Line 8,095:
Line 8,095:
| = ('''B'''<sup>''n''</sup> +→ '''B''') = ['''B'''<sup>''n''</sup>]
| = ('''B'''<sup>''n''</sup> +→ '''B''') = ['''B'''<sup>''n''</sup>]
|}
|}
−
|-
−
|
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| <math>\epsilon</math>
−
|-
−
| <math>\eta</math>
−
|-
−
| E
−
|-
−
| D
−
|-
−
| d
−
|}
−
| valign="top" |
−
| colspan="2" |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%"
−
| Tacit Extension Operator || <math>\epsilon</math>
−
|-
−
| Trope Extension Operator || <math>\eta</math>
−
|-
−
| Enlargement Operator || E
−
|-
−
| Difference Operator || D
−
|-
−
| Differential Operator || d
−
|}
−
|-
−
| valign="top" |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| <font face=georgia>'''W'''</font>
−
|}
−
| valign="top" |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| <font face=georgia>'''W'''</font> :
−
|-
−
| ''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''U''<sup> •</sup> = E''U''<sup> •</sup> ,
−
|-
−
| ''X''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup> = E''X''<sup> •</sup> ,
−
|-
−
| (''U''<sup> •</sup> → ''X''<sup> •</sup>)
−
|-
−
| →
−
|-
−
| (<font face=georgia>'''T'''</font>''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup>) ,
−
|-
−
| for each <font face=georgia>'''W'''</font> in the set:
−
|-
−
| {<font face=georgia>'''e'''</font>, <font face=georgia>'''E'''</font>, <font face=georgia>'''D'''</font>, <font face=georgia>'''T'''</font>}
−
|}
−
| valign="top" |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| Operator
−
|}
−
| valign="top" |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100"
−
|
−
|-
−
| ['''B'''<sup>2</sup>] → ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] ,
−
|-
−
| ['''B'''<sup>1</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>] ,
−
|-
−
| (['''B'''<sup>2</sup>] → ['''B'''<sup>1</sup>])
−
|-
−
| →
−
|-
−
| (['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>])
−
|-
−
|
−
|-
−
|
−
|}
−
|-
−
|
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| <font face=georgia>'''e'''</font>
−
|-
−
| <font face=georgia>'''E'''</font>
−
|-
−
| <font face=georgia>'''D'''</font>
−
|-
−
| <font face=georgia>'''T'''</font>
−
|}
−
| valign="top" |
−
| colspan="2" |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%"
−
| Radius Operator || <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>›
−
|-
−
| Secant Operator || <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E›
−
|-
−
| Chord Operator || <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D›
−
|-
−
| Tangent Functor || <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d›
−
|}
−
|}<br>
−
−
−
<pre>
−
-------------o
−
| W | W : | Operator | |
−
| | U% -> EU%, | | [B^n] -> [B^n x D^n], |
−
| | X% -> EX%, | | [B^k] -> [B^k x D^k], |
−
| | (U%->X%)->(EU%->EX%), | | ([B^n] -> [B^k]) |
−
| | for each W among: | | -> |
−
| | !e!, !h!, E, D, d | | ([B^n x D^n]->[B^k x D^k]) |
−
-------------o
−
| !e! | | Tacit Extension Operator !e!
−
| !h! | | Trope Extension Operator !h!
−
| E | | Enlargement Operator E
−
| D | | Difference Operator D
−
| d | | Differential Operator d
−
-------------o
−
| $W$ | $W$ : | Operator | |
−
| | U% -> $T$U% = EU%, | | [B^n] -> [B^n x D^n], |
−
| | X% -> $T$X% = EX%, | | [B^k] -> [B^k x D^k], |
−
| | (U%->X%)->($T$U%->$T$X%)| | ([B^n] -> [B^k]) |
−
| | for each $W$ among: | | -> |
−
| | $e$, $E$, $D$, $T$ | | ([B^n x D^n]->[B^k x D^k]) |
−
-------------o
−
| $e$ | | Radius Operator $e$ = <!e!, !h!> |
−
| $E$ | | Secant Operator $E$ = <!e!, E > |
−
| $D$ | | Chord Operator $D$ = <!e!, D > |
−
| $T$ | | Tangent Functor $T$ = <!e!, d > |
−
-------------o
−
</pre>
−
−
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%"
−
|+ '''Table 54. Cast of Characters: Expansive Subtypes of Objects and Operators'''
−
|- style="background:paleturquoise"
−
! Item
−
! Notation
−
! Description
−
! Type
−
|-
−
| ''U''<sup> •</sup>
−
| = [''u'', ''v'']
−
| Source Universe
−
| ['''B'''<sup>2</sup>]
−
|-
−
| ''X''<sup> •</sup>
−
| = [''x'']
−
| Target Universe
−
| ['''B'''<sup>1</sup>]
−
|-
−
| E''U''<sup> •</sup>
−
| = [''u'', ''v'', d''u'', d''v'']
−
| Extended Source Universe
−
| ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>]
−
|-
−
| E''X''<sup> •</sup>
−
| = [''x'', d''x'']
−
| Extended Target Universe
−
| ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>]
−
|-
−
| ''J''
−
| ''J'' : ''U'' → '''B'''
−
| Proposition
−
| ('''B'''<sup>2</sup> → '''B''') ∈ ['''B'''<sup>2</sup>]
−
|-
−
| ''J''
−
| ''J'' : ''U''<sup> •</sup> → ''X''<sup> •</sup>
−
| Transformation, or Mapping
−
| ['''B'''<sup>2</sup>] → ['''B'''<sup>1</sup>]
|-
|-
| valign="top" |
| valign="top" |
Line 8,396:
Line 8,234:
|}
|}
|}<br>
|}<br>
+
+
<pre>
+
-------------o
+
| W | W : | Operator | |
+
| | U% -> EU%, | | [B^n] -> [B^n x D^n], |
+
| | X% -> EX%, | | [B^k] -> [B^k x D^k], |
+
| | (U%->X%)->(EU%->EX%), | | ([B^n] -> [B^k]) |
+
| | for each W among: | | -> |
+
| | !e!, !h!, E, D, d | | ([B^n x D^n]->[B^k x D^k]) |
+
-------------o
+
| !e! | | Tacit Extension Operator !e!
+
| !h! | | Trope Extension Operator !h!
+
| E | | Enlargement Operator E
+
| D | | Difference Operator D
+
| d | | Differential Operator d
+
-------------o
+
| $W$ | $W$ : | Operator | |
+
| | U% -> $T$U% = EU%, | | [B^n] -> [B^n x D^n], |
+
| | X% -> $T$X% = EX%, | | [B^k] -> [B^k x D^k], |
+
| | (U%->X%)->($T$U%->$T$X%)| | ([B^n] -> [B^k]) |
+
| | for each $W$ among: | | -> |
+
| | $e$, $E$, $D$, $T$ | | ([B^n x D^n]->[B^k x D^k]) |
+
-------------o
+
| $e$ | | Radius Operator $e$ = <!e!, !h!> |
+
| $E$ | | Secant Operator $E$ = <!e!, E > |
+
| $D$ | | Chord Operator $D$ = <!e!, D > |
+
| $T$ | | Tangent Functor $T$ = <!e!, d > |
+
-------------o
+
</pre>
===Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes===
===Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes===