
| |- | | |- |
Line 8,629: |
Line 8,866: |
| | | | | |
| {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | <font face=georgia>'''D'''</font>''J'' : | + | | <font face=georgia>'''D'''</font>''F'' : |
| |- | | |- |
− | | [''u'', ''v'', d''u'', d''v''] → [''x'', d''x''] | + | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y''] |
| |- | | |- |
− | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B''' × '''D'''] | + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] |
| |} | | |} |
| |- | | |- |
Line 8,652: |
Line 8,889: |
| | | | | |
| {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | d''J'' : | + | | d''F''<sub>''i''</sub> : |
| |- | | |- |
| | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' | | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| |- | | |- |
− | | '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D''' | + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
| |} | | |} |
| | | | | |
| {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" | | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | <font face=georgia>'''T'''</font>''J'' : | + | | <font face=georgia>'''T'''</font>''F'' : |
| |- | | |- |
− | | [''u'', ''v'', d''u'', d''v''] → [''x'', d''x''] | + | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y''] |
| |- | | |- |
− | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B''' × '''D'''] | + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] |
| |} | | |} |
| |}<br> | | |}<br> |
| + | |
| + | ===Formula Display 12=== |
| | | |
| <pre> | | <pre> |
− | o--------------o----------------------o--------------------o----------------------o
| + | o-----------------------------------------------------------o |
− | | | Operator | Proposition | Transformation |
| + | | | |
− | | | or | or | or |
| + | | x = f(u, v) = ((u)(v)) | |
− | | | Operand | Component | Mapping |
| + | | | |
− | o--------------o----------------------o--------------------o----------------------o
| + | | y = g(u, v) = ((u, v)) | |
− | | | | | |
| + | | | |
− | | Operand | F = <F_1, F_2> | F_i : <|u,v|> -> B | F : [u, v] -> [x, y] |
| + | o-----------------------------------------------------------o |
− | | | | | |
| + | </pre> |
− | | | F = <f, g> : U -> X | F_i : B^n -> B | F : B^n -> B^k |
| + | |
− | | | | | |
| + | <br><font face="courier new"> |
− | o--------------o----------------------o--------------------o----------------------o
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
− | | | | | |
| + | | |
− | | Tacit | !e! : | !e!F_i : | !e!F : |
| + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> B | [u,v,du,dv]->[x, y] |
| + | | |
− | | | (U%->X%)->(EU%->X%) | B^n x D^n -> B | [B^n x D^n]->[B^k] |
| + | | ''x'' |
− | | | | | |
| + | | = |
− | o--------------o----------------------o--------------------o----------------------o
| + | | ''f''‹''u'', ''v''› |
− | | | | | |
| + | | = |
− | | Trope | !h! : | !h!F_i : | !h!F : |
| + | | ((''u'')(''v'')) |
− | | Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
| + | | |
− | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
| + | |- |
− | | | | | |
| + | | |
− | o--------------o----------------------o--------------------o----------------------o
| + | | ''y'' |
− | | | | | |
| + | | = |
− | | Enlargement | E : | EF_i : | EF : |
| + | | ''g''‹''u'', ''v''› |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
| + | | = |
− | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
| + | | ((''u'', ''v'')) |
− | | | | | |
| + | | |
− | o--------------o----------------------o--------------------o----------------------o
| + | |} |
− | | | | | |
| + | |} |
− | | Difference | D : | DF_i : | DF : |
| + | </font><br> |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
| + | |
− | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
| + | ===Formula Display 13=== |
− | | | | | |
| + | |
− | o--------------o----------------------o--------------------o----------------------o
| + | <pre> |
− | | | | | |
| + | o-----------------------------------------------------------o |
− | | Differential | d : | dF_i : | dF : |
| + | | | |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
| + | | <x, y> = F<u, v> = <((u)(v)), ((u, v))> | |
− | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
| + | | | |
− | | | | | |
| |
− | o--------------o----------------------o--------------------o----------------------o
| |
− | | | | | |
| |
− | | Remainder | r : | rF_i : | rF : |
| |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
| |
− | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
| |
− | | | | | |
| |
− | o--------------o----------------------o--------------------o----------------------o
| |
− | | | | | |
| |
− | | Radius | $e$ = <!e!, !h!> : | | $e$F : |
| |
− | | Operator | | | |
| |
− | | | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
| |
− | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
| |
− | | | | | |
| |
− | | | | | [B^n x D^n] -> |
| |
− | | | | | [B^k x D^k] |
| |
− | | | | | |
| |
− | o--------------o----------------------o--------------------o----------------------o
| |
− | | | | | |
| |
− | | Secant | $E$ = <!e!, E> : | | $E$F : |
| |
− | | Operator | | | |
| |
− | | | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
| |
− | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
| |
− | | | | | |
| |
− | | | | | [B^n x D^n] -> |
| |
− | | | | | [B^k x D^k] |
| |
− | | | | | |
| |
− | o--------------o----------------------o--------------------o----------------------o
| |
− | | | | | |
| |
− | | Chord | $D$ = <!e!, D> : | | $D$F : |
| |
− | | Operator | | | |
| |
− | | | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
| |
− | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
| |
− | | | | | |
| |
− | | | | | [B^n x D^n] -> |
| |
− | | | | | [B^k x D^k] |
| |
− | | | | | |
| |
− | o--------------o----------------------o--------------------o----------------------o
| |
− | | | | | |
| |
− | | Tangent | $T$ = <!e!, d> : | dF_i : | $T$F : |
| |
− | | Functor | | | |
| |
− | | | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u, v, du, dv] -> |
| |
− | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
| |
− | | | | | |
| |
− | | | | B^n x D^n -> D | [B^n x D^n] -> |
| |
− | | | | | [B^k x D^k] |
| |
− | | | | | |
| |
− | o--------------o----------------------o--------------------o----------------------o
| |
− | </pre>
| |
− | | |
− | ===Formula Display 12===
| |
− | | |
− | <pre>
| |
− | o-----------------------------------------------------------o | |
− | | | | |
− | | x = f(u, v) = ((u)(v)) | | |
− | | | | |
− | | y = g(u, v) = ((u, v)) | | |
− | | | | |
− | o-----------------------------------------------------------o | |
− | </pre> | |
− | | |
− | <br><font face="courier new"> | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | |
− | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | |
− | | | |
− | | ''x'' | |
− | | = | |
− | | ''f''‹''u'', ''v''› | |
− | | = | |
− | | ((''u'')(''v'')) | |
− | | | |
− | |- | |
− | | | |
− | | ''y'' | |
− | | = | |
− | | ''g''‹''u'', ''v''› | |
− | | = | |
− | | ((''u'', ''v'')) | |
− | | | |
− | |} | |
− | |} | |
− | </font><br> | |
− | | |
− | ===Formula Display 13=== | |
− | | |
− | <pre> | |
− | o-----------------------------------------------------------o | |
− | | | | |
− | | <x, y> = F<u, v> = <((u)(v)), ((u, v))> | | |
− | | | | |
| o-----------------------------------------------------------o | | o-----------------------------------------------------------o |
| </pre> | | </pre> |
Line 8,852: |
Line 8,999: |
| </pre> | | </pre> |
| | | |
− | ===Figure 61. Propositional Transformation=== | + | <font face="courier new"> |
− | | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
− | <pre> | + | |+ '''Table 60. Propositional Transformation''' |
− | o-----------------------------------------------------o | + | |- style="background:paleturquoise" |
− | | U | | + | | width="25%" | ''u'' |
− | | | | + | | width="25%" | ''v'' |
− | | o-----------o o-----------o | | + | | width="25%" | ''f'' |
− | | / \ / \ | | + | | width="25%" | ''g'' |
− | | / o \ | | + | |- |
− | | / / \ \ | | + | | width="25%" | |
− | | / / \ \ | | + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | o o o o | | + | | 0 |
− | | | | | | | | + | |- |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 1 |
| + | |} |
| + | | width="25%" | |
| + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |} |
| + | | width="25%" | |
| + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 1 |
| + | |} |
| + | | width="25%" | |
| + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |} |
| + | |- |
| + | | width="25%" | |
| + | | width="25%" | |
| + | | width="25%" | ((''u'')(''v'')) |
| + | | width="25%" | ((''u'', ''v'')) |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Figure 61. Propositional Transformation=== |
| + | |
| + | <pre> |
| + | o-----------------------------------------------------o |
| + | | U | |
| + | | | |
| + | | o-----------o o-----------o | |
| + | | / \ / \ | |
| + | | / o \ | |
| + | | / / \ \ | |
| + | | / / \ \ | |
| + | | o o o o | |
| + | | | | | | | |
| | | u | | v | | | | | | u | | v | | |
| | | | | | | | | | | | | | | |
Line 8,936: |
Line 9,140: |
| Figure 61. Propositional Transformation | | Figure 61. Propositional Transformation |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 61 -- Propositional Transformation.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 61. Propositional Transformation'''</font></center></p> |
| | | |
| ===Figure 62. Propositional Transformation (Short Form)=== | | ===Figure 62. Propositional Transformation (Short Form)=== |
Line 8,987: |
Line 9,195: |
| Figure 62. Propositional Transformation (Short Form) | | Figure 62. Propositional Transformation (Short Form) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 62 -- Propositional Transformation (Short Form).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 62. Propositional Transformation (Short Form)'''</font></center></p> |
| | | |
| ===Figure 63. Transformation of Positions=== | | ===Figure 63. Transformation of Positions=== |
Line 9,064: |
Line 9,276: |
| Figure 63. Transformation of Positions | | Figure 63. Transformation of Positions |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 63 -- Transformation of Positions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 63. Transformation of Positions'''</font></center></p> |
| | | |
| ===Table 64. Transformation of Positions=== | | ===Table 64. Transformation of Positions=== |
Line 9,086: |
Line 9,302: |
| </pre> | | </pre> |
| | | |
− | ===Table 65. Induced Transformation on Propositions=== | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
− | | + | |+ '''Table 64. Transformation of Positions''' |
− | <pre> | + | |- style="background:paleturquoise" |
− | Table 65. Induced Transformation on Propositions | + | | ''u'' ''v'' |
− | o------------o---------------------------------o------------o | + | | ''x'' |
− | | X% | <--- F = <f , g> <--- | U% | | + | | ''y'' |
− | o------------o----------o-----------o----------o------------o | + | | ''x'' ''y'' |
− | | | u = | 1 1 0 0 | = u | | | + | | ''x'' (''y'') |
− | | | v = | 1 0 1 0 | = v | | | + | | (''x'') ''y'' |
− | | f_i <x, y> o----------o-----------o----------o f_j <u, v> | | + | | (''x'')(''y'') |
− | | | x = | 1 1 1 0 | = f<u,v> | | | + | | ''X''<sup> •</sup> = [''x'', ''y'' ] |
− | | | y = | 1 0 0 1 | = g<u,v> | | | + | |- |
− | o------------o----------o-----------o----------o------------o | + | | width="12%" | |
− | | | | | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | f_0 | () | 0 0 0 0 | () | f_0 |
| + | | 0 0 |
− | | | | | | |
| + | |- |
− | | f_1 | (x)(y) | 0 0 0 1 | () | f_0 |
| + | | 0 1 |
− | | | | | | |
| + | |- |
− | | f_2 | (x) y | 0 0 1 0 | (u)(v) | f_1 |
| + | | 1 0 |
− | | | | | | |
| + | |- |
− | | f_3 | (x) | 0 0 1 1 | (u)(v) | f_1 |
| + | | 1 1 |
− | | | | | | |
| + | |} |
− | | f_4 | x (y) | 0 1 0 0 | (u, v) | f_6 |
| + | | width="12%" | |
− | | | | | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | f_5 | (y) | 0 1 0 1 | (u, v) | f_6 |
| + | | 0 |
− | | | | | | |
| + | |- |
− | | f_6 | (x, y) | 0 1 1 0 | (u v) | f_7 |
| + | | 1 |
− | | | | | | |
| + | |- |
− | | f_7 | (x y) | 0 1 1 1 | (u v) | f_7 |
| + | | 1 |
− | | | | | | |
| + | |- |
− | o------------o----------o-----------o----------o------------o
| + | | 1 |
− | | | | | | |
| + | |} |
− | | f_8 | x y | 1 0 0 0 | u v | f_8 |
| + | | width="12%" | |
− | | | | | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | f_9 | ((x, y)) | 1 0 0 1 | u v | f_8 |
| + | | 1 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |} |
| + | | width="12%" | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |} |
| + | | width="12%" | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 0 |
| + | |} |
| + | | width="12%" | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |} |
| + | | width="12%" | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |} |
| + | | width="12%" | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | ↑ |
| + | |- |
| + | | ''F'' |
| + | |- |
| + | | ‹''f'', ''g'' › |
| + | |- |
| + | | ↑ |
| + | |} |
| + | |- |
| + | | |
| + | | ((''u'')(''v'')) |
| + | | ((''u'', ''v'')) |
| + | | ''u'' ''v'' |
| + | | (''u'', ''v'') |
| + | | (''u'')(''v'') |
| + | | ( ) |
| + | | ''U''<sup> •</sup> = [''u'', ''v'' ] |
| + | |} |
| + | <br> |
| + | |
| + | ===Table 65. Induced Transformation on Propositions=== |
| + | |
| + | <pre> |
| + | Table 65. Induced Transformation on Propositions |
| + | o------------o---------------------------------o------------o |
| + | | X% | <--- F = <f , g> <--- | U% | |
| + | o------------o----------o-----------o----------o------------o |
| + | | | u = | 1 1 0 0 | = u | | |
| + | | | v = | 1 0 1 0 | = v | | |
| + | | f_i <x, y> o----------o-----------o----------o f_j <u, v> | |
| + | | | x = | 1 1 1 0 | = f<u,v> | | |
| + | | | y = | 1 0 0 1 | = g<u,v> | | |
| + | o------------o----------o-----------o----------o------------o |
| | | | | | | | | | | | | | | |
− | | f_10 | y | 1 0 1 0 | ((u, v)) | f_9 | | + | | f_0 | () | 0 0 0 0 | () | f_0 | |
| | | | | | | | | | | | | | | |
− | | f_11 | (x (y)) | 1 0 1 1 | ((u, v)) | f_9 | | + | | f_1 | (x)(y) | 0 0 0 1 | () | f_0 | |
| | | | | | | | | | | | | | | |
− | | f_12 | x | 1 1 0 0 | ((u)(v)) | f_14 | | + | | f_2 | (x) y | 0 0 1 0 | (u)(v) | f_1 | |
| + | | | | | | | |
| + | | f_3 | (x) | 0 0 1 1 | (u)(v) | f_1 | |
| + | | | | | | | |
| + | | f_4 | x (y) | 0 1 0 0 | (u, v) | f_6 | |
| + | | | | | | | |
| + | | f_5 | (y) | 0 1 0 1 | (u, v) | f_6 | |
| + | | | | | | | |
| + | | f_6 | (x, y) | 0 1 1 0 | (u v) | f_7 | |
| + | | | | | | | |
| + | | f_7 | (x y) | 0 1 1 1 | (u v) | f_7 | |
| + | | | | | | | |
| + | o------------o----------o-----------o----------o------------o |
| + | | | | | | | |
| + | | f_8 | x y | 1 0 0 0 | u v | f_8 | |
| + | | | | | | | |
| + | | f_9 | ((x, y)) | 1 0 0 1 | u v | f_8 | |
| + | | | | | | | |
| + | | f_10 | y | 1 0 1 0 | ((u, v)) | f_9 | |
| + | | | | | | | |
| + | | f_11 | (x (y)) | 1 0 1 1 | ((u, v)) | f_9 | |
| + | | | | | | | |
| + | | f_12 | x | 1 1 0 0 | ((u)(v)) | f_14 | |
| | | | | | | | | | | | | | | |
| | f_13 | ((x) y) | 1 1 0 1 | ((u)(v)) | f_14 | | | | f_13 | ((x) y) | 1 1 0 1 | ((u)(v)) | f_14 | |
Line 9,135: |
Line 9,455: |
| | | | | | | | | | | | | | | |
| o------------o----------o-----------o----------o------------o | | o------------o----------o-----------o----------o------------o |
− | </pre>
| |
− |
| |
− | ===Formula Display 14===
| |
− |
| |
− | <pre>
| |
− | o-------------------------------------------------o
| |
− | | |
| |
− | | EG_i = G_i <u + du, v + dv> |
| |
− | | |
| |
− | o-------------------------------------------------o
| |
| </pre> | | </pre> |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | |+ Table 65. Induced Transformation on Propositions |
| + | |- style="background:paleturquoise" |
| + | | ''X''<sup> •</sup> |
| + | | colspan="3" | |
| + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:80%" |
| + | | ← |
| + | | ''F'' = ‹''f'' , ''g''› |
| + | | ← |
| + | |} |
| + | | ''U''<sup> •</sup> |
| + | |- style="background:paleturquoise" |
| + | | rowspan="2" | ''f''<sub>''i''</sub>‹''x'', ''y''› |
| + | | |
| + | {| align="right" style="background:paleturquoise; text-align:right" |
| + | | ''u'' = |
| + | |- |
| + | | ''v'' = |
| + | |} |
| | | | | |
− | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="center" style="background:paleturquoise; text-align:center" |
− | | width="8%" | E''G''<sub>''i''</sub> | + | | 1 1 0 0 |
− | | width="4%" | = | + | |- |
− | | width="88%" | ''G''<sub>''i''</sub>‹''u'' + d''u'', ''v'' + d''v''› | + | | 1 0 1 0 |
| |} | | |} |
| + | | |
| + | {| align="left" style="background:paleturquoise; text-align:left" |
| + | | = ''u'' |
| + | |- |
| + | | = ''v'' |
| + | |} |
| + | | rowspan="2" | ''f''<sub>''j''</sub>‹''u'', ''v''› |
| + | |- style="background:paleturquoise" |
| + | | |
| + | {| align="right" style="background:paleturquoise; text-align:right" |
| + | | ''x'' = |
| + | |- |
| + | | ''y'' = |
| |} | | |} |
− | </font><br>
| |
− |
| |
− | ===Formula Display 15===
| |
− |
| |
− | <pre>
| |
− | o-------------------------------------------------o
| |
− | | |
| |
− | | DG_i = G_i <u, v> + EG_i <u, v, du, dv> |
| |
− | | |
| |
− | | = G_i <u, v> + G_i <u + du, v + dv> |
| |
− | | |
| |
− | o-------------------------------------------------o
| |
− | </pre>
| |
− |
| |
− | <br><font face="courier new">
| |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
| |
| | | | | |
− | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="center" style="background:paleturquoise; text-align:center" |
− | | width="8%" | D''G''<sub>''i''</sub> | + | | 1 1 1 0 |
− | | width="4%" | =
| |
− | | width="20%" | ''G''<sub>''i''</sub>‹''u'', ''v''›
| |
− | | width="4%" | +
| |
− | | width="64%" | E''G''<sub>''i''</sub>‹''u'', ''v'', d''u'', d''v''›
| |
| |- | | |- |
− | | width="8%" | | + | | 1 0 0 1 |
− | | width="4%" | =
| |
− | | width="20%" | ''G''<sub>''i''</sub>‹''u'', ''v''›
| |
− | | width="4%" | +
| |
− | | width="64%" | ''G''<sub>''i''</sub>‹''u'' + d''u'', ''v'' + d''v''›
| |
| |} | | |} |
| + | | |
| + | {| align="left" style="background:paleturquoise; text-align:left" |
| + | | = ''f''‹''u'', ''v''› |
| + | |- |
| + | | = ''g''‹''u'', ''v''› |
| |} | | |} |
− | </font><br>
| + | |- |
− | | |
− | ===Formula Display 16===
| |
− | | |
− | <pre>
| |
− | o-------------------------------------------------o
| |
− | | | | |
− | | Ef = ((u + du)(v + dv)) |
| |
− | | |
| |
− | | Eg = ((u + du, v + dv)) |
| |
− | | |
| |
− | o-------------------------------------------------o
| |
− | </pre>
| |
− | | |
− | <br><font face="courier new">
| |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
| |
| | | | | |
− | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| cellpadding="2" style="background:lightcyan" |
− | | width="8%" | E''f'' | + | | ''f''<sub>0</sub> |
− | | width="4%" | = | + | |- |
− | | width="88%" | ((''u'' + d''u'')(''v'' + d''v'')) | + | | ''f''<sub>1</sub> |
| + | |- |
| + | | ''f''<sub>2</sub> |
| + | |- |
| + | | ''f''<sub>3</sub> |
| + | |- |
| + | | ''f''<sub>4</sub> |
| + | |- |
| + | | ''f''<sub>5</sub> |
| + | |- |
| + | | ''f''<sub>6</sub> |
| |- | | |- |
− | | width="8%" | E''g'' | + | | ''f''<sub>7</sub> |
− | | width="4%" | =
| |
− | | width="88%" | ((''u'' + d''u'', ''v'' + d''v''))
| |
| |} | | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | () |
| + | |- |
| + | | (''x'')(''y'') |
| + | |- |
| + | | (''x'') ''y'' |
| + | |- |
| + | | (''x'') |
| + | |- |
| + | | ''x'' (''y'') |
| + | |- |
| + | | (''y'') |
| + | |- |
| + | | (''x'', ''y'') |
| + | |- |
| + | | (''x'' ''y'') |
| |} | | |} |
− | </font><br>
| |
− |
| |
− | ===Formula Display 17===
| |
− |
| |
− | <pre>
| |
− | o-------------------------------------------------o
| |
− | | |
| |
− | | Df = ((u)(v)) + ((u + du)(v + dv)) |
| |
− | | |
| |
− | | Dg = ((u, v)) + ((u + du, v + dv)) |
| |
− | | |
| |
− | o-------------------------------------------------o
| |
− | </pre>
| |
− |
| |
− | <br><font face="courier new">
| |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
| |
| | | | | |
− | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| cellpadding="2" style="background:lightcyan" |
− | | width="8%" | D''f'' | + | | 0 0 0 0 |
− | | width="4%" | = | + | |- |
− | | width="20%" | ((''u'')(''v'')) | + | | 0 0 0 1 |
− | | width="4%" | + | + | |- |
− | | width="64%" | ((''u'' + d''u'')(''v'' + d''v'')) | + | | 0 0 1 0 |
| + | |- |
| + | | 0 0 1 1 |
| + | |- |
| + | | 0 1 0 0 |
| + | |- |
| + | | 0 1 0 1 |
| + | |- |
| + | | 0 1 1 0 |
| |- | | |- |
− | | width="8%" | D''g'' | + | | 0 1 1 1 |
− | | width="4%" | = | + | |} |
− | | width="20%" | ((''u'', ''v'')) | + | | |
− | | width="4%" | + | + | {| cellpadding="2" style="background:lightcyan" |
− | | width="64%" | ((''u'' + d''u'', ''v'' + d''v'')) | + | | () |
| + | |- |
| + | | () |
| + | |- |
| + | | (''u'')(''v'') |
| + | |- |
| + | | (''u'')(''v'') |
| + | |- |
| + | | (''u'', ''v'') |
| + | |- |
| + | | (''u'', ''v'') |
| + | |- |
| + | | (''u'' ''v'') |
| + | |- |
| + | | (''u'' ''v'') |
| |} | | |} |
− | |}
| |
− | </font><br>
| |
− |
| |
− | ===Table 66-i. Computation Summary for f‹u, v› = ((u)(v))===
| |
− |
| |
− | <pre>
| |
− | Table 66-i. Computation Summary for f<u, v> = ((u)(v))
| |
− | o--------------------------------------------------------------------------------o
| |
− | | |
| |
− | | !e!f = uv. 1 + u(v). 1 + (u)v. 1 + (u)(v). 0 |
| |
− | | |
| |
− | | Ef = uv. (du dv) + u(v). (du (dv)) + (u)v.((du) dv) + (u)(v).((du)(dv)) |
| |
− | | |
| |
− | | Df = uv. du dv + u(v). du (dv) + (u)v. (du) dv + (u)(v).((du)(dv)) |
| |
− | | |
| |
− | | df = uv. 0 + u(v). du + (u)v. dv + (u)(v). (du, dv) |
| |
− | | |
| |
− | | rf = uv. du dv + u(v). du dv + (u)v. du dv + (u)(v). du dv |
| |
− | | |
| |
− | o--------------------------------------------------------------------------------o
| |
− | </pre>
| |
− |
| |
− | <font face="courier new">
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
| |
− | |+ Table 66-i. Computation Summary for ''f''‹''u'', ''v''› = ((''u'')(''v''))
| |
| | | | | |
− | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| cellpadding="2" style="background:lightcyan" |
− | | <math>\epsilon</math>''f'' | + | | ''f''<sub>0</sub> |
− | | = || ''uv'' || <math>\cdot</math> || 1
| + | |- |
− | | + || ''u''(''v'') || <math>\cdot</math> || 1
| + | | ''f''<sub>0</sub> |
− | | + || (''u'')''v'' || <math>\cdot</math> || 1 | + | |- |
− | | + || (''u'')(''v'') || <math>\cdot</math> || 0 | + | | ''f''<sub>1</sub> |
| + | |- |
| + | | ''f''<sub>1</sub> |
| |- | | |- |
− | | E''f'' | + | | ''f''<sub>6</sub> |
− | | = || ''uv'' || <math>\cdot</math> || (d''u'' d''v'')
| |
− | | + || ''u''(''v'') || <math>\cdot</math> || (d''u (d''v''))
| |
− | | + || (''u'')''v'' || <math>\cdot</math> || ((d''u'') d''v'')
| |
− | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v''))
| |
| |- | | |- |
− | | D''f'' | + | | ''f''<sub>6</sub> |
− | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v''
| |
− | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' (d''v'')
| |
− | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'') d''v''
| |
− | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v''))
| |
| |- | | |- |
− | | d''f'' | + | | ''f''<sub>7</sub> |
− | | = || ''uv'' || <math>\cdot</math> || 0
| |
− | | + || ''u''(''v'') || <math>\cdot</math> || d''u''
| |
− | | + || (''u'')''v'' || <math>\cdot</math> || d''v''
| |
− | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| |
| |- | | |- |
− | | r''f'' | + | | ''f''<sub>7</sub> |
− | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v''
| |
− | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' d''v''
| |
− | | + || (''u'')''v'' || <math>\cdot</math> || d''u'' d''v''
| |
− | | + || (''u'')(''v'') || <math>\cdot</math> || d''u'' d''v''
| |
| |} | | |} |
− | |} | + | |- |
− | </font><br>
| |
− | | |
− | ===Table 66-ii. Computation Summary for g‹u, v› = ((u, v))===
| |
− | | |
− | <pre>
| |
− | Table 66-ii. Computation Summary for g<u, v> = ((u, v))
| |
− | o--------------------------------------------------------------------------------o
| |
− | | |
| |
− | | !e!g = uv. 1 + u(v). 0 + (u)v. 0 + (u)(v). 1 |
| |
− | | |
| |
− | | Eg = uv.((du, dv)) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v).((du, dv)) |
| |
− | | |
| |
− | | Dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) |
| |
− | | |
| |
− | | dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) |
| |
− | | |
| |
− | | rg = uv. 0 + u(v). 0 + (u)v. 0 + (u)(v). 0 |
| |
− | | |
| |
− | o--------------------------------------------------------------------------------o
| |
− | </pre>
| |
− | | |
− | <font face="courier new">
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
| |
− | |+ Table 66-ii. Computation Summary for g‹''u'', ''v''› = ((''u'', ''v''))
| |
| | | | | |
− | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| cellpadding="2" style="background:lightcyan" |
− | | <math>\epsilon</math>''g''
| + | | ''f''<sub>8</sub> |
− | | = || ''uv'' || <math>\cdot</math> || 1
| + | |- |
− | | + || ''u''(''v'') || <math>\cdot</math> || 0 | + | | ''f''<sub>9</sub> |
− | | + || (''u'')''v'' || <math>\cdot</math> || 0 | + | |- |
− | | + || (''u'')(''v'') || <math>\cdot</math> || 1 | + | | ''f''<sub>10</sub> |
| + | |- |
| + | | ''f''<sub>11</sub> |
| |- | | |- |
− | | E''g'' | + | | ''f''<sub>12</sub> |
− | | = || ''uv'' || <math>\cdot</math> || ((d''u'', d''v''))
| |
− | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| |
− | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'')
| |
− | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'', d''v''))
| |
| |- | | |- |
− | | D''g'' | + | | ''f''<sub>13</sub> |
− | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'')
| |
− | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| |
− | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'')
| |
− | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| |
| |- | | |- |
− | | d''g'' | + | | ''f''<sub>14</sub> |
− | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'')
| |
− | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| |
− | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'')
| |
− | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| |
| |- | | |- |
− | | r''g'' | + | | ''f''<sub>15</sub> |
− | | = || ''uv'' || <math>\cdot</math> || 0
| |
− | | + || ''u''(''v'') || <math>\cdot</math> || 0
| |
− | | + || (''u'')''v'' || <math>\cdot</math> || 0
| |
− | | + || (''u'')(''v'') || <math>\cdot</math> || 0
| |
| |} | | |} |
− | |} | + | | |
− | </font><br> | + | {| cellpadding="2" style="background:lightcyan" |
− | | + | | ''x'' ''y'' |
− | ===Table 67. Computation of an Analytic Series in Terms of Coordinates=== | + | |- |
| + | | ((''x'', ''y'')) |
| + | |- |
| + | | ''y'' |
| + | |- |
| + | | (''x'' (''y'')) |
| + | |- |
| + | | ''x'' |
| + | |- |
| + | | ((''x'') ''y'') |
| + | |- |
| + | | ((''x'')(''y'')) |
| + | |- |
| + | | (()) |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | 1 0 0 0 |
| + | |- |
| + | | 1 0 0 1 |
| + | |- |
| + | | 1 0 1 0 |
| + | |- |
| + | | 1 0 1 1 |
| + | |- |
| + | | 1 1 0 0 |
| + | |- |
| + | | 1 1 0 1 |
| + | |- |
| + | | 1 1 1 0 |
| + | |- |
| + | | 1 1 1 1 |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | ''u'' ''v'' |
| + | |- |
| + | | ''u'' ''v'' |
| + | |- |
| + | | ((''u'', ''v'')) |
| + | |- |
| + | | ((''u'', ''v'')) |
| + | |- |
| + | | ((''u'')(''v'')) |
| + | |- |
| + | | ((''u'')(''v'')) |
| + | |- |
| + | | (()) |
| + | |- |
| + | | (()) |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | ''f''<sub>8</sub> |
| + | |- |
| + | | ''f''<sub>8</sub> |
| + | |- |
| + | | ''f''<sub>9</sub> |
| + | |- |
| + | | ''f''<sub>9</sub> |
| + | |- |
| + | | ''f''<sub>14</sub> |
| + | |- |
| + | | ''f''<sub>14</sub> |
| + | |- |
| + | | ''f''<sub>15</sub> |
| + | |- |
| + | | ''f''<sub>15</sub> |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Formula Display 14=== |
| | | |
| <pre> | | <pre> |
− | Table 67. Computation of an Analytic Series in Terms of Coordinates
| + | o-------------------------------------------------o |
− | o--------o-------o-------o--------o-------o-------o-------o-------o | + | | | |
− | | u v | du dv | u' v' | f g | Ef Eg | Df Dg | df dg | rf rg | | + | | EG_i = G_i <u + du, v + dv> | |
− | o--------o-------o-------o--------o-------o-------o-------o-------o
| + | | | |
− | | | | | | | | | |
| + | o-------------------------------------------------o |
− | | 0 0 | 0 0 | 0 0 | 0 1 | 0 1 | 0 0 | 0 0 | 0 0 | | |
− | | | | | | | | | |
| |
− | | | 0 1 | 0 1 | | 1 0 | 1 1 | 1 1 | 0 0 |
| |
− | | | | | | | | | |
| |
− | | | 1 0 | 1 0 | | 1 0 | 1 1 | 1 1 | 0 0 |
| |
− | | | | | | | | | | | |
− | | | 1 1 | 1 1 | | 1 1 | 1 0 | 0 0 | 1 0 |
| |
− | | | | | | | | | |
| |
− | o--------o-------o-------o--------o-------o-------o-------o-------o
| |
− | | | | | | | | | |
| |
− | | 0 1 | 0 0 | 0 1 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 |
| |
− | | | | | | | | | |
| |
− | | | 0 1 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 |
| |
− | | | | | | | | | |
| |
− | | | 1 0 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 |
| |
− | | | | | | | | | |
| |
− | | | 1 1 | 1 0 | | 1 0 | 0 0 | 1 0 | 1 0 |
| |
− | | | | | | | | | |
| |
− | o--------o-------o-------o--------o-------o-------o-------o-------o
| |
− | | | | | | | | | |
| |
− | | 1 0 | 0 0 | 1 0 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 |
| |
− | | | | | | | | | |
| |
− | | | 0 1 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 |
| |
− | | | | | | | | | |
| |
− | | | 1 0 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 |
| |
− | | | | | | | | | |
| |
− | | | 1 1 | 0 1 | | 1 0 | 0 0 | 1 0 | 1 0 |
| |
− | | | | | | | | | |
| |
− | o--------o-------o-------o--------o-------o-------o-------o-------o
| |
− | | | | | | | | | |
| |
− | | 1 1 | 0 0 | 1 1 | 1 1 | 1 1 | 0 0 | 0 0 | 0 0 |
| |
− | | | | | | | | | |
| |
− | | | 0 1 | 1 0 | | 1 0 | 0 1 | 0 1 | 0 0 |
| |
− | | | | | | | | | |
| |
− | | | 1 0 | 0 1 | | 1 0 | 0 1 | 0 1 | 0 0 |
| |
− | | | | | | | | | |
| |
− | | | 1 1 | 0 0 | | 0 1 | 1 0 | 0 0 | 1 0 |
| |
− | | | | | | | | | |
| |
− | o--------o-------o-------o--------o-------o-------o-------o-------o
| |
| </pre> | | </pre> |
| | | |
− | ===Table 68. Computation of an Analytic Series in Symbolic Terms=== | + | <br><font face="courier new"> |
| + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" |
| + | | |
| + | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" |
| + | | width="8%" | E''G''<sub>''i''</sub> |
| + | | width="4%" | = |
| + | | width="88%" | ''G''<sub>''i''</sub>‹''u'' + d''u'', ''v'' + d''v''› |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Formula Display 15=== |
| | | |
| <pre> | | <pre> |
− | Table 68. Computation of an Analytic Series in Symbolic Terms
| + | o-------------------------------------------------o |
− | o-----o-----o------------o----------o----------o----------o----------o----------o | + | | | |
− | | u v | f g | Df | Dg | df | dg | rf | rf | | + | | DG_i = G_i <u, v> + EG_i <u, v, du, dv> | |
− | o-----o-----o------------o----------o----------o----------o----------o----------o | + | | | |
− | | | | | | | | | |
| + | | = G_i <u, v> + G_i <u + du, v + dv> | |
− | | 0 0 | 0 1 | ((du)(dv)) | (du, dv) | (du, dv) | (du, dv) | du dv | () | | + | | | |
− | | | | | | | | | | | + | o-------------------------------------------------o |
− | | 0 1 | 1 0 | (du) dv | (du, dv) | dv | (du, dv) | du dv | () | | + | </pre> |
− | | | | | | | | | | | + | |
− | | 1 0 | 1 0 | du (dv) | (du, dv) | du | (du, dv) | du dv | () | | + | <br><font face="courier new"> |
− | | | | | | | | | |
| + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" |
− | | 1 1 | 1 1 | du dv | (du, dv) | () | (du, dv) | du dv | () |
| + | | |
− | | | | | | | | | |
| + | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" |
− | o-----o-----o------------o----------o----------o----------o----------o----------o | + | | width="8%" | D''G''<sub>''i''</sub> |
− | </pre>
| + | | width="4%" | = |
− | | + | | width="20%" | ''G''<sub>''i''</sub>‹''u'', ''v''› |
− | ===Formula Display 18=== | + | | width="4%" | + |
− | | + | | width="64%" | E''G''<sub>''i''</sub>‹''u'', ''v'', d''u'', d''v''› |
− | <pre>
| + | |- |
− | o-------------------------------------------------------------------------o | + | | width="8%" | |
− | | | | + | | width="4%" | = |
− | | Df = uv. du dv + u(v). du (dv) + (u)v.(du) dv + (u)(v).((du)(dv)) |
| + | | width="20%" | ''G''<sub>''i''</sub>‹''u'', ''v''› |
− | | |
| + | | width="4%" | + |
− | | Dg = uv.(du, dv) + u(v).(du, dv) + (u)v.(du, dv) + (u)(v). (du, dv) |
| + | | width="64%" | ''G''<sub>''i''</sub>‹''u'' + d''u'', ''v'' + d''v''› |
− | | | | + | |} |
− | o-------------------------------------------------------------------------o
| + | |} |
− | </pre>
| + | </font><br> |
− | | + | |
− | <br><font face="courier new">
| + | ===Formula Display 16=== |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
| + | |
− | |
| + | <pre> |
− | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| + | o-------------------------------------------------o |
− | |
| + | | | |
− | |-
| + | | Ef = ((u + du)(v + dv)) | |
− | | D''f'' | + | | | |
− | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v''
| + | | Eg = ((u + du, v + dv)) | |
− | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' (d''v'')
| + | | | |
− | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'') d''v'' | + | o-------------------------------------------------o |
− | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v''))
| + | </pre> |
− | |-
| + | |
− | |
| + | <br><font face="courier new"> |
− | |-
| + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" |
− | | D''g''
| + | | |
− | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'')
| + | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" |
− | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') | + | | width="8%" | E''f'' |
− | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') | + | | width="4%" | = |
− | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| + | | width="88%" | ((''u'' + d''u'')(''v'' + d''v'')) |
− | |-
| + | |- |
− | |
| + | | width="8%" | E''g'' |
− | |}
| + | | width="4%" | = |
− | |}
| + | | width="88%" | ((''u'' + d''u'', ''v'' + d''v'')) |
− | </font><br>
| + | |} |
− | | + | |} |
− | ===Figure 69. Difference Map of F = ‹f, g› = ‹((u)(v)), ((u, v))›===
| + | </font><br> |
− | | + | |
− | <pre> | + | ===Formula Display 17=== |
− | o-----------------------------------o o-----------------------------------o | + | |
− | | U | |`U`````````````````````````````````| | + | <pre> |
− | | | |```````````````````````````````````| | + | o-------------------------------------------------o |
− | | ^ | |```````````````````````````````````| | + | | | |
− | | | | |```````````````````````````````````| | + | | Df = ((u)(v)) + ((u + du)(v + dv)) | |
− | | o-------o | o-------o | |```````o-------o```o-------o```````| | + | | | |
− | | ^ /`````````\|/`````````\ ^ | | ^ ```/ ^ \`/ ^ \``` ^ | | + | | Dg = ((u, v)) + ((u + du, v + dv)) | |
− | | \ /```````````|```````````\ / | |``\``/ \ o / \``/``| | + | | | |
− | | \/`````u`````/|\`````v`````\/ | |```\/ u \/`\/ v \/```| | + | o-------------------------------------------------o |
− | | /\``````````/`|`\``````````/\ | |```/\ /\`/\ /\```| | + | </pre> |
− | | o``\````````o``@``o````````/``o | |``o \ o``@``o / o``| | + | |
| + | <br><font face="courier new"> |
| + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" |
| + | | |
| + | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" |
| + | | width="8%" | D''f'' |
| + | | width="4%" | = |
| + | | width="20%" | ((''u'')(''v'')) |
| + | | width="4%" | + |
| + | | width="64%" | ((''u'' + d''u'')(''v'' + d''v'')) |
| + | |- |
| + | | width="8%" | D''g'' |
| + | | width="4%" | = |
| + | | width="20%" | ((''u'', ''v'')) |
| + | | width="4%" | + |
| + | | width="64%" | ((''u'' + d''u'', ''v'' + d''v'')) |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Table 66-i. Computation Summary for f‹u, v› = ((u)(v))=== |
| + | |
| + | <pre> |
| + | Table 66-i. Computation Summary for f<u, v> = ((u)(v)) |
| + | o--------------------------------------------------------------------------------o |
| + | | | |
| + | | !e!f = uv. 1 + u(v). 1 + (u)v. 1 + (u)(v). 0 | |
| + | | | |
| + | | Ef = uv. (du dv) + u(v). (du (dv)) + (u)v.((du) dv) + (u)(v).((du)(dv)) | |
| + | | | |
| + | | Df = uv. du dv + u(v). du (dv) + (u)v. (du) dv + (u)(v).((du)(dv)) | |
| + | | | |
| + | | df = uv. 0 + u(v). du + (u)v. dv + (u)(v). (du, dv) | |
| + | | | |
| + | | rf = uv. du dv + u(v). du dv + (u)v. du dv + (u)(v). du dv | |
| + | | | |
| + | o--------------------------------------------------------------------------------o |
| + | </pre> |
| + | |
| + | <font face="courier new"> |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | |+ Table 66-i. Computation Summary for ''f''‹''u'', ''v''› = ((''u'')(''v'')) |
| + | | |
| + | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | <math>\epsilon</math>''f'' |
| + | | = || ''uv'' || <math>\cdot</math> || 1 |
| + | | + || ''u''(''v'') || <math>\cdot</math> || 1 |
| + | | + || (''u'')''v'' || <math>\cdot</math> || 1 |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || 0 |
| + | |- |
| + | | E''f'' |
| + | | = || ''uv'' || <math>\cdot</math> || (d''u'' d''v'') |
| + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u (d''v'')) |
| + | | + || (''u'')''v'' || <math>\cdot</math> || ((d''u'') d''v'') |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v'')) |
| + | |- |
| + | | D''f'' |
| + | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v'' |
| + | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' (d''v'') |
| + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'') d''v'' |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v'')) |
| + | |- |
| + | | d''f'' |
| + | | = || ''uv'' || <math>\cdot</math> || 0 |
| + | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' |
| + | | + || (''u'')''v'' || <math>\cdot</math> || d''v'' |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | |- |
| + | | r''f'' |
| + | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v'' |
| + | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' d''v'' |
| + | | + || (''u'')''v'' || <math>\cdot</math> || d''u'' d''v'' |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || d''u'' d''v'' |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Table 66-ii. Computation Summary for g‹u, v› = ((u, v))=== |
| + | |
| + | <pre> |
| + | Table 66-ii. Computation Summary for g<u, v> = ((u, v)) |
| + | o--------------------------------------------------------------------------------o |
| + | | | |
| + | | !e!g = uv. 1 + u(v). 0 + (u)v. 0 + (u)(v). 1 | |
| + | | | |
| + | | Eg = uv.((du, dv)) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v).((du, dv)) | |
| + | | | |
| + | | Dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) | |
| + | | | |
| + | | dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) | |
| + | | | |
| + | | rg = uv. 0 + u(v). 0 + (u)v. 0 + (u)(v). 0 | |
| + | | | |
| + | o--------------------------------------------------------------------------------o |
| + | </pre> |
| + | |
| + | <font face="courier new"> |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | |+ Table 66-ii. Computation Summary for g‹''u'', ''v''› = ((''u'', ''v'')) |
| + | | |
| + | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | <math>\epsilon</math>''g'' |
| + | | = || ''uv'' || <math>\cdot</math> || 1 |
| + | | + || ''u''(''v'') || <math>\cdot</math> || 0 |
| + | | + || (''u'')''v'' || <math>\cdot</math> || 0 |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || 1 |
| + | |- |
| + | | E''g'' |
| + | | = || ''uv'' || <math>\cdot</math> || ((d''u'', d''v'')) |
| + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'', d''v'')) |
| + | |- |
| + | | D''g'' |
| + | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | |- |
| + | | d''g'' |
| + | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | |- |
| + | | r''g'' |
| + | | = || ''uv'' || <math>\cdot</math> || 0 |
| + | | + || ''u''(''v'') || <math>\cdot</math> || 0 |
| + | | + || (''u'')''v'' || <math>\cdot</math> || 0 |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || 0 |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Table 67. Computation of an Analytic Series in Terms of Coordinates=== |
| + | |
| + | <pre> |
| + | Table 67. Computation of an Analytic Series in Terms of Coordinates |
| + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| + | | u v | du dv | u' v' | f g | Ef Eg | Df Dg | df dg | rf rg | |
| + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| + | | | | | | | | | | |
| + | | 0 0 | 0 0 | 0 0 | 0 1 | 0 1 | 0 0 | 0 0 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 0 1 | 0 1 | | 1 0 | 1 1 | 1 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 0 | 1 0 | | 1 0 | 1 1 | 1 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 1 | 1 1 | | 1 1 | 1 0 | 0 0 | 1 0 | |
| + | | | | | | | | | | |
| + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| + | | | | | | | | | | |
| + | | 0 1 | 0 0 | 0 1 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 0 1 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 0 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 1 | 1 0 | | 1 0 | 0 0 | 1 0 | 1 0 | |
| + | | | | | | | | | | |
| + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| + | | | | | | | | | | |
| + | | 1 0 | 0 0 | 1 0 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 0 1 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 0 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 1 | 0 1 | | 1 0 | 0 0 | 1 0 | 1 0 | |
| + | | | | | | | | | | |
| + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| + | | | | | | | | | | |
| + | | 1 1 | 0 0 | 1 1 | 1 1 | 1 1 | 0 0 | 0 0 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 0 1 | 1 0 | | 1 0 | 0 1 | 0 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 0 | 0 1 | | 1 0 | 0 1 | 0 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 1 | 0 0 | | 0 1 | 1 0 | 0 0 | 1 0 | |
| + | | | | | | | | | | |
| + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| + | </pre> |
| + | |
| + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | |+ Table 67. Computation of an Analytic Series in Terms of Coordinates |
| + | | |
| + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | ''u'' |
| + | | ''v'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | d''u'' |
| + | | d''v'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | ''u''<font face="courier new">’</font> |
| + | | ''v''<font face="courier new">’</font> |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | |} |
| + | | |
| + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | <math>\epsilon</math>''f'' |
| + | | <math>\epsilon</math>''g'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | E''f'' |
| + | | E''g'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | D''f'' |
| + | | D''g'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | d''f'' |
| + | | d''g'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | d<sup>2</sup>''f'' |
| + | | d<sup>2</sup>''g'' |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | |} |
| + | |} |
| + | <br> |
| + | |
| + | ===Table 68. Computation of an Analytic Series in Symbolic Terms=== |
| + | |
| + | <pre> |
| + | Table 68. Computation of an Analytic Series in Symbolic Terms |
| + | o-----o-----o------------o----------o----------o----------o----------o----------o |
| + | | u v | f g | Df | Dg | df | dg | rf | rg | |
| + | o-----o-----o------------o----------o----------o----------o----------o----------o |
| + | | | | | | | | | | |
| + | | 0 0 | 0 1 | ((du)(dv)) | (du, dv) | (du, dv) | (du, dv) | du dv | () | |
| + | | | | | | | | | | |
| + | | 0 1 | 1 0 | (du) dv | (du, dv) | dv | (du, dv) | du dv | () | |
| + | | | | | | | | | | |
| + | | 1 0 | 1 0 | du (dv) | (du, dv) | du | (du, dv) | du dv | () | |
| + | | | | | | | | | | |
| + | | 1 1 | 1 1 | du dv | (du, dv) | () | (du, dv) | du dv | () | |
| + | | | | | | | | | | |
| + | o-----o-----o------------o----------o----------o----------o----------o----------o |
| + | </pre> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | |+ '''Table 68. Computation of an Analytic Series in Symbolic Terms''' |
| + | |- style="background:paleturquoise" |
| + | | ''u'' ''v'' |
| + | | ''f'' ''g'' |
| + | | D''f'' |
| + | | D''g'' |
| + | | d''f'' |
| + | | d''g'' |
| + | | d<sup>2</sup>''f'' |
| + | | d<sup>2</sup>''g'' |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 0 |
| + | |- |
| + | | 0 1 |
| + | |- |
| + | | 1 0 |
| + | |- |
| + | | 1 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 1 |
| + | |- |
| + | | 1 0 |
| + | |- |
| + | | 1 0 |
| + | |- |
| + | | 1 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | ((d''u'')(d''v'')) |
| + | |- |
| + | | (d''u'') d''v'' |
| + | |- |
| + | | d''u'' (d''v'') |
| + | |- |
| + | | d''u'' d''v'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | (d''u'', d''v'') |
| + | |- |
| + | | (d''u'', d''v'') |
| + | |- |
| + | | (d''u'', d''v'') |
| + | |- |
| + | | (d''u'', d''v'') |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | (d''u'', d''v'') |
| + | |- |
| + | | d''v'' |
| + | |- |
| + | | d''u'' |
| + | |- |
| + | | ( ) |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | (d''u'', d''v'') |
| + | |- |
| + | | (d''u'', d''v'') |
| + | |- |
| + | | (d''u'', d''v'') |
| + | |- |
| + | | (d''u'', d''v'') |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | d''u'' d''v'' |
| + | |- |
| + | | d''u'' d''v'' |
| + | |- |
| + | | d''u'' d''v'' |
| + | |- |
| + | | d''u'' d''v'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | ( ) |
| + | |- |
| + | | ( ) |
| + | |- |
| + | | ( ) |
| + | |- |
| + | | ( ) |
| + | |} |
| + | |} |
| + | <br> |
| + | |
| + | ===Formula Display 18=== |
| + | |
| + | <pre> |
| + | o-------------------------------------------------------------------------o |
| + | | | |
| + | | Df = uv. du dv + u(v). du (dv) + (u)v.(du) dv + (u)(v).((du)(dv)) | |
| + | | | |
| + | | Dg = uv.(du, dv) + u(v).(du, dv) + (u)v.(du, dv) + (u)(v). (du, dv) | |
| + | | | |
| + | o-------------------------------------------------------------------------o |
| + | </pre> |
| + | |
| + | <br><font face="courier new"> |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | | |
| + | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | |
| + | |- |
| + | | D''f'' |
| + | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v'' |
| + | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' (d''v'') |
| + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'') d''v'' |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v'')) |
| + | |- |
| + | | |
| + | |- |
| + | | D''g'' |
| + | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | |- |
| + | | |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Figure 69. Difference Map of F = ‹f, g› = ‹((u)(v)), ((u, v))›=== |
| + | |
| + | <pre> |
| + | o-----------------------------------o o-----------------------------------o |
| + | | U | |`U`````````````````````````````````| |
| + | | | |```````````````````````````````````| |
| + | | ^ | |```````````````````````````````````| |
| + | | | | |```````````````````````````````````| |
| + | | o-------o | o-------o | |```````o-------o```o-------o```````| |
| + | | ^ /`````````\|/`````````\ ^ | | ^ ```/ ^ \`/ ^ \``` ^ | |
| + | | \ /```````````|```````````\ / | |``\``/ \ o / \``/``| |
| + | | \/`````u`````/|\`````v`````\/ | |```\/ u \/`\/ v \/```| |
| + | | /\``````````/`|`\``````````/\ | |```/\ /\`/\ /\```| |
| + | | o``\````````o``@``o````````/``o | |``o \ o``@``o / o``| |
| | |```\```````|`````|```````/```| | |``| \ |`````| / |``| | | | |```\```````|`````|```````/```| | |``| \ |`````| / |``| |
| | |````@``````|`````|``````@````| | |``| @-------->`<--------@ |``| | | | |````@``````|`````|``````@````| | |``| @-------->`<--------@ |``| |
Line 9,532: |
Line 10,515: |
| Figure 69. Difference Map of F = <f, g> = <((u)(v)), ((u, v))> | | Figure 69. Difference Map of F = <f, g> = <((u)(v)), ((u, v))> |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 69 -- Difference Map (Short Form).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 69. Difference Map of F = ‹f, g› = ‹((u)(v)), ((u, v))›'''</font></center></p> |
| | | |
| ===Formula Display 19=== | | ===Formula Display 19=== |
Line 9,570: |
Line 10,557: |
| </font><br> | | </font><br> |
| | | |
− | ===Figure 70-a. Tangent Functor Diagram for F‹u, v› = ‹((u)(v)), ((u, v))›=== | + | ===Figure 70-a. Tangent Functor Diagram for F‹u, v› = ‹((u)(v)), ((u, v))›=== |
| | | |
| <pre> | | <pre> |
Line 9,655: |
Line 10,642: |
| Figure 70-a. Tangent Functor Diagram for F‹u, v› = <((u)(v)), ((u, v))> | | Figure 70-a. Tangent Functor Diagram for F‹u, v› = <((u)(v)), ((u, v))> |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 70-a -- Tangent Functor Diagram.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 70-a. Tangent Functor Diagram for F‹u, v› = ‹((u)(v)), ((u, v))›'''</font></center></p> |
| | | |
| ===Figure 70-b. Tangent Functor Ferris Wheel for F‹u, v› = ‹((u)(v)), ((u, v))›=== | | ===Figure 70-b. Tangent Functor Ferris Wheel for F‹u, v› = ‹((u)(v)), ((u, v))›=== |
− |
| |
− | [[Image:Tangent_Functor_Ferris_Wheel.gif|frame|<font size="3">'''Figure 70-b. Tangent Functor Ferris Wheel for F‹u, v› = ‹((u)(v)), ((u, v))›'''</font>]]
| |
| | | |
| <pre> | | <pre> |
Line 9,838: |
Line 10,827: |
| Figure 70-b. Tangent Functor Ferris Wheel for F<u, v> = <((u)(v)), ((u, v))> | | Figure 70-b. Tangent Functor Ferris Wheel for F<u, v> = <((u)(v)), ((u, v))> |
| </pre> | | </pre> |
| + | |
| + | [[Image:Tangent_Functor_Ferris_Wheel.gif|frame|<font size="3">'''Figure 70-b. Tangent Functor Ferris Wheel for F‹u, v› = ‹((u)(v)), ((u, v))›'''</font>]] |