Line 1,141: |
Line 1,141: |
| Figure 12. The Anchor | | Figure 12. The Anchor |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 12 -- The Anchor.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 12. The Anchor'''</font></center></p> |
| | | |
| ===Figure 13. The Tiller=== | | ===Figure 13. The Tiller=== |
Line 1,174: |
Line 1,178: |
| Figure 13. The Tiller | | Figure 13. The Tiller |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 13 -- The Tiller.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 13. The Tiller'''</font></center></p> |
| | | |
| ===Table 14. Differential Propositions=== | | ===Table 14. Differential Propositions=== |
Line 1,667: |
Line 1,675: |
| |} | | |} |
| </font><br> | | </font><br> |
| + | |
| + | ===Figure 16. A Couple of Fourth Gear Orbits=== |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 16 -- A Couple of Fourth Gear Orbits.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 16. A Couple of Fourth Gear Orbits'''</font></center></p> |
| | | |
| ===Figure 16-a. A Couple of Fourth Gear Orbits: 1=== | | ===Figure 16-a. A Couple of Fourth Gear Orbits: 1=== |
Line 2,064: |
Line 2,078: |
| Figure 18-a. Extension from 1 to 2 Dimensions: Areal | | Figure 18-a. Extension from 1 to 2 Dimensions: Areal |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 18-a -- Extension from 1 to 2 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 18-a. Extension from 1 to 2 Dimensions: Areal'''</font></center></p> |
| | | |
| ===Figure 18-b. Extension from 1 to 2 Dimensions: Bundle=== | | ===Figure 18-b. Extension from 1 to 2 Dimensions: Bundle=== |
Line 2,093: |
Line 2,111: |
| Figure 18-b. Extension from 1 to 2 Dimensions: Bundle | | Figure 18-b. Extension from 1 to 2 Dimensions: Bundle |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 18-b -- Extension from 1 to 2 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 18-b. Extension from 1 to 2 Dimensions: Bundle'''</font></center></p> |
| | | |
| ===Figure 18-c. Extension from 1 to 2 Dimensions: Compact=== | | ===Figure 18-c. Extension from 1 to 2 Dimensions: Compact=== |
Line 2,124: |
Line 2,146: |
| Figure 18-c. Extension from 1 to 2 Dimensions: Compact | | Figure 18-c. Extension from 1 to 2 Dimensions: Compact |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 18-c -- Extension from 1 to 2 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 18-c. Extension from 1 to 2 Dimensions: Compact'''</font></center></p> |
| | | |
| ===Figure 18-d. Extension from 1 to 2 Dimensions: Digraph=== | | ===Figure 18-d. Extension from 1 to 2 Dimensions: Digraph=== |
Line 2,143: |
Line 2,169: |
| Figure 18-d. Extension from 1 to 2 Dimensions: Digraph | | Figure 18-d. Extension from 1 to 2 Dimensions: Digraph |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 18-d -- Extension from 1 to 2 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 18-d. Extension from 1 to 2 Dimensions: Digraph'''</font></center></p> |
| | | |
| ===Figure 19-a. Extension from 2 to 4 Dimensions: Areal=== | | ===Figure 19-a. Extension from 2 to 4 Dimensions: Areal=== |
Line 2,186: |
Line 2,216: |
| Figure 19-a. Extension from 2 to 4 Dimensions: Areal | | Figure 19-a. Extension from 2 to 4 Dimensions: Areal |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 19-a -- Extension from 2 to 4 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 19-a. Extension from 2 to 4 Dimensions: Areal'''</font></center></p> |
| | | |
| ===Figure 19-b. Extension from 2 to 4 Dimensions: Bundle=== | | ===Figure 19-b. Extension from 2 to 4 Dimensions: Bundle=== |
Line 2,247: |
Line 2,281: |
| Figure 19-b. Extension from 2 to 4 Dimensions: Bundle | | Figure 19-b. Extension from 2 to 4 Dimensions: Bundle |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 19-b -- Extension from 2 to 4 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 19-b. Extension from 2 to 4 Dimensions: Bundle'''</font></center></p> |
| | | |
| ===Figure 19-c. Extension from 2 to 4 Dimensions: Compact=== | | ===Figure 19-c. Extension from 2 to 4 Dimensions: Compact=== |
Line 2,287: |
Line 2,325: |
| Figure 19-c. Extension from 2 to 4 Dimensions: Compact | | Figure 19-c. Extension from 2 to 4 Dimensions: Compact |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 19-c -- Extension from 2 to 4 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 19-c. Extension from 2 to 4 Dimensions: Compact'''</font></center></p> |
| | | |
| ===Figure 19-d. Extension from 2 to 4 Dimensions: Digraph=== | | ===Figure 19-d. Extension from 2 to 4 Dimensions: Digraph=== |
Line 2,330: |
Line 2,372: |
| Figure 19-d. Extension from 2 to 4 Dimensions: Digraph | | Figure 19-d. Extension from 2 to 4 Dimensions: Digraph |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 19-d -- Extension from 2 to 4 Dimensions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 19-d. Extension from 2 to 4 Dimensions: Digraph'''</font></center></p> |
| | | |
| ===Figure 20-i. Thematization of Conjunction (Stage 1)=== | | ===Figure 20-i. Thematization of Conjunction (Stage 1)=== |
Line 2,360: |
Line 2,406: |
| Figure 20-i. Thematization of Conjunction (Stage 1) | | Figure 20-i. Thematization of Conjunction (Stage 1) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 20-i -- Thematization of Conjunction (Stage 1).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 20-i. Thematization of Conjunction (Stage 1)'''</font></center></p> |
| | | |
| ===Figure 20-ii. Thematization of Conjunction (Stage 2)=== | | ===Figure 20-ii. Thematization of Conjunction (Stage 2)=== |
Line 2,407: |
Line 2,457: |
| Figure 20-ii. Thematization of Conjunction (Stage 2) | | Figure 20-ii. Thematization of Conjunction (Stage 2) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 20-ii -- Thematization of Conjunction (Stage 2).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 20-ii. Thematization of Conjunction (Stage 2)'''</font></center></p> |
| | | |
| ===Figure 20-iii. Thematization of Conjunction (Stage 3)=== | | ===Figure 20-iii. Thematization of Conjunction (Stage 3)=== |
Line 2,450: |
Line 2,504: |
| Figure 20-iii. Thematization of Conjunction (Stage 3) | | Figure 20-iii. Thematization of Conjunction (Stage 3) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 20-iii -- Thematization of Conjunction (Stage 3).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 20-iii. Thematization of Conjunction (Stage 3)'''</font></center></p> |
| | | |
| ===Figure 21. Thematization of Disjunction and Equality=== | | ===Figure 21. Thematization of Disjunction and Equality=== |
Line 2,516: |
Line 2,574: |
| Figure 21. Thematization of Disjunction and Equality | | Figure 21. Thematization of Disjunction and Equality |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 21 -- Thematization of Disjunction and Equality.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 21. Thematization of Disjunction and Equality'''</font></center></p> |
| | | |
| ===Table 22. Disjunction ''f'' and Equality ''g''=== | | ===Table 22. Disjunction ''f'' and Equality ''g''=== |
Line 3,673: |
Line 3,735: |
| Figure 30. Generic Frame of a Logical Transformation | | Figure 30. Generic Frame of a Logical Transformation |
| </pre> | | </pre> |
| + | |
| + | '''Note.''' The following image was corrupted in transit between software platforms. |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 30 -- Generic Frame of a Logical Transformation.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 30. Generic Frame of a Logical Transformation'''</font></center></p> |
| | | |
| ===Formula Display 3=== | | ===Formula Display 3=== |
Line 3,729: |
Line 3,797: |
| Figure 31. Operator Diagram (1) | | Figure 31. Operator Diagram (1) |
| </pre> | | </pre> |
| + | |
| + | '''Note.''' The following image was corrupted in transit between software platforms. |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 31 -- Operator Diagram (1).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 31. Operator Diagram (1)'''</font></center></p> |
| | | |
| ===Figure 32. Operator Diagram (2)=== | | ===Figure 32. Operator Diagram (2)=== |
Line 3,754: |
Line 3,828: |
| Figure 32. Operator Diagram (2) | | Figure 32. Operator Diagram (2) |
| </pre> | | </pre> |
| + | |
| + | '''Note.''' The following image was corrupted in transit between software platforms. |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 32 -- Operator Diagram (2).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 32. Operator Diagram (2)'''</font></center></p> |
| | | |
| ===Figure 33-i. Analytic Diagram (1)=== | | ===Figure 33-i. Analytic Diagram (1)=== |
Line 3,774: |
Line 3,854: |
| Figure 33-i. Analytic Diagram (1) | | Figure 33-i. Analytic Diagram (1) |
| </pre> | | </pre> |
| + | |
| + | '''Note.''' The following image was corrupted in transit between software platforms. |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 33-i -- Analytic Diagram (1).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 33-i. Analytic Diagram (1)'''</font></center></p> |
| | | |
| ===Figure 33-ii. Analytic Diagram (2)=== | | ===Figure 33-ii. Analytic Diagram (2)=== |
Line 3,794: |
Line 3,880: |
| Figure 33-ii. Analytic Diagram (2) | | Figure 33-ii. Analytic Diagram (2) |
| </pre> | | </pre> |
| + | |
| + | '''Note.''' The following image was corrupted in transit between software platforms. |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 33-ii -- Analytic Diagram (2).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 33-ii. Analytic Diagram (2)'''</font></center></p> |
| | | |
| ===Formula Display 4=== | | ===Formula Display 4=== |
Line 4,012: |
Line 4,104: |
| Figure 34. Tangent Functor Diagram | | Figure 34. Tangent Functor Diagram |
| </pre> | | </pre> |
| + | |
| + | '''Note.''' The following image was corrupted in transit between software platforms. |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 34 -- Tangent Functor Diagram.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 34. Tangent Functor Diagram'''</font></center></p> |
| | | |
| ===Figure 35. Conjunction as Transformation=== | | ===Figure 35. Conjunction as Transformation=== |
Line 4,067: |
Line 4,165: |
| Figure 35. Conjunction as Transformation | | Figure 35. Conjunction as Transformation |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 35 -- A Conjunction Viewed as a Transformation.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 35. Conjunction as Transformation'''</font></center></p> |
| | | |
| ===Table 36. Computation of !e!J=== | | ===Table 36. Computation of !e!J=== |
Line 4,140: |
Line 4,242: |
| </font><br> | | </font><br> |
| | | |
− | ===Figure 37-a. Tacit Extension of J (Areal)=== | + | ===Figure 37-a. Tacit Extension of ''J'' (Areal)=== |
| | | |
| <pre> | | <pre> |
Line 4,183: |
Line 4,285: |
| </pre> | | </pre> |
| | | |
− | ===Figure 37-b. Tacit Extension of J (Bundle)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 37-a -- Tacit Extension of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 37-a. Tacit Extension of ''J'' (Areal)'''</font></center></p> |
| + | |
| + | ===Figure 37-b. Tacit Extension of ''J'' (Bundle)=== |
| | | |
| <pre> | | <pre> |
Line 4,252: |
Line 4,358: |
| </pre> | | </pre> |
| | | |
− | ===Figure 37-c. Tacit Extension of J (Compact)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 37-b -- Tacit Extension of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 37-b. Tacit Extension of ''J'' (Bundle)'''</font></center></p> |
| + | |
| + | ===Figure 37-c. Tacit Extension of ''J'' (Compact)=== |
| | | |
| <pre> | | <pre> |
Line 4,292: |
Line 4,402: |
| </pre> | | </pre> |
| | | |
− | ===Figure 37-d. Tacit Extension of J (Digraph)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 37-c -- Tacit Extension of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 37-c. Tacit Extension of ''J'' (Compact)'''</font></center></p> |
| + | |
| + | ===Figure 37-d. Tacit Extension of ''J'' (Digraph)=== |
| | | |
| <pre> | | <pre> |
Line 4,333: |
Line 4,447: |
| Figure 37-d. Tacit Extension of J (Digraph) | | Figure 37-d. Tacit Extension of J (Digraph) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 37-d -- Tacit Extension of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 37-d. Tacit Extension of ''J'' (Digraph)'''</font></center></p> |
| | | |
| ===Table 38. Computation of EJ (Method 1)=== | | ===Table 38. Computation of EJ (Method 1)=== |
Line 4,504: |
Line 4,622: |
| </font><br> | | </font><br> |
| | | |
− | ===Figure 40-a. Enlargement of J (Areal)=== | + | ===Figure 40-a. Enlargement of ''J'' (Areal)=== |
| | | |
| <pre> | | <pre> |
Line 4,547: |
Line 4,665: |
| </pre> | | </pre> |
| | | |
− | ===Figure 40-b. Enlargement of J (Bundle)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 40-a -- Enlargement of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 40-a. Enlargement of ''J'' (Areal)'''</font></center></p> |
| + | |
| + | ===Figure 40-b. Enlargement of ''J'' (Bundle)=== |
| | | |
| <pre> | | <pre> |
Line 4,616: |
Line 4,738: |
| </pre> | | </pre> |
| | | |
− | ===Figure 40-c. Enlargement of J (Compact)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 40-b -- Enlargement of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 40-b. Enlargement of ''J'' (Bundle)'''</font></center></p> |
| + | |
| + | ===Figure 40-c. Enlargement of ''J'' (Compact)=== |
| | | |
| <pre> | | <pre> |
Line 4,656: |
Line 4,782: |
| </pre> | | </pre> |
| | | |
− | ===Figure 40-d. Enlargement of J (Digraph)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 40-c -- Enlargement of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 40-c. Enlargement of ''J'' (Compact)'''</font></center></p> |
| + | |
| + | ===Figure 40-d. Enlargement of ''J'' (Digraph)=== |
| | | |
| <pre> | | <pre> |
Line 4,697: |
Line 4,827: |
| Figure 40-d. Enlargement of J (Digraph) | | Figure 40-d. Enlargement of J (Digraph) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 40-d -- Enlargement of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 40-d. Enlargement of ''J'' (Digraph)'''</font></center></p> |
| | | |
| ===Table 41. Computation of DJ (Method 1)=== | | ===Table 41. Computation of DJ (Method 1)=== |
Line 4,964: |
Line 5,098: |
| </font><br> | | </font><br> |
| | | |
− | ===Figure 44-a. Difference Map of J (Areal)=== | + | ===Figure 44-a. Difference Map of ''J'' (Areal)=== |
| | | |
| <pre> | | <pre> |
Line 5,007: |
Line 5,141: |
| </pre> | | </pre> |
| | | |
− | ===Figure 44-b. Difference Map of J (Bundle)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 44-a -- Difference Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 44-a. Difference Map of ''J'' (Areal)'''</font></center></p> |
| + | |
| + | ===Figure 44-b. Difference Map of ''J'' (Bundle)=== |
| | | |
| <pre> | | <pre> |
Line 5,076: |
Line 5,214: |
| </pre> | | </pre> |
| | | |
− | ===Figure 44-c. Difference Map of J (Compact)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 44-b -- Difference Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 44-b. Difference Map of ''J'' (Bundle)'''</font></center></p> |
| + | |
| + | ===Figure 44-c. Difference Map of ''J'' (Compact)=== |
| | | |
| <pre> | | <pre> |
Line 5,117: |
Line 5,259: |
| </pre> | | </pre> |
| | | |
− | ===Figure 44-d. Difference Map of J (Digraph)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 44-c -- Difference Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 44-c. Difference Map of ''J'' (Compact)'''</font></center></p> |
| + | |
| + | ===Figure 44-d. Difference Map of ''J'' (Digraph)=== |
| | | |
| <pre> | | <pre> |
Line 5,155: |
Line 5,301: |
| Figure 44-d. Difference Map of J (Digraph) | | Figure 44-d. Difference Map of J (Digraph) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 44-d -- Difference Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 44-d. Difference Map of ''J'' (Digraph)'''</font></center></p> |
| | | |
| ===Table 45. Computation of dJ=== | | ===Table 45. Computation of dJ=== |
Line 5,193: |
Line 5,343: |
| </font><br> | | </font><br> |
| | | |
− | ===Figure 46-a. Differential of J (Areal)=== | + | ===Figure 46-a. Differential of ''J'' (Areal)=== |
| | | |
| <pre> | | <pre> |
Line 5,236: |
Line 5,386: |
| </pre> | | </pre> |
| | | |
− | ===Figure 46-b. Differential of J (Bundle)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 46-a -- Differential of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 46-a. Differential of ''J'' (Areal)'''</font></center></p> |
| + | |
| + | ===Figure 46-b. Differential of ''J'' (Bundle)=== |
| | | |
| <pre> | | <pre> |
Line 5,305: |
Line 5,459: |
| </pre> | | </pre> |
| | | |
− | ===Figure 46-c. Differential of J (Compact)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 46-b -- Differential of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 46-b. Differential of ''J'' (Bundle)'''</font></center></p> |
| + | |
| + | ===Figure 46-c. Differential of ''J'' (Compact)=== |
| | | |
| <pre> | | <pre> |
Line 5,342: |
Line 5,500: |
| </pre> | | </pre> |
| | | |
− | ===Figure 46-d. Differential of J (Digraph)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 46-c -- Differential of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 46-c. Differential of ''J'' (Compact)'''</font></center></p> |
| + | |
| + | ===Figure 46-d. Differential of ''J'' (Digraph)=== |
| | | |
| <pre> | | <pre> |
Line 5,378: |
Line 5,540: |
| Figure 46-d. Differential of J (Digraph) | | Figure 46-d. Differential of J (Digraph) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 46-d -- Differential of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 46-d. Differential of ''J'' (Digraph)'''</font></center></p> |
| | | |
| ===Table 47. Computation of rJ=== | | ===Table 47. Computation of rJ=== |
Line 5,439: |
Line 5,605: |
| </font><br> | | </font><br> |
| | | |
− | ===Figure 48-a. Remainder of J (Areal)=== | + | ===Figure 48-a. Remainder of ''J'' (Areal)=== |
| | | |
| <pre> | | <pre> |
Line 5,482: |
Line 5,648: |
| </pre> | | </pre> |
| | | |
− | ===Figure 48-b. Remainder of J (Bundle)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 48-a -- Remainder of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 48-a. Remainder of ''J'' (Areal)'''</font></center></p> |
| + | |
| + | ===Figure 48-b. Remainder of ''J'' (Bundle)=== |
| | | |
| <pre> | | <pre> |
Line 5,551: |
Line 5,721: |
| </pre> | | </pre> |
| | | |
− | ===Figure 48-c. Remainder of J (Compact)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 48-b -- Remainder of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 48-b. Remainder of ''J'' (Bundle)'''</font></center></p> |
| + | |
| + | ===Figure 48-c. Remainder of ''J'' (Compact)=== |
| | | |
| <pre> | | <pre> |
Line 5,591: |
Line 5,765: |
| </pre> | | </pre> |
| | | |
− | ===Figure 48-d. Remainder of J (Digraph)=== | + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 48-c -- Remainder of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 48-c. Remainder of ''J'' (Compact)'''</font></center></p> |
| + | |
| + | ===Figure 48-d. Remainder of ''J'' (Digraph)=== |
| | | |
| <pre> | | <pre> |
Line 5,627: |
Line 5,805: |
| Figure 48-d. Remainder of J (Digraph) | | Figure 48-d. Remainder of J (Digraph) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 48-d -- Remainder of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 48-d. Remainder of ''J'' (Digraph)'''</font></center></p> |
| | | |
| ===Table 49. Computation Summary for J=== | | ===Table 49. Computation Summary for J=== |
Line 6,228: |
Line 6,410: |
| Figure 52. Decomposition of the Enlarged Conjunction EJ = (J, DJ) | | Figure 52. Decomposition of the Enlarged Conjunction EJ = (J, DJ) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 52 -- Decomposition of EJ.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 52. Decomposition of E''J'''''</font></center></p> |
| | | |
| ===Figure 53. Decomposition of the Differed Conjunction DJ = (dJ, ddJ)=== | | ===Figure 53. Decomposition of the Differed Conjunction DJ = (dJ, ddJ)=== |
Line 6,279: |
Line 6,465: |
| Figure 53. Decomposition of the Differed Conjunction DJ = (dJ, ddJ) | | Figure 53. Decomposition of the Differed Conjunction DJ = (dJ, ddJ) |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 53 -- Decomposition of DJ.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 53. Decomposition of D''J'''''</font></center></p> |
| | | |
| ===Table 54. Cast of Characters: Expansive Subtypes of Objects and Operators=== | | ===Table 54. Cast of Characters: Expansive Subtypes of Objects and Operators=== |
Line 6,386: |
Line 6,576: |
| | Transformation, or Mapping | | | Transformation, or Mapping |
| | ['''B'''<sup>2</sup>] → ['''B'''<sup>1</sup>] | | | ['''B'''<sup>2</sup>] → ['''B'''<sup>1</sup>] |
− | |-
| |
| |- | | |- |
| | valign="top" | | | | valign="top" | |
Line 6,614: |
Line 6,803: |
| | <math>\epsilon</math> : | | | <math>\epsilon</math> : |
| |- | | |- |
− | | ''U''<sup> •</sup> → E''U''<sup> •</sup>, ''X''<sup> •</sup> → E''X''<sup> •</sup>, | + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| |- | | |- |
| | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → ''X''<sup> •</sup>) | | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → ''X''<sup> •</sup>) |
Line 6,622: |
Line 6,811: |
| | <math>\epsilon</math>''J'' : | | | <math>\epsilon</math>''J'' : |
| |- | | |- |
− | | 〈''u'', ''v'', d''u'', d''v''〉 → '''B''' | + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''B''' |
| |- | | |- |
− | | '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''B''' | + | | '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''B''' |
| |} | | |} |
| | | | | |
Line 6,630: |
Line 6,819: |
| | <math>\epsilon</math>''J'' : | | | <math>\epsilon</math>''J'' : |
| |- | | |- |
− | | [''u'', ''v'', d''u'', d''v''] → [''x''] | + | | [''u'', ''v'', d''u'', d''v''] → [''x''] |
| |- | | |- |
− | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B'''<sup>1</sup>] | + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B'''<sup>1</sup>] |
| |} | | |} |
| |- | | |- |
Line 6,645: |
Line 6,834: |
| | <math>\eta</math> : | | | <math>\eta</math> : |
| |- | | |- |
− | | | + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| |- | | |- |
− | | | + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
| |} | | |} |
| | | | | |
Line 6,653: |
Line 6,842: |
| | <math>\eta</math>''J'' : | | | <math>\eta</math>''J'' : |
| |- | | |- |
− | | | + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| |- | | |- |
− | | | + | | '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D''' |
| |} | | |} |
| | | | | |
Line 6,661: |
Line 6,850: |
| | <math>\eta</math>''J'' : | | | <math>\eta</math>''J'' : |
| |- | | |- |
− | | | + | | [''u'', ''v'', d''u'', d''v''] → [d''x''] |
| |- | | |- |
− | | | + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''D'''<sup>1</sup>] |
| |} | | |} |
| |- | | |- |
Line 6,676: |
Line 6,865: |
| | E : | | | E : |
| |- | | |- |
− | | | + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| |- | | |- |
− | | | + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
| |} | | |} |
| | | | | |
Line 6,684: |
Line 6,873: |
| | E''J'' : | | | E''J'' : |
| |- | | |- |
− | | | + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| |- | | |- |
− | | | + | | '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D''' |
| |} | | |} |
| | | | | |
Line 6,692: |
Line 6,881: |
| | E''J'' : | | | E''J'' : |
| |- | | |- |
− | | | + | | [''u'', ''v'', d''u'', d''v''] → [d''x''] |
| |- | | |- |
− | | | + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''D'''<sup>1</sup>] |
| |} | | |} |
| |- | | |- |
Line 6,707: |
Line 6,896: |
| | D : | | | D : |
| |- | | |- |
− | | | + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| |- | | |- |
− | | | + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
| |} | | |} |
| | | | | |
Line 6,715: |
Line 6,904: |
| | D''J'' : | | | D''J'' : |
| |- | | |- |
− | | | + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| |- | | |- |
− | | | + | | '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D''' |
| |} | | |} |
| | | | | |
Line 6,723: |
Line 6,912: |
| | D''J'' : | | | D''J'' : |
| |- | | |- |
− | | | + | | [''u'', ''v'', d''u'', d''v''] → [d''x''] |
| |- | | |- |
− | | | + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''D'''<sup>1</sup>] |
| |} | | |} |
| |- | | |- |
Line 6,738: |
Line 6,927: |
| | d : | | | d : |
| |- | | |- |
− | | | + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| |- | | |- |
− | | | + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
| |} | | |} |
| | | | | |
Line 6,746: |
Line 6,935: |
| | d''J'' : | | | d''J'' : |
| |- | | |- |
− | | | + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| |- | | |- |
− | | | + | | '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D''' |
| |} | | |} |
| | | | | |
Line 6,754: |
Line 6,943: |
| | d''J'' : | | | d''J'' : |
| |- | | |- |
− | | | + | | [''u'', ''v'', d''u'', d''v''] → [d''x''] |
| |- | | |- |
− | | | + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''D'''<sup>1</sup>] |
| |} | | |} |
| |- | | |- |
Line 6,769: |
Line 6,958: |
| | r : | | | r : |
| |- | | |- |
− | | | + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| |- | | |- |
− | | | + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
| |} | | |} |
| | | | | |
Line 6,777: |
Line 6,966: |
| | r''J'' : | | | r''J'' : |
| |- | | |- |
− | | | + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| |- | | |- |
− | | | + | | '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D''' |
| |} | | |} |
| | | | | |
Line 6,785: |
Line 6,974: |
| | r''J'' : | | | r''J'' : |
| |- | | |- |
− | | | + | | [''u'', ''v'', d''u'', d''v''] → [d''x''] |
| |- | | |- |
− | | | + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''D'''<sup>1</sup>] |
| |} | | |} |
| |- | | |- |
Line 6,800: |
Line 6,989: |
| | <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› : | | | <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› : |
| |- | | |- |
− | | | + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| |- | | |- |
− | | | + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) |
| |} | | |} |
| | | | | |
Line 6,816: |
Line 7,005: |
| | <font face=georgia>'''e'''</font>''J'' : | | | <font face=georgia>'''e'''</font>''J'' : |
| |- | | |- |
− | | | + | | [''u'', ''v'', d''u'', d''v''] → [''x'', d''x''] |
| |- | | |- |
− | | | + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B''' × '''D'''] |
| |} | | |} |
| |- | | |- |
Line 6,831: |
Line 7,020: |
| | <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› : | | | <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› : |
| |- | | |- |
− | | | + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| |- | | |- |
− | | | + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) |
| |} | | |} |
| | | | | |
Line 6,847: |
Line 7,036: |
| | <font face=georgia>'''E'''</font>''J'' : | | | <font face=georgia>'''E'''</font>''J'' : |
| |- | | |- |
− | | | + | | [''u'', ''v'', d''u'', d''v''] → [''x'', d''x''] |
| |- | | |- |
− | | | + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B''' × '''D'''] |
| |} | | |} |
| |- | | |- |
Line 6,862: |
Line 7,051: |
| | <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› : | | | <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› : |
| |- | | |- |
− | | | + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| |- | | |- |
− | | | + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) |
| |} | | |} |
| | | | | |
Line 6,878: |
Line 7,067: |
| | <font face=georgia>'''D'''</font>''J'' : | | | <font face=georgia>'''D'''</font>''J'' : |
| |- | | |- |
− | | | + | | [''u'', ''v'', d''u'', d''v''] → [''x'', d''x''] |
| |- | | |- |
− | | | + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B''' × '''D'''] |
| |} | | |} |
− |
| |
| |- | | |- |
| | | | | |
Line 6,894: |
Line 7,082: |
| | <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› : | | | <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› : |
| |- | | |- |
− | | | + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| |- | | |- |
− | | | + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) |
| |} | | |} |
| | | | | |
Line 6,902: |
Line 7,090: |
| | d''J'' : | | | d''J'' : |
| |- | | |- |
− | | | + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| |- | | |- |
− | | | + | | '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D''' |
| |} | | |} |
| | | | | |
Line 6,910: |
Line 7,098: |
| | <font face=georgia>'''T'''</font>''J'' : | | | <font face=georgia>'''T'''</font>''J'' : |
| |- | | |- |
− | | | + | | [''u'', ''v'', d''u'', d''v''] → [''x'', d''x''] |
| |- | | |- |
− | | | + | | ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B''' × '''D'''] |
− | |}
| |
| |} | | |} |
| + | |}<br> |
| + | |
| + | ===Figure 56-a1. Radius Map of the Conjunction J = uv=== |
| | | |
| <pre> | | <pre> |
− | --------------o
| + | o |
− | | + | /X\ |
− | | Tacit | !e! : | !e!J : | !e!J : |
| + | /XXX\ |
− | | Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> B | [u,v,du,dv]->[x] |
| + | oXXXXXo |
− | | | (U%->X%)->(EU%->X%) | B^2 x D^2 -> B | [B^2 x D^2]->[B^1] |
| + | /X\XXX/X\ |
− | | + | /XXX\X/XXX\ |
− | --------------o
| + | oXXXXXoXXXXXo |
− | | + | / \XXX/X\XXX/ \ |
− | | Trope | !h! : | !h!J : | !h!J : |
| + | / \X/XXX\X/ \ |
− | | Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx] |
| + | o oXXXXXo o |
− | | | (U%->X%)->(EU%->dX%) | B^2 x D^2 -> D | [B^2 x D^2]->[D^1] |
| + | / \ / \XXX/ \ / \ |
− | | + | / \ / \X/ \ / \ |
− | --------------o
| + | o o o o o |
− | | + | =|\ / \ / \ / \ /|= |
− | | Enlargement | E : | EJ : | EJ : |
| |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx] |
| |
− | | | (U%->X%)->(EU%->dX%) | B^2 x D^2 -> D | [B^2 x D^2]->[D^1] |
| |
− | | |
− | --------------o
| |
− | | |
− | | Difference | D : | DJ : | DJ : |
| |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx] |
| |
− | | | (U%->X%)->(EU%->dX%) | B^2 x D^2 -> D | [B^2 x D^2]->[D^1] |
| |
− | | |
− | --------------o
| |
− | | |
− | | Differential | d : | dJ : | dJ : |
| |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx] |
| |
− | | | (U%->X%)->(EU%->dX%) | B^2 x D^2 -> D | [B^2 x D^2]->[D^1] |
| |
− | | |
− | --------------o
| |
− | | |
− | | Remainder | r : | rJ : | rJ : |
| |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx] |
| |
− | | | (U%->X%)->(EU%->dX%) | B^2 x D^2 -> D | [B^2 x D^2]->[D^1] |
| |
− | | |
− | --------------o
| |
− | | |
− | | Radius | $e$ = <!e!, !h!> : | | $e$J : |
| |
− | | Operator | U%->EU%, X%->EX%, | | [u,v,du,dv]->[x, dx] |
| |
− | | | (U%->X%)->(EU%->EX%) | | [B^2 x D^2]->[B x D] |
| |
− | | |
− | --------------o
| |
− | | |
− | | Secant | $E$ = <!e!, E> : | | $E$J : |
| |
− | | Operator | U%->EU%, X%->EX%, | | [u,v,du,dv]->[x, dx] |
| |
− | | | (U%->X%)->(EU%->EX%) | | [B^2 x D^2]->[B x D] |
| |
− | | |
− | --------------o
| |
− | | |
− | | Chord | $D$ = <!e!, D> : | | $D$J : |
| |
− | | Operator | U%->EU%, X%->EX%, | | [u,v,du,dv]->[x, dx] |
| |
− | | | (U%->X%)->(EU%->EX%) | | [B^2 x D^2]->[B x D] |
| |
− | | |
− | --------------o
| |
− | | |
− | | Tangent | $T$ = <!e!, d> : | dJ : | $T$J : |
| |
− | | Functor | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[x, dx] |
| |
− | | | (U%->X%)->(EU%->EX%) | B^2 x D^2 -> D | [B^2 x D^2]->[B x D] |
| |
− | | |
− | --------------o
| |
− | </pre>
| |
− | | |
− | ===Figure 56-a1. Radius Map of the Conjunction J = uv===
| |
− | | |
− | <pre>
| |
− | o | |
− | /X\ | |
− | /XXX\ | |
− | oXXXXXo | |
− | /X\XXX/X\ | |
− | /XXX\X/XXX\ | |
− | oXXXXXoXXXXXo | |
− | / \XXX/X\XXX/ \ | |
− | / \X/XXX\X/ \ | |
− | o oXXXXXo o | |
− | / \ / \XXX/ \ / \ | |
− | / \ / \X/ \ / \ | |
− | o o o o o | |
− | =|\ / \ / \ / \ /|= | |
| = | \ / \ / \ / \ / | = | | = | \ / \ / \ / \ / | = |
| = | o o o o | = | | = | o o o o | = |
Line 7,047: |
Line 7,171: |
| Figure 56-a1. Radius Map of the Conjunction J = uv | | Figure 56-a1. Radius Map of the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-a1 -- Radius Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-a1. Radius Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 56-a2. Secant Map of the Conjunction J = uv=== | | ===Figure 56-a2. Secant Map of the Conjunction J = uv=== |
Line 7,115: |
Line 7,243: |
| Figure 56-a2. Secant Map of the Conjunction J = uv | | Figure 56-a2. Secant Map of the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-a2 -- Secant Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-a2. Secant Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 56-a3. Chord Map of the Conjunction J = uv=== | | ===Figure 56-a3. Chord Map of the Conjunction J = uv=== |
Line 7,183: |
Line 7,315: |
| Figure 56-a3. Chord Map of the Conjunction J = uv | | Figure 56-a3. Chord Map of the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-a3 -- Chord Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-a3. Chord Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 56-a4. Tangent Map of the Conjunction J = uv=== | | ===Figure 56-a4. Tangent Map of the Conjunction J = uv=== |
Line 7,251: |
Line 7,387: |
| Figure 56-a4. Tangent Map of the Conjunction J = uv | | Figure 56-a4. Tangent Map of the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-a4 -- Tangent Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-a4. Tangent Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 56-b1. Radius Map of the Conjunction J = uv=== | | ===Figure 56-b1. Radius Map of the Conjunction J = uv=== |
Line 7,351: |
Line 7,491: |
| Figure 56-b1. Radius Map of the Conjunction J = uv | | Figure 56-b1. Radius Map of the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-b1 -- Radius Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-b1. Radius Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 56-b2. Secant Map of the Conjunction J = uv=== | | ===Figure 56-b2. Secant Map of the Conjunction J = uv=== |
Line 7,451: |
Line 7,595: |
| Figure 56-b2. Secant Map of the Conjunction J = uv | | Figure 56-b2. Secant Map of the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-b2 -- Secant Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-b2. Secant Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 56-b3. Chord Map of the Conjunction J = uv=== | | ===Figure 56-b3. Chord Map of the Conjunction J = uv=== |
Line 7,551: |
Line 7,699: |
| Figure 56-b3. Chord Map of the Conjunction J = uv | | Figure 56-b3. Chord Map of the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-b3 -- Chord Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-b3. Chord Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 56-b4. Tangent Map of the Conjunction J = uv=== | | ===Figure 56-b4. Tangent Map of the Conjunction J = uv=== |
Line 7,651: |
Line 7,803: |
| Figure 56-b4. Tangent Map of the Conjunction J = uv | | Figure 56-b4. Tangent Map of the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 56-b4 -- Tangent Map of J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 56-b4. Tangent Map of the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 57-1. Radius Operator Diagram for the Conjunction J = uv=== | | ===Figure 57-1. Radius Operator Diagram for the Conjunction J = uv=== |
Line 7,721: |
Line 7,877: |
| Figure 57-1. Radius Operator Diagram for the Conjunction J = uv | | Figure 57-1. Radius Operator Diagram for the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 57-1 -- Radius Operator Diagram for J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 57-1. Radius Operator Diagram for the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 57-2. Secant Operator Diagram for the Conjunction J = uv=== | | ===Figure 57-2. Secant Operator Diagram for the Conjunction J = uv=== |
Line 7,791: |
Line 7,951: |
| Figure 57-2. Secant Operator Diagram for the Conjunction J = uv | | Figure 57-2. Secant Operator Diagram for the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 57-2 -- Secant Operator Diagram for J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 57-2. Secant Operator Diagram for the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 57-3. Chord Operator Diagram for the Conjunction J = uv=== | | ===Figure 57-3. Chord Operator Diagram for the Conjunction J = uv=== |
Line 7,861: |
Line 8,025: |
| Figure 57-3. Chord Operator Diagram for the Conjunction J = uv | | Figure 57-3. Chord Operator Diagram for the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 57-3 -- Chord Operator Diagram for J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 57-3. Chord Operator Diagram for the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Figure 57-4. Tangent Functor Diagram for the Conjunction J = uv=== | | ===Figure 57-4. Tangent Functor Diagram for the Conjunction J = uv=== |
Line 7,931: |
Line 8,099: |
| Figure 57-4. Tangent Functor Diagram for the Conjunction J = uv | | Figure 57-4. Tangent Functor Diagram for the Conjunction J = uv |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 57-4 -- Tangent Functor Diagram for J.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 57-4. Tangent Functor Diagram for the Conjunction ''J'' = ''uv'''''</font></center></p> |
| | | |
| ===Formula Display 11=== | | ===Formula Display 11=== |
Line 8,090: |
Line 8,262: |
| </pre> | | </pre> |
| | | |
− | ===Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes=== | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%" |
− | | + | |+ '''Table 58. Cast of Characters: Expansive Subtypes of Objects and Operators''' |
− | <pre>
| + | |- style="background:paleturquoise" |
− | Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes | + | ! Item |
− | o--------------o----------------------o--------------------o----------------------o
| + | ! Notation |
− | | | Operator | Proposition | Transformation | | + | ! Description |
− | | | or | or | or | | + | ! Type |
− | | | Operand | Component | Mapping | | + | |- |
− | o--------------o----------------------o--------------------o----------------------o
| + | | valign="top" | ''U''<sup> •</sup> |
− | | | | | |
| + | | valign="top" | <font face="courier new">= </font>[''u'', ''v''] |
− | | Operand | F = <F_1, F_2> | F_i : <|u,v|> -> B | F : [u, v] -> [x, y] | | + | | valign="top" | Source Universe |
− | | | | | | | + | | valign="top" | ['''B'''<sup>''n''</sup>] |
− | | | F = <f, g> : U -> X | F_i : B^n -> B | F : B^n -> B^k | | + | |- |
− | | | | | | | + | | valign="top" | ''X''<sup> •</sup> |
− | o--------------o----------------------o--------------------o----------------------o
| + | | valign="top" | |
− | | | | | | | + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | Tacit | !e! : | !e!F_i : | !e!F : |
| + | | <font face="courier new">= </font>[''x'', ''y''] |
− | | Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> B | [u,v,du,dv]->[x, y] |
| + | |- |
− | | | (U%->X%)->(EU%->X%) | B^n x D^n -> B | [B^n x D^n]->[B^k] | | + | | <font face="courier new">= </font>[''f'', ''g''] |
− | | | | | | | + | |} |
− | o--------------o----------------------o--------------------o----------------------o
| + | | valign="top" | Target Universe |
− | | | | | | | + | | valign="top" | ['''B'''<sup>''k''</sup>] |
− | | Trope | !h! : | !h!F_i : | !h!F : | | + | |- |
− | | Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
| + | | valign="top" | E''U''<sup> •</sup> |
− | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | | + | | valign="top" | <font face="courier new">= </font>[''u'', ''v'', d''u'', d''v''] |
− | | | | | | | + | | valign="top" | Extended Source Universe |
− | o--------------o----------------------o--------------------o----------------------o
| + | | valign="top" | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] |
− | | | | | | | + | |- |
− | | Enlargement | E : | EF_i : | EF : | | + | | valign="top" | E''X''<sup> •</sup> |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | | + | | valign="top" | |
− | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | | + | {| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | | | | | | + | | <font face="courier new">= </font>[''x'', ''y'', d''x'', d''y''] |
− | o--------------o----------------------o--------------------o----------------------o
| + | |- |
− | | | | | | | + | | <font face="courier new">= </font>[''f'', ''g'', d''f'', d''g''] |
− | | Difference | D : | DF_i : | DF : |
| + | |} |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | | + | | valign="top" | Extended Target Universe |
− | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | | + | | valign="top" | ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] |
− | | | | | | | + | |- |
− | o--------------o----------------------o--------------------o----------------------o
| + | | ''F'' |
− | | | | | | | + | | ''F'' = ‹''f'', ''g''› : ''U''<sup> •</sup> → ''X''<sup> •</sup> |
− | | Differential | d : | dF_i : | dF : | | + | | Transformation, or Mapping |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | | + | | ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>] |
− | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
| + | |- |
− | | | | | | | + | | valign="top" | |
− | o--------------o----------------------o--------------------o----------------------o
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | | | | | | + | | |
− | | Remainder | r : | rF_i : | rF : | | + | |- |
− | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
| + | | ''f'' |
− | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
| + | |- |
− | | | | | |
| + | | ''g'' |
− | o--------------o----------------------o--------------------o----------------------o
| + | |} |
− | | | | | |
| + | | valign="top" | |
− | | Radius | $e$ = <!e!, !h!> : | | $e$F : |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | Operator | | | |
| + | | ''f'', ''g'' : ''U'' → '''B''' |
− | | | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
| + | |- |
− | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
| + | | ''f'' : ''U'' → [''x''] ⊆ ''X''<sup> •</sup> |
− | | | | | |
| + | |- |
− | | | | | [B^n x D^n] -> |
| + | | ''g'' : ''U'' → [''y''] ⊆ ''X''<sup> •</sup> |
− | | | | | [B^k x D^k] |
| + | |} |
− | | | | | |
| + | | valign="top" | |
− | o--------------o----------------------o--------------------o----------------------o
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | | | | |
| + | | Proposition |
− | | Secant | $E$ = <!e!, E> : | | $E$F : |
| + | |} |
− | | Operator | | | |
| + | | valign="top" | |
− | | | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100" |
− | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
| + | | '''B'''<sup>''n''</sup> → '''B''' |
− | | | | | |
| + | |- |
− | | | | | [B^n x D^n] -> |
| + | | ∈ ('''B'''<sup>''n''</sup>, '''B'''<sup>''n''</sup> → '''B''') |
− | | | | | [B^k x D^k] |
| + | |- |
− | | | | | |
| + | | = ('''B'''<sup>''n''</sup> +→ '''B''') = ['''B'''<sup>''n''</sup>] |
− | o--------------o----------------------o--------------------o----------------------o
| + | |} |
− | | | | | |
| + | |- |
− | | Chord | $D$ = <!e!, D> : | | $D$F : |
| + | | valign="top" | |
− | | Operator | | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
| + | | W |
− | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
| + | |} |
− | | | | | |
| + | | valign="top" | |
− | | | | | [B^n x D^n] -> |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | | | | [B^k x D^k] |
| + | | W : |
− | | | | | |
| + | |- |
− | o--------------o----------------------o--------------------o----------------------o
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , |
− | | | | | |
| + | |- |
− | | Tangent | $T$ = <!e!, d> : | dF_i : | $T$F : |
| + | | ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
− | | Functor | | | |
| + | |- |
− | | | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u, v, du, dv] -> |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) |
− | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
| + | |- |
− | | | | | |
| + | | → |
− | | | | B^n x D^n -> D | [B^n x D^n] -> |
| + | |- |
− | | | | | [B^k x D^k] |
| + | | (E''U''<sup> •</sup> → E''X''<sup> •</sup>) , |
− | | | | | |
| + | |- |
− | o--------------o----------------------o--------------------o----------------------o
| + | | for each W in the set: |
− | </pre>
| + | |- |
− | | + | | {<math>\epsilon</math>, <math>\eta</math>, E, D, d} |
− | ===Formula Display 12===
| + | |} |
− | | + | | valign="top" | |
− | <pre>
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | o-----------------------------------------------------------o
| + | | Operator |
− | | |
| + | |} |
− | | x = f(u, v) = ((u)(v)) |
| + | | valign="top" | |
− | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100" |
− | | y = g(u, v) = ((u, v)) |
| + | | |
− | | |
| + | |- |
− | o-----------------------------------------------------------o
| + | | ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] , |
− | </pre>
| + | |- |
− | | + | | ['''B'''<sup>''k''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] , |
− | <br><font face="courier new">
| + | |- |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
| + | | (['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>]) |
− | |
| + | |- |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| + | | → |
− | |
| + | |- |
− | | ''x''
| + | | (['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]) |
− | | =
| + | |- |
− | | ''f''‹''u'', ''v''›
| + | | |
− | | =
| |
− | | ((''u'')(''v''))
| |
− | | | |
| |- | | |- |
− | |
| |
− | | ''y''
| |
− | | =
| |
− | | ''g''‹''u'', ''v''›
| |
− | | =
| |
− | | ((''u'', ''v''))
| |
| | | | | |
| |} | | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <math>\epsilon</math> |
| + | |- |
| + | | <math>\eta</math> |
| + | |- |
| + | | E |
| + | |- |
| + | | D |
| + | |- |
| + | | d |
| |} | | |} |
− | </font><br>
| + | | valign="top" | |
− | | + | | colspan="2" | |
− | ===Formula Display 13===
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%" |
− | | + | | Tacit Extension Operator || <math>\epsilon</math> |
− | <pre>
| + | |- |
− | o-----------------------------------------------------------o
| + | | Trope Extension Operator || <math>\eta</math> |
− | | |
| + | |- |
− | | <x, y> = F<u, v> = <((u)(v)), ((u, v))> | | + | | Enlargement Operator || E |
− | | | | + | |- |
− | o-----------------------------------------------------------o
| + | | Difference Operator || D |
− | </pre>
| + | |- |
− | | + | | Differential Operator || d |
− | <br><font face="courier new">
| |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | |
− | | | |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| |
− | | ‹''x'', ''y''› | |
− | | = | |
− | | ''F''‹''u'', ''v''› | |
− | | = | |
− | | ‹((''u'')(''v'')), ((''u'', ''v''))› | |
| |} | | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''W'''</font> |
| |} | | |} |
− | </font><br> | + | | valign="top" | |
− | | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | <br><font face="courier new"> | + | | <font face=georgia>'''W'''</font> : |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | |- |
− | | | + | | ''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''U''<sup> •</sup> = E''U''<sup> •</sup> , |
− | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | |- |
− | | | + | | ''X''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup> = E''X''<sup> •</sup> , |
− | | ‹''x'', ''y''› | + | |- |
− | | = | + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) |
− | | ''F''‹''u'', ''v''› | + | |- |
− | | = | + | | → |
− | | ‹((''u'')(''v'')), ((''u'', ''v''))› | + | |- |
| + | | (<font face=georgia>'''T'''</font>''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup>) , |
| + | |- |
| + | | for each <font face=georgia>'''W'''</font> in the set: |
| + | |- |
| + | | {<font face=georgia>'''e'''</font>, <font face=georgia>'''E'''</font>, <font face=georgia>'''D'''</font>, <font face=georgia>'''T'''</font>} |
| + | |} |
| + | | valign="top" | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Operator |
| + | |} |
| + | | valign="top" | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100" |
| + | | |
| + | |- |
| + | | ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] , |
| + | |- |
| + | | ['''B'''<sup>''k''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] , |
| + | |- |
| + | | (['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>]) |
| + | |- |
| + | | → |
| + | |- |
| + | | (['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]) |
| + | |- |
| + | | |
| + | |- |
| | | | | |
| |} | | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''e'''</font> |
| + | |- |
| + | | <font face=georgia>'''E'''</font> |
| + | |- |
| + | | <font face=georgia>'''D'''</font> |
| + | |- |
| + | | <font face=georgia>'''T'''</font> |
| |} | | |} |
− | </font><br> | + | | valign="top" | |
| + | | colspan="2" | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%" |
| + | | Radius Operator || <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› |
| + | |- |
| + | | Secant Operator || <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› |
| + | |- |
| + | | Chord Operator || <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› |
| + | |- |
| + | | Tangent Functor || <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› |
| + | |} |
| + | |}<br> |
| | | |
− | ===Table 60. Propositional Transformation=== | + | ===Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes=== |
| | | |
| <pre> | | <pre> |
− | Table 60. Propositional Transformation | + | Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes |
− | o-------------o-------------o-------------o-------------o | + | o--------------o----------------------o--------------------o----------------------o |
− | | u | v | f | g |
| + | | | Operator | Proposition | Transformation | |
− | o-------------o-------------o-------------o-------------o
| + | | | or | or | or | |
− | | | | | | | + | | | Operand | Component | Mapping | |
− | | 0 | 0 | 0 | 1 | | + | o--------------o----------------------o--------------------o----------------------o |
− | | | | | | | + | | | | | | |
− | | 0 | 1 | 1 | 0 |
| + | | Operand | F = <F_1, F_2> | F_i : <|u,v|> -> B | F : [u, v] -> [x, y] | |
− | | | | | |
| + | | | | | | |
− | | 1 | 0 | 1 | 0 |
| + | | | F = <f, g> : U -> X | F_i : B^n -> B | F : B^n -> B^k | |
− | | | | | |
| + | | | | | | |
− | | 1 | 1 | 1 | 1 |
| + | o--------------o----------------------o--------------------o----------------------o |
− | | | | | |
| + | | | | | | |
− | o-------------o-------------o-------------o-------------o | + | | Tacit | !e! : | !e!F_i : | !e!F : | |
− | | | | ((u)(v)) | ((u, v)) | | + | | Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> B | [u,v,du,dv]->[x, y] | |
− | o-------------o-------------o-------------o-------------o
| + | | | (U%->X%)->(EU%->X%) | B^n x D^n -> B | [B^n x D^n]->[B^k] | |
− | </pre>
| + | | | | | | |
− | | + | o--------------o----------------------o--------------------o----------------------o |
− | ===Figure 61. Propositional Transformation===
| + | | | | | | |
− | | + | | Trope | !h! : | !h!F_i : | !h!F : | |
− | <pre>
| + | | Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | |
− | o-----------------------------------------------------o
| + | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | |
− | | U | | + | | | | | | |
− | | |
| + | o--------------o----------------------o--------------------o----------------------o |
− | | o-----------o o-----------o |
| + | | | | | | |
− | | / \ / \ |
| + | | Enlargement | E : | EF_i : | EF : | |
− | | / o \ |
| + | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | |
− | | / / \ \ |
| + | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | |
− | | / / \ \ |
| + | | | | | | |
− | | o o o o |
| + | o--------------o----------------------o--------------------o----------------------o |
− | | | | | | | | + | | | | | | |
− | | | u | | v | |
| + | | Difference | D : | DF_i : | DF : | |
− | | | | | | |
| + | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | |
− | | o o o o | | + | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | |
− | | \ \ / / | | + | | | | | | |
− | | \ \ / / |
| + | o--------------o----------------------o--------------------o----------------------o |
− | | \ o / |
| + | | | | | | |
− | | \ / \ / |
| + | | Differential | d : | dF_i : | dF : | |
− | | o-----------o o-----------o |
| + | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | |
− | | |
| + | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | |
− | | |
| + | | | | | | |
− | o-----------------------------------------------------o
| + | o--------------o----------------------o--------------------o----------------------o |
− | / \ / \ | + | | | | | | |
− | / \ / \
| + | | Remainder | r : | rF_i : | rF : | |
− | / \ / \
| + | | Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] | |
− | / \ / \
| + | | | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] | |
− | / \ / \
| + | | | | | | |
− | / \ / \
| + | o--------------o----------------------o--------------------o----------------------o |
− | / \ / \
| + | | | | | | |
− | / \ / \
| + | | Radius | $e$ = <!e!, !h!> : | | $e$F : | |
− | / \ / \
| + | | Operator | | | | |
− | / \ / \
| + | | | U%->EU%, X%->EX%, | | [u, v, du, dv] -> | |
− | / \ / \
| + | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], | |
− | / \ / \
| + | | | | | | |
− | o-------------------------o o-------------------------o
| + | | | | | [B^n x D^n] -> | |
− | | U | |\U \\\\\\\\\\\\\\\\\\\\\\|
| + | | | | | [B^k x D^k] | |
− | | o---o o---o | |\\\\\\o---o\\\o---o\\\\\\|
| + | | | | | | |
− | | //////\ //////\ | |\\\\\/ \\/ \\\\\\|
| + | o--------------o----------------------o--------------------o----------------------o |
− | | ////////o///////\ | |\\\\/ o \\\\\| | + | | | | | | |
− | | //////////\///////\ | |\\\/ /\\ \\\\| | + | | Secant | $E$ = <!e!, E> : | | $E$F : | |
− | | o///////o///o///////o | |\\o o\\\o o\\| | + | | Operator | | | | |
− | | |// u //|///|// v //| | |\\| u |\\\| v |\\|
| + | | | U%->EU%, X%->EX%, | | [u, v, du, dv] -> | |
− | | o///////o///o///////o | |\\o o\\\o o\\| | + | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], | |
− | | \///////\////////// | |\\\\ \\/ /\\\|
| + | | | | | | |
− | | \///////o//////// | |\\\\\ o /\\\\| | + | | | | | [B^n x D^n] -> | |
− | | \////// \////// | |\\\\\\ /\\ /\\\\\|
| + | | | | | [B^k x D^k] | |
− | | o---o o---o | |\\\\\\o---o\\\o---o\\\\\\|
| + | | | | | | |
− | | | |\\\\\\\\\\\\\\\\\\\\\\\\\|
| + | o--------------o----------------------o--------------------o----------------------o |
− | o-------------------------o o-------------------------o
| + | | | | | | |
− | \ | | /
| + | | Chord | $D$ = <!e!, D> : | | $D$F : | |
− | \ | | /
| + | | Operator | | | | |
− | \ | | /
| + | | | U%->EU%, X%->EX%, | | [u, v, du, dv] -> | |
− | \ f | | g /
| + | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], | |
− | \ | | /
| + | | | | | | |
− | \ | | /
| + | | | | | [B^n x D^n] -> | |
− | \ | | /
| + | | | | | [B^k x D^k] | |
− | \ | | /
| + | | | | | | |
− | \ | | /
| + | o--------------o----------------------o--------------------o----------------------o |
− | \ | | /
| + | | | | | | |
− | o-------\----|---------------------------|----/-------o
| + | | Tangent | $T$ = <!e!, d> : | dF_i : | $T$F : | |
− | | X \ | | / |
| + | | Functor | | | | |
− | | \| |/ |
| + | | | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u, v, du, dv] -> | |
− | | o-----------o o-----------o |
| + | | | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], | |
− | | //////////////\ /\\\\\\\\\\\\\\ | | + | | | | | | |
− | | ////////////////o\\\\\\\\\\\\\\\\ |
| + | | | | B^n x D^n -> D | [B^n x D^n] -> | |
− | | /////////////////X\\\\\\\\\\\\\\\\\ |
| + | | | | | [B^k x D^k] | |
− | | /////////////////XXX\\\\\\\\\\\\\\\\\ |
| + | | | | | | |
− | | o///////////////oXXXXXo\\\\\\\\\\\\\\\o |
| + | o--------------o----------------------o--------------------o----------------------o |
− | | |///////////////|XXXXX|\\\\\\\\\\\\\\\| |
| |
− | | |////// x //////|XXXXX|\\\\\\ y \\\\\\| | | |
− | | |///////////////|XXXXX|\\\\\\\\\\\\\\\| | | |
− | | o///////////////oXXXXXo\\\\\\\\\\\\\\\o |
| |
− | | \///////////////\XXX/\\\\\\\\\\\\\\\/ |
| |
− | | \///////////////\X/\\\\\\\\\\\\\\\/ |
| |
− | | \///////////////o\\\\\\\\\\\\\\\/ |
| |
− | | \////////////// \\\\\\\\\\\\\\/ |
| |
− | | o-----------o o-----------o |
| |
− | | |
| |
− | | |
| |
− | o-----------------------------------------------------o
| |
− | Figure 61. Propositional Transformation
| |
| </pre> | | </pre> |
| | | |
− | ===Figure 62. Propositional Transformation (Short Form)=== | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; text-align:left; width:96%" |
− | | + | |+ '''Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes''' |
− | <pre>
| + | |- style="background:paleturquoise" |
− | o-------------------------o o-------------------------o
| + | | |
− | | U | |\U \\\\\\\\\\\\\\\\\\\\\\| | + | | align="center" | '''Operator<br>or<br>Operand''' |
− | | o---o o---o | |\\\\\\o---o\\\o---o\\\\\\| | + | | align="center" | '''Proposition<br>or<br>Component''' |
− | | //////\ //////\ | |\\\\\/ \\/ \\\\\\| | + | | align="center" | '''Transformation<br>or<br>Mapping''' |
− | | ////////o///////\ | |\\\\/ o \\\\\| | + | |- |
− | | //////////\///////\ | |\\\/ /\\ \\\\| | + | | Operand |
− | | o///////o///o///////o | |\\o o\\\o o\\| | + | | valign="top" | |
− | | |// u //|///|// v //| | |\\| u |\\\| v |\\| | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | o///////o///o///////o | |\\o o\\\o o\\| | + | | ''F'' = ‹''F''<sub>1</sub>, ''F''<sub>2</sub>› |
− | | \///////\////////// | |\\\\ \\/ /\\\| | + | |- |
− | | \///////o//////// | |\\\\\ o /\\\\| | + | | ''F'' = ‹''f'', ''g''› : ''U'' → ''X'' |
− | | \////// \////// | |\\\\\\ /\\ /\\\\\| | + | |} |
− | | o---o o---o | |\\\\\\o---o\\\o---o\\\\\\| | + | | valign="top" | |
− | | | |\\\\\\\\\\\\\\\\\\\\\\\\\| | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | o-------------------------o o-------------------------o
| + | | ''F''<sub>''i''</sub> : 〈''u'', ''v''〉 → '''B''' |
− | \ / \ /
| + | |- |
− | \ / \ /
| + | | ''F''<sub>''i''</sub> : '''B'''<sup>''n''</sup> → '''B''' |
− | \ / \ /
| + | |} |
− | \ f / \ g /
| + | | valign="top" | |
− | \ / \ /
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100" |
− | \ / \ /
| + | | ''F'' : [''u'', ''v''] → [''x'', ''y''] |
− | \ / \ /
| + | |- |
− | \ / \ /
| + | | ''F'' : '''B'''<sup>''n''</sup> → '''B'''<sup>''k''</sup> |
− | \ / \ /
| + | |} |
− | o---------\-----/---------------------\-----/---------o
| + | |- |
− | | X \ / \ / |
| + | | |
− | | \ / \ / |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | o-----------o o-----------o | | + | | Tacit |
− | | //////////////\ /\\\\\\\\\\\\\\ | | + | |- |
− | | ////////////////o\\\\\\\\\\\\\\\\ | | + | | Extension |
− | | /////////////////X\\\\\\\\\\\\\\\\\ | | + | |} |
− | | /////////////////XXX\\\\\\\\\\\\\\\\\ | | + | | |
− | | o///////////////oXXXXXo\\\\\\\\\\\\\\\o | | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | |///////////////|XXXXX|\\\\\\\\\\\\\\\| | | + | | <math>\epsilon</math> : |
− | | |////// x //////|XXXXX|\\\\\\ y \\\\\\| | | + | |- |
− | | |///////////////|XXXXX|\\\\\\\\\\\\\\\| |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
− | | o///////////////oXXXXXo\\\\\\\\\\\\\\\o | | + | |- |
− | | \///////////////\XXX/\\\\\\\\\\\\\\\/ | | + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → ''X''<sup> •</sup>) |
− | | \///////////////\X/\\\\\\\\\\\\\\\/ | | + | |} |
− | | \///////////////o\\\\\\\\\\\\\\\/ | | + | | |
− | | \////////////// \\\\\\\\\\\\\\/ | | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | o-----------o o-----------o | | + | | <math>\epsilon</math>''F''<sub>''i''</sub> : |
− | | | | + | |- |
− | | | | + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''B''' |
− | o-----------------------------------------------------o
| + | |- |
− | Figure 62. Propositional Transformation (Short Form)
| + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''B''' |
− | </pre> | + | |} |
− | | + | | |
− | ===Figure 63. Transformation of Positions===
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | + | | <math>\epsilon</math>''F'' : |
− | <pre> | + | |- |
− | o-----------------------------------------------------o
| + | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y''] |
− | |`U` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `|
| + | |- |
− | |` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `|
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>] |
− | |` ` ` ` ` ` o-----------o ` o-----------o ` ` ` ` ` `|
| + | |} |
− | |` ` ` ` ` `/' ' ' ' ' ' '\`/' ' ' ' ' ' '\` ` ` ` ` `|
| + | |- |
− | |` ` ` ` ` / ' ' ' ' ' ' ' o ' ' ' ' ' ' ' \ ` ` ` ` `|
| + | | |
− | |` ` ` ` `/' ' ' ' ' ' ' '/^\' ' ' ' ' ' ' '\` ` ` ` `|
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | |` ` ` ` / ' ' ' ' ' ' ' /^^^\ ' ' ' ' ' ' ' \ ` ` ` `|
| + | | Trope |
− | |` ` ` `o' ' ' ' ' ' ' 'o^^^^^o' ' ' ' ' ' ' 'o` ` ` `|
| + | |- |
− | |` ` ` `|' ' ' ' ' ' ' '|^^^^^|' ' ' ' ' ' ' '|` ` ` `|
| + | | Extension |
− | |` ` ` `|' ' ' ' u ' ' '|^^^^^|' ' ' v ' ' ' '|` ` ` `|
| + | |} |
− | |` ` ` `|' ' ' ' ' ' ' '|^^^^^|' ' ' ' ' ' ' '|` ` ` `|
| + | | |
− | |` `@` `o' ' ' ' @ ' ' 'o^^@^^o' ' ' @ ' ' ' 'o` ` ` `|
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | |` ` \ ` \ ' ' ' | ' ' ' \^|^/ ' ' ' | ' ' ' / ` ` ` `|
| + | | <math>\eta</math> : |
− | |` ` `\` `\' ' ' | ' ' ' '\|/' ' ' ' | ' ' '/` ` ` ` `|
| + | |- |
− | |` ` ` \ ` \ ' ' | ' ' ' ' | ' ' ' ' | ' ' / ` ` ` ` `|
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
− | |` ` ` `\` `\' ' | ' ' ' '/|\' ' ' ' | ' '/` ` ` ` ` `|
| + | |- |
− | |` ` ` ` \ ` o---|-------o | o-------|---o ` ` ` ` ` `|
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
− | |` ` ` ` `\` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` `|
| + | |} |
− | |` ` ` ` ` \ ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` `|
| + | | |
− | o-----------\----|---------|---------|----------------o
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | " " \ | | | " "
| + | | <math>\eta</math>''F''<sub>''i''</sub> : |
− | " " \ | | | " "
| + | |- |
− | " " \ | | | " "
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
− | " " \| | | " "
| + | |- |
− | o-------------------------o \ | | o-------------------------o
| + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
− | | U | |\ | | |`U```````````````````````| | + | |} |
− | | o---o o---o | | \ | | |``````o---o```o---o``````| | + | | |
− | | /'''''\ /'''''\ | | \ | | |`````/ \`/ \`````| | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | /'''''''o'''''''\ | | \ | | |````/ o \````|
| + | | <math>\eta</math>''F'' : |
− | | /'''''''/'\'''''''\ | | \ | | |```/ /`\ \```| | + | |- |
− | | o'''''''o'''o'''''''o | | \ | | |``o o```o o``|
| + | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y''] |
− | | |'''u'''|'''|'''v'''| | | \ | | |``| u |```| v |``| | + | |- |
− | | o'''''''o'''o'''''''o | | \ | | |``o o```o o``| | + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>] |
− | | \'''''''\'/'''''''/ | | \| | |```\ \`/ /```|
| + | |} |
− | | \'''''''o'''''''/ | | \ | |````\ o /````| | + | |- |
− | | \'''''/ \'''''/ | | |\ | |`````\ /`\ /`````|
| + | | |
− | | o---o o---o | | | \ | |``````o---o```o---o``````| | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | | | | \ * |`````````````````````````| | + | | Enlargement |
− | o-------------------------o | | \ / o-------------------------o
| + | |- |
− | \ | | | \ / | /
| + | | Operator |
− | \ ((u)(v)) | | | \/ | ((u, v)) /
| + | |} |
− | \ | | | /\ | /
| + | | |
− | \ | | | / \ | /
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | \ | | | / \ | /
| + | | E : |
− | \ | | | / * | /
| + | |- |
− | \ | | | / | | /
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
− | \ | | |/ | | /
| + | |- |
− | \ | | / | | /
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
− | \ | | /| | | /
| + | |} |
− | o-------\----|---|-------/-|---------|---|----/-------o
| + | | |
− | | X \ | | / | | | / |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | \| | / | | |/ |
| + | | E''F''<sub>''i''</sub> : |
− | | o---|----/--o | o-------|---o |
| + | |- |
− | | /' ' | ' / ' '\|/` ` ` ` | ` `\ |
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
− | | / ' ' | '/' ' ' | ` ` ` ` | ` ` \ |
| + | |- |
− | | /' ' ' | / ' ' '/|\` ` ` ` | ` ` `\ |
| + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
− | | / ' ' ' |/' ' ' /^|^\ ` ` ` | ` ` ` \ |
| + | |} |
− | | @ o' ' ' ' @ ' ' 'o^^@^^o` ` ` @ ` ` ` `o |
| + | | |
− | | |' ' ' ' ' ' ' '|^^^^^|` ` ` ` ` ` ` `| |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | |' ' ' ' f ' ' '|^^^^^|` ` ` g ` ` ` `| |
| + | | E''F'' : |
− | | |' ' ' ' ' ' ' '|^^^^^|` ` ` ` ` ` ` `| |
| + | |- |
− | | o' ' ' ' ' ' ' 'o^^^^^o` ` ` ` ` ` ` `o |
| + | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y''] |
− | | \ ' ' ' ' ' ' ' \^^^/ ` ` ` ` ` ` ` / |
| + | |- |
− | | \' ' ' ' ' ' ' '\^/` ` ` ` ` ` ` `/ |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>] |
− | | \ ' ' ' ' ' ' ' o ` ` ` ` ` ` ` / |
| + | |} |
− | | \' ' ' ' ' ' '/ \` ` ` ` ` ` `/ |
| + | |- |
− | | o-----------o o-----------o |
| + | | |
− | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | |
| + | | Difference |
− | o-----------------------------------------------------o
| + | |- |
− | Figure 63. Transformation of Positions
| + | | Operator |
− | </pre> | + | |} |
− | | + | | |
− | ===Table 64. Transformation of Positions===
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | + | | D : |
− | <pre> | + | |- |
− | Table 64. Transformation of Positions
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
− | o-----o----------o----------o-------o-------o--------o--------o-------------o
| + | |- |
− | | u v | x | y | x y | x(y) | (x)y | (x)(y) | X% = [x, y] |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
− | o-----o----------o----------o-------o-------o--------o--------o-------------o
| + | |} |
− | | | | | | | | | ^ |
| + | | |
− | | 0 0 | 0 | 1 | 0 | 0 | 1 | 0 | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | | | | | | | | |
| + | | D''F''<sub>''i''</sub> : |
− | | 0 1 | 1 | 0 | 0 | 1 | 0 | 0 | F |
| + | |- |
− | | | | | | | | | = |
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
− | | 1 0 | 1 | 0 | 0 | 1 | 0 | 0 | <f , g> |
| + | |- |
− | | | | | | | | | |
| + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
− | | 1 1 | 1 | 1 | 1 | 0 | 0 | 0 | ^ |
| + | |} |
− | | | | | | | | | | |
| + | | |
− | o-----o----------o----------o-------o-------o--------o--------o-------------o
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | | ((u)(v)) | ((u, v)) | u v | (u,v) | (u)(v) | 0 | U% = [u, v] |
| + | | D''F'' : |
− | o-----o----------o----------o-------o-------o--------o--------o-------------o
| + | |- |
− | </pre>
| + | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y''] |
− | | + | |- |
− | ===Table 65. Induced Transformation on Propositions===
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>] |
− | | + | |} |
− | <pre>
| + | |- |
− | Table 65. Induced Transformation on Propositions
| + | | |
− | o------------o---------------------------------o------------o
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | X% | <--- F = <f , g> <--- | U% |
| + | | Differential |
− | o------------o----------o-----------o----------o------------o
| + | |- |
− | | | u = | 1 1 0 0 | = u | |
| + | | Operator |
− | | | v = | 1 0 1 0 | = v | |
| + | |} |
− | | f_i <x, y> o----------o-----------o----------o f_j <u, v> |
| + | | |
− | | | x = | 1 1 1 0 | = f<u,v> | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | | y = | 1 0 0 1 | = g<u,v> | |
| + | | d : |
− | o------------o----------o-----------o----------o------------o
| + | |- |
− | | | | | | |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
− | | f_0 | () | 0 0 0 0 | () | f_0 |
| + | |- |
− | | | | | | |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
− | | f_1 | (x)(y) | 0 0 0 1 | () | f_0 |
| + | |} |
− | | | | | | |
| + | | |
− | | f_2 | (x) y | 0 0 1 0 | (u)(v) | f_1 |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | | | | | |
| + | | d''F''<sub>''i''</sub> : |
− | | f_3 | (x) | 0 0 1 1 | (u)(v) | f_1 |
| + | |- |
− | | | | | | |
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
− | | f_4 | x (y) | 0 1 0 0 | (u, v) | f_6 |
| + | |- |
− | | | | | | |
| + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
− | | f_5 | (y) | 0 1 0 1 | (u, v) | f_6 |
| + | |} |
− | | | | | | |
| + | | |
− | | f_6 | (x, y) | 0 1 1 0 | (u v) | f_7 |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | | | | | |
| + | | d''F'' : |
− | | f_7 | (x y) | 0 1 1 1 | (u v) | f_7 |
| + | |- |
− | | | | | | |
| + | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y''] |
− | o------------o----------o-----------o----------o------------o
| + | |- |
− | | | | | | |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>] |
− | | f_8 | x y | 1 0 0 0 | u v | f_8 |
| + | |} |
− | | | | | | |
| + | |- |
− | | f_9 | ((x, y)) | 1 0 0 1 | u v | f_8 |
| + | | |
− | | | | | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | f_10 | y | 1 0 1 0 | ((u, v)) | f_9 |
| + | | Remainder |
− | | | | | | |
| + | |- |
− | | f_11 | (x (y)) | 1 0 1 1 | ((u, v)) | f_9 |
| + | | Operator |
− | | | | | | |
| + | |} |
− | | f_12 | x | 1 1 0 0 | ((u)(v)) | f_14 |
| + | | |
− | | | | | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | f_13 | ((x) y) | 1 1 0 1 | ((u)(v)) | f_14 |
| + | | r : |
− | | | | | | |
| + | |- |
− | | f_14 | ((x)(y)) | 1 1 1 0 | (()) | f_15 |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
− | | | | | | |
| + | |- |
− | | f_15 | (()) | 1 1 1 1 | (()) | f_15 |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) |
− | | | | | | |
| + | |} |
− | o------------o----------o-----------o----------o------------o
| + | | |
− | </pre>
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | + | | r''F''<sub>''i''</sub> : |
− | ===Formula Display 14===
| + | |- |
− | | + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
− | <pre>
| + | |- |
− | o-------------------------------------------------o
| + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
− | | |
| + | |} |
− | | EG_i = G_i <u + du, v + dv> |
| + | | |
− | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | o-------------------------------------------------o
| + | | r''F'' : |
− | </pre> | + | |- |
− | | + | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y''] |
− | <br><font face="courier new">
| + | |- |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>] |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Radius |
| + | |- |
| + | | Operator |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''e'''</font>''F'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y''] |
| + | |- |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] |
| + | |} |
| + | |- |
| | | | | |
− | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | width="8%" | E''G''<sub>''i''</sub> | + | | Secant |
− | | width="4%" | = | + | |- |
− | | width="88%" | ''G''<sub>''i''</sub>‹''u'' + d''u'', ''v'' + d''v''› | + | | Operator |
| |} | | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| |} | | |} |
− | </font><br>
| |
− |
| |
− | ===Formula Display 15===
| |
− |
| |
− | <pre>
| |
− | o-------------------------------------------------o
| |
− | | |
| |
− | | DG_i = G_i <u, v> + EG_i <u, v, du, dv> |
| |
− | | |
| |
− | | = G_i <u, v> + G_i <u + du, v + dv> |
| |
− | | |
| |
− | o-------------------------------------------------o
| |
− | </pre>
| |
− |
| |
− | <br><font face="courier new">
| |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
| |
| | | | | |
− | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | width="8%" | D''G''<sub>''i''</sub> | + | | <font face=georgia>'''E'''</font>''F'' : |
− | | width="4%" | = | + | |- |
− | | width="20%" | ''G''<sub>''i''</sub>‹''u'', ''v''› | + | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y''] |
− | | width="4%" | +
| |
− | | width="64%" | E''G''<sub>''i''</sub>‹''u'', ''v'', d''u'', d''v''›
| |
| |- | | |- |
− | | width="8%" | | + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] |
− | | width="4%" | =
| |
− | | width="20%" | ''G''<sub>''i''</sub>‹''u'', ''v''›
| |
− | | width="4%" | +
| |
− | | width="64%" | ''G''<sub>''i''</sub>‹''u'' + d''u'', ''v'' + d''v''›
| |
| |} | | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Chord |
| + | |- |
| + | | Operator |
| |} | | |} |
− | </font><br>
| |
− |
| |
− | ===Formula Display 16===
| |
− |
| |
− | <pre>
| |
− | o-------------------------------------------------o
| |
− | | |
| |
− | | Ef = ((u + du)(v + dv)) |
| |
− | | |
| |
− | | Eg = ((u + du, v + dv)) |
| |
− | | |
| |
− | o-------------------------------------------------o
| |
− | </pre>
| |
− |
| |
− | <br><font face="courier new">
| |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
| |
| | | | | |
− | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
− | | width="8%" | E''f'' | + | | <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› : |
− | | width="4%" | =
| |
− | | width="88%" | ((''u'' + d''u'')(''v'' + d''v''))
| |
| |- | | |- |
− | | width="8%" | E''g'' | + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
− | | width="4%" | = | + | |- |
− | | width="88%" | ((''u'' + d''u'', ''v'' + d''v'')) | + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | |
| + | |- |
| + | | |
| + | |- |
| + | | |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''D'''</font>''F'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y''] |
| + | |- |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] |
| + | |} |
| + | |- |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | Tangent |
| + | |- |
| + | | Functor |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› : |
| + | |- |
| + | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> , |
| + | |- |
| + | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) |
| + | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | d''F''<sub>''i''</sub> : |
| + | |- |
| + | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D''' |
| + | |- |
| + | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' |
| |} | | |} |
| + | | |
| + | {| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%" |
| + | | <font face=georgia>'''T'''</font>''F'' : |
| + | |- |
| + | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y''] |
| + | |- |
| + | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] |
| |} | | |} |
− | </font><br>
| + | |}<br> |
| | | |
− | ===Formula Display 17=== | + | ===Formula Display 12=== |
| | | |
| <pre> | | <pre> |
− | o-------------------------------------------------o | + | o-----------------------------------------------------------o |
− | | | | + | | | |
− | | Df = ((u)(v)) + ((u + du)(v + dv)) | | + | | x = f(u, v) = ((u)(v)) | |
− | | | | + | | | |
− | | Dg = ((u, v)) + ((u + du, v + dv)) | | + | | y = g(u, v) = ((u, v)) | |
− | | | | + | | | |
− | o-------------------------------------------------o | + | o-----------------------------------------------------------o |
| </pre> | | </pre> |
| | | |
| <br><font face="courier new"> | | <br><font face="courier new"> |
− | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| | | | | |
− | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | width="8%" | D''f'' | + | | |
− | | width="4%" | =
| + | | ''x'' |
− | | width="20%" | ((''u'')(''v'')) | + | | = |
− | | width="4%" | + | + | | ''f''‹''u'', ''v''› |
− | | width="64%" | ((''u'' + d''u'')(''v'' + d''v''))
| + | | = |
| + | | ((''u'')(''v'')) |
| + | | |
| |- | | |- |
− | | width="8%" | D''g'' | + | | |
− | | width="4%" | =
| + | | ''y'' |
− | | width="20%" | ((''u'', ''v'')) | + | | = |
− | | width="4%" | + | + | | ''g''‹''u'', ''v''› |
− | | width="64%" | ((''u'' + d''u'', ''v'' + d''v''))
| + | | = |
| + | | ((''u'', ''v'')) |
| + | | |
| |} | | |} |
| |} | | |} |
| </font><br> | | </font><br> |
| | | |
− | ===Table 66-i. Computation Summary for f‹u, v› = ((u)(v))=== | + | ===Formula Display 13=== |
| | | |
| <pre> | | <pre> |
− | Table 66-i. Computation Summary for f<u, v> = ((u)(v))
| + | o-----------------------------------------------------------o |
− | o--------------------------------------------------------------------------------o | + | | | |
− | | | | + | | <x, y> = F<u, v> = <((u)(v)), ((u, v))> | |
− | | !e!f = uv. 1 + u(v). 1 + (u)v. 1 + (u)(v). 0 | | + | | | |
− | | |
| + | o-----------------------------------------------------------o |
− | | Ef = uv. (du dv) + u(v). (du (dv)) + (u)v.((du) dv) + (u)(v).((du)(dv)) |
| |
− | | |
| |
− | | Df = uv. du dv + u(v). du (dv) + (u)v. (du) dv + (u)(v).((du)(dv)) |
| |
− | | |
| |
− | | df = uv. 0 + u(v). du + (u)v. dv + (u)(v). (du, dv) |
| |
− | | |
| |
− | | rf = uv. du dv + u(v). du dv + (u)v. du dv + (u)(v). du dv |
| |
− | | | | |
− | o--------------------------------------------------------------------------------o | |
| </pre> | | </pre> |
| | | |
− | <font face="courier new"> | + | <br><font face="courier new"> |
| {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
− | |+ Table 66-i. Computation Summary for ''f''‹''u'', ''v''› = ((''u'')(''v''))
| |
| | | | | |
− | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | <math>\epsilon</math>''f'' | + | | ‹''x'', ''y''› |
− | | = || ''uv'' || <math>\cdot</math> || 1
| + | | = |
− | | + || ''u''(''v'') || <math>\cdot</math> || 1 | + | | ''F''‹''u'', ''v''› |
− | | + || (''u'')''v'' || <math>\cdot</math> || 1 | + | | = |
− | | + || (''u'')(''v'') || <math>\cdot</math> || 0
| + | | ‹((''u'')(''v'')), ((''u'', ''v''))› |
− | |-
| + | |} |
− | | E''f''
| + | |} |
− | | = || ''uv'' || <math>\cdot</math> || (d''u'' d''v'') | + | </font><br> |
− | | + || ''u''(''v'') || <math>\cdot</math> || (d''u (d''v'')) | + | |
− | | + || (''u'')''v'' || <math>\cdot</math> || ((d''u'') d''v'')
| + | <br><font face="courier new"> |
− | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v''))
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
− | |- | + | | |
− | | D''f'' | + | {| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v''
| + | | |
− | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' (d''v'')
| + | | ‹''x'', ''y''› |
− | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'') d''v''
| + | | = |
− | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v''))
| + | | ''F''‹''u'', ''v''› |
− | |- | + | | = |
− | | d''f'' | + | | ‹((''u'')(''v'')), ((''u'', ''v''))› |
− | | = || ''uv'' || <math>\cdot</math> || 0 | + | | |
− | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' | |
− | | + || (''u'')''v'' || <math>\cdot</math> || d''v'' | |
− | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') | |
− | |-
| |
− | | r''f''
| |
− | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v'' | |
− | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' d''v'' | |
− | | + || (''u'')''v'' || <math>\cdot</math> || d''u'' d''v''
| |
− | | + || (''u'')(''v'') || <math>\cdot</math> || d''u'' d''v''
| |
| |} | | |} |
| |} | | |} |
| </font><br> | | </font><br> |
| | | |
− | ===Table 66-ii. Computation Summary for g‹u, v› = ((u, v))=== | + | ===Table 60. Propositional Transformation=== |
| | | |
| <pre> | | <pre> |
− | Table 66-ii. Computation Summary for g<u, v> = ((u, v)) | + | Table 60. Propositional Transformation |
− | o--------------------------------------------------------------------------------o | + | o-------------o-------------o-------------o-------------o |
− | | | | + | | u | v | f | g | |
− | | !e!g = uv. 1 + u(v). 0 + (u)v. 0 + (u)(v). 1 | | + | o-------------o-------------o-------------o-------------o |
− | | | | + | | | | | | |
− | | Eg = uv.((du, dv)) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v).((du, dv)) | | + | | 0 | 0 | 0 | 1 | |
− | | | | + | | | | | | |
− | | Dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) | | + | | 0 | 1 | 1 | 0 | |
− | | | | + | | | | | | |
− | | dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) | | + | | 1 | 0 | 1 | 0 | |
− | | | | + | | | | | | |
− | | rg = uv. 0 + u(v). 0 + (u)v. 0 + (u)(v). 0 | | + | | 1 | 1 | 1 | 1 | |
− | | | | + | | | | | | |
− | o--------------------------------------------------------------------------------o | + | o-------------o-------------o-------------o-------------o |
− | </pre> | + | | | | ((u)(v)) | ((u, v)) | |
| + | o-------------o-------------o-------------o-------------o |
| + | </pre> |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
− | |+ Table 66-ii. Computation Summary for g‹''u'', ''v''› = ((''u'', ''v'')) | + | |+ '''Table 60. Propositional Transformation''' |
− | | | + | |- style="background:paleturquoise" |
− | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
| + | | width="25%" | ''u'' |
− | | <math>\epsilon</math>''g'' | + | | width="25%" | ''v'' |
− | | = || ''uv'' || <math>\cdot</math> || 1 | + | | width="25%" | ''f'' |
− | | + || ''u''(''v'') || <math>\cdot</math> || 0
| + | | width="25%" | ''g'' |
− | | + || (''u'')''v'' || <math>\cdot</math> || 0 | |
− | | + || (''u'')(''v'') || <math>\cdot</math> || 1 | |
| |- | | |- |
− | | E''g'' | + | | width="25%" | |
− | | = || ''uv'' || <math>\cdot</math> || ((d''u'', d''v''))
| + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
− | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') | + | | 0 |
− | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'')
| |
− | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'', d''v'')) | |
| |- | | |- |
− | | D''g'' | + | | 0 |
− | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'')
| |
− | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| |
− | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'')
| |
− | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| |
| |- | | |- |
− | | d''g'' | + | | 1 |
− | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'')
| |
− | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| |
− | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'')
| |
− | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| |
| |- | | |- |
− | | r''g'' | + | | 1 |
− | | = || ''uv'' || <math>\cdot</math> || 0
| |
− | | + || ''u''(''v'') || <math>\cdot</math> || 0
| |
− | | + || (''u'')''v'' || <math>\cdot</math> || 0
| |
− | | + || (''u'')(''v'') || <math>\cdot</math> || 0
| |
| |} | | |} |
| + | | width="25%" | |
| + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |} |
| + | | width="25%" | |
| + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 1 |
| + | |} |
| + | | width="25%" | |
| + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |} |
| + | |- |
| + | | width="25%" | |
| + | | width="25%" | |
| + | | width="25%" | ((''u'')(''v'')) |
| + | | width="25%" | ((''u'', ''v'')) |
| |} | | |} |
| </font><br> | | </font><br> |
| | | |
− | ===Table 67. Computation of an Analytic Series in Terms of Coordinates=== | + | ===Figure 61. Propositional Transformation=== |
| | | |
| <pre> | | <pre> |
− | Table 67. Computation of an Analytic Series in Terms of Coordinates
| + | o-----------------------------------------------------o |
− | o--------o-------o-------o--------o-------o-------o-------o-------o | + | | U | |
− | | u v | du dv | u' v' | f g | Ef Eg | Df Dg | df dg | rf rg | | + | | | |
− | o--------o-------o-------o--------o-------o-------o-------o-------o | + | | o-----------o o-----------o | |
− | | | | | | | | | | | + | | / \ / \ | |
− | | 0 0 | 0 0 | 0 0 | 0 1 | 0 1 | 0 0 | 0 0 | 0 0 | | + | | / o \ | |
− | | | | | | | | | | | + | | / / \ \ | |
− | | | 0 1 | 0 1 | | 1 0 | 1 1 | 1 1 | 0 0 | | + | | / / \ \ | |
− | | | | | | | | | | | + | | o o o o | |
− | | | 1 0 | 1 0 | | 1 0 | 1 1 | 1 1 | 0 0 | | + | | | | | | | |
− | | | | | | | | | | | + | | | u | | v | | |
− | | | 1 1 | 1 1 | | 1 1 | 1 0 | 0 0 | 1 0 |
| + | | | | | | | |
− | | | | | | | | | |
| + | | o o o o | |
− | o--------o-------o-------o--------o-------o-------o-------o-------o
| + | | \ \ / / | |
− | | | | | | | | | |
| + | | \ \ / / | |
− | | 0 1 | 0 0 | 0 1 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 | | + | | \ o / | |
− | | | | | | | | | |
| + | | \ / \ / | |
− | | | 0 1 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 | | + | | o-----------o o-----------o | |
− | | | | | | | | | | | + | | | |
− | | | 1 0 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 | | + | | | |
− | | | | | | | | | | | + | o-----------------------------------------------------o |
− | | | 1 1 | 1 0 | | 1 0 | 0 0 | 1 0 | 1 0 | | + | / \ / \ |
− | | | | | | | | | | | + | / \ / \ |
− | o--------o-------o-------o--------o-------o-------o-------o-------o | + | / \ / \ |
− | | | | | | | | | | | + | / \ / \ |
− | | 1 0 | 0 0 | 1 0 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 | | + | / \ / \ |
− | | | | | | | | | |
| + | / \ / \ |
− | | | 0 1 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 | | + | / \ / \ |
− | | | | | | | | | | | + | / \ / \ |
− | | | 1 0 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 | | + | / \ / \ |
− | | | | | | | | | |
| + | / \ / \ |
− | | | 1 1 | 0 1 | | 1 0 | 0 0 | 1 0 | 1 0 | | + | / \ / \ |
− | | | | | | | | | | | + | / \ / \ |
− | o--------o-------o-------o--------o-------o-------o-------o-------o
| + | o-------------------------o o-------------------------o |
− | | | | | | | | | |
| + | | U | |\U \\\\\\\\\\\\\\\\\\\\\\| |
− | | 1 1 | 0 0 | 1 1 | 1 1 | 1 1 | 0 0 | 0 0 | 0 0 |
| + | | o---o o---o | |\\\\\\o---o\\\o---o\\\\\\| |
− | | | | | | | | | |
| + | | //////\ //////\ | |\\\\\/ \\/ \\\\\\| |
− | | | 0 1 | 1 0 | | 1 0 | 0 1 | 0 1 | 0 0 |
| + | | ////////o///////\ | |\\\\/ o \\\\\| |
− | | | | | | | | | | | + | | //////////\///////\ | |\\\/ /\\ \\\\| |
− | | | 1 0 | 0 1 | | 1 0 | 0 1 | 0 1 | 0 0 | | + | | o///////o///o///////o | |\\o o\\\o o\\| |
− | | | | | | | | | |
| + | | |// u //|///|// v //| | |\\| u |\\\| v |\\| |
− | | | 1 1 | 0 0 | | 0 1 | 1 0 | 0 0 | 1 0 | | + | | o///////o///o///////o | |\\o o\\\o o\\| |
− | | | | | | | | | | | + | | \///////\////////// | |\\\\ \\/ /\\\| |
− | o--------o-------o-------o--------o-------o-------o-------o-------o | + | | \///////o//////// | |\\\\\ o /\\\\| |
− | </pre>
| + | | \////// \////// | |\\\\\\ /\\ /\\\\\| |
− | | + | | o---o o---o | |\\\\\\o---o\\\o---o\\\\\\| |
− | ===Table 68. Computation of an Analytic Series in Symbolic Terms===
| + | | | |\\\\\\\\\\\\\\\\\\\\\\\\\| |
− | | + | o-------------------------o o-------------------------o |
− | <pre>
| + | \ | | / |
− | Table 68. Computation of an Analytic Series in Symbolic Terms
| + | \ | | / |
− | o-----o-----o------------o----------o----------o----------o----------o----------o | + | \ | | / |
− | | u v | f g | Df | Dg | df | dg | rf | rf |
| + | \ f | | g / |
− | o-----o-----o------------o----------o----------o----------o----------o----------o | + | \ | | / |
− | | | | | | | | | |
| + | \ | | / |
− | | 0 0 | 0 1 | ((du)(dv)) | (du, dv) | (du, dv) | (du, dv) | du dv | () | | + | \ | | / |
− | | | | | | | | | | | + | \ | | / |
− | | 0 1 | 1 0 | (du) dv | (du, dv) | dv | (du, dv) | du dv | () | | + | \ | | / |
− | | | | | | | | | | | + | \ | | / |
− | | 1 0 | 1 0 | du (dv) | (du, dv) | du | (du, dv) | du dv | () | | + | o-------\----|---------------------------|----/-------o |
− | | | | | | | | | |
| + | | X \ | | / | |
− | | 1 1 | 1 1 | du dv | (du, dv) | () | (du, dv) | du dv | () | | + | | \| |/ | |
− | | | | | | | | | | | + | | o-----------o o-----------o | |
− | o-----o-----o------------o----------o----------o----------o----------o----------o
| + | | //////////////\ /\\\\\\\\\\\\\\ | |
− | </pre> | + | | ////////////////o\\\\\\\\\\\\\\\\ | |
− | | + | | /////////////////X\\\\\\\\\\\\\\\\\ | |
− | ===Formula Display 18=== | + | | /////////////////XXX\\\\\\\\\\\\\\\\\ | |
− | | + | | o///////////////oXXXXXo\\\\\\\\\\\\\\\o | |
− | <pre> | + | | |///////////////|XXXXX|\\\\\\\\\\\\\\\| | |
− | o-------------------------------------------------------------------------o | + | | |////// x //////|XXXXX|\\\\\\ y \\\\\\| | |
− | | | | + | | |///////////////|XXXXX|\\\\\\\\\\\\\\\| | |
− | | Df = uv. du dv + u(v). du (dv) + (u)v.(du) dv + (u)(v).((du)(dv)) | | + | | o///////////////oXXXXXo\\\\\\\\\\\\\\\o | |
− | | | | + | | \///////////////\XXX/\\\\\\\\\\\\\\\/ | |
− | | Dg = uv.(du, dv) + u(v).(du, dv) + (u)v.(du, dv) + (u)(v). (du, dv) | | + | | \///////////////\X/\\\\\\\\\\\\\\\/ | |
− | | | | + | | \///////////////o\\\\\\\\\\\\\\\/ | |
− | o-------------------------------------------------------------------------o | + | | \////////////// \\\\\\\\\\\\\\/ | |
− | </pre> | + | | o-----------o o-----------o | |
− | | + | | | |
− | <br><font face="courier new"> | + | | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" | + | o-----------------------------------------------------o |
− | | | + | Figure 61. Propositional Transformation |
− | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" | + | </pre> |
− | | | + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 61 -- Propositional Transformation.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 61. Propositional Transformation'''</font></center></p> |
| + | |
| + | ===Figure 62. Propositional Transformation (Short Form)=== |
| + | |
| + | <pre> |
| + | o-------------------------o o-------------------------o |
| + | | U | |\U \\\\\\\\\\\\\\\\\\\\\\| |
| + | | o---o o---o | |\\\\\\o---o\\\o---o\\\\\\| |
| + | | //////\ //////\ | |\\\\\/ \\/ \\\\\\| |
| + | | ////////o///////\ | |\\\\/ o \\\\\| |
| + | | //////////\///////\ | |\\\/ /\\ \\\\| |
| + | | o///////o///o///////o | |\\o o\\\o o\\| |
| + | | |// u //|///|// v //| | |\\| u |\\\| v |\\| |
| + | | o///////o///o///////o | |\\o o\\\o o\\| |
| + | | \///////\////////// | |\\\\ \\/ /\\\| |
| + | | \///////o//////// | |\\\\\ o /\\\\| |
| + | | \////// \////// | |\\\\\\ /\\ /\\\\\| |
| + | | o---o o---o | |\\\\\\o---o\\\o---o\\\\\\| |
| + | | | |\\\\\\\\\\\\\\\\\\\\\\\\\| |
| + | o-------------------------o o-------------------------o |
| + | \ / \ / |
| + | \ / \ / |
| + | \ / \ / |
| + | \ f / \ g / |
| + | \ / \ / |
| + | \ / \ / |
| + | \ / \ / |
| + | \ / \ / |
| + | \ / \ / |
| + | o---------\-----/---------------------\-----/---------o |
| + | | X \ / \ / | |
| + | | \ / \ / | |
| + | | o-----------o o-----------o | |
| + | | //////////////\ /\\\\\\\\\\\\\\ | |
| + | | ////////////////o\\\\\\\\\\\\\\\\ | |
| + | | /////////////////X\\\\\\\\\\\\\\\\\ | |
| + | | /////////////////XXX\\\\\\\\\\\\\\\\\ | |
| + | | o///////////////oXXXXXo\\\\\\\\\\\\\\\o | |
| + | | |///////////////|XXXXX|\\\\\\\\\\\\\\\| | |
| + | | |////// x //////|XXXXX|\\\\\\ y \\\\\\| | |
| + | | |///////////////|XXXXX|\\\\\\\\\\\\\\\| | |
| + | | o///////////////oXXXXXo\\\\\\\\\\\\\\\o | |
| + | | \///////////////\XXX/\\\\\\\\\\\\\\\/ | |
| + | | \///////////////\X/\\\\\\\\\\\\\\\/ | |
| + | | \///////////////o\\\\\\\\\\\\\\\/ | |
| + | | \////////////// \\\\\\\\\\\\\\/ | |
| + | | o-----------o o-----------o | |
| + | | | |
| + | | | |
| + | o-----------------------------------------------------o |
| + | Figure 62. Propositional Transformation (Short Form) |
| + | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 62 -- Propositional Transformation (Short Form).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 62. Propositional Transformation (Short Form)'''</font></center></p> |
| + | |
| + | ===Figure 63. Transformation of Positions=== |
| + | |
| + | <pre> |
| + | o-----------------------------------------------------o |
| + | |`U` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| |
| + | |` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `| |
| + | |` ` ` ` ` ` o-----------o ` o-----------o ` ` ` ` ` `| |
| + | |` ` ` ` ` `/' ' ' ' ' ' '\`/' ' ' ' ' ' '\` ` ` ` ` `| |
| + | |` ` ` ` ` / ' ' ' ' ' ' ' o ' ' ' ' ' ' ' \ ` ` ` ` `| |
| + | |` ` ` ` `/' ' ' ' ' ' ' '/^\' ' ' ' ' ' ' '\` ` ` ` `| |
| + | |` ` ` ` / ' ' ' ' ' ' ' /^^^\ ' ' ' ' ' ' ' \ ` ` ` `| |
| + | |` ` ` `o' ' ' ' ' ' ' 'o^^^^^o' ' ' ' ' ' ' 'o` ` ` `| |
| + | |` ` ` `|' ' ' ' ' ' ' '|^^^^^|' ' ' ' ' ' ' '|` ` ` `| |
| + | |` ` ` `|' ' ' ' u ' ' '|^^^^^|' ' ' v ' ' ' '|` ` ` `| |
| + | |` ` ` `|' ' ' ' ' ' ' '|^^^^^|' ' ' ' ' ' ' '|` ` ` `| |
| + | |` `@` `o' ' ' ' @ ' ' 'o^^@^^o' ' ' @ ' ' ' 'o` ` ` `| |
| + | |` ` \ ` \ ' ' ' | ' ' ' \^|^/ ' ' ' | ' ' ' / ` ` ` `| |
| + | |` ` `\` `\' ' ' | ' ' ' '\|/' ' ' ' | ' ' '/` ` ` ` `| |
| + | |` ` ` \ ` \ ' ' | ' ' ' ' | ' ' ' ' | ' ' / ` ` ` ` `| |
| + | |` ` ` `\` `\' ' | ' ' ' '/|\' ' ' ' | ' '/` ` ` ` ` `| |
| + | |` ` ` ` \ ` o---|-------o | o-------|---o ` ` ` ` ` `| |
| + | |` ` ` ` `\` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` `| |
| + | |` ` ` ` ` \ ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` `| |
| + | o-----------\----|---------|---------|----------------o |
| + | " " \ | | | " " |
| + | " " \ | | | " " |
| + | " " \ | | | " " |
| + | " " \| | | " " |
| + | o-------------------------o \ | | o-------------------------o |
| + | | U | |\ | | |`U```````````````````````| |
| + | | o---o o---o | | \ | | |``````o---o```o---o``````| |
| + | | /'''''\ /'''''\ | | \ | | |`````/ \`/ \`````| |
| + | | /'''''''o'''''''\ | | \ | | |````/ o \````| |
| + | | /'''''''/'\'''''''\ | | \ | | |```/ /`\ \```| |
| + | | o'''''''o'''o'''''''o | | \ | | |``o o```o o``| |
| + | | |'''u'''|'''|'''v'''| | | \ | | |``| u |```| v |``| |
| + | | o'''''''o'''o'''''''o | | \ | | |``o o```o o``| |
| + | | \'''''''\'/'''''''/ | | \| | |```\ \`/ /```| |
| + | | \'''''''o'''''''/ | | \ | |````\ o /````| |
| + | | \'''''/ \'''''/ | | |\ | |`````\ /`\ /`````| |
| + | | o---o o---o | | | \ | |``````o---o```o---o``````| |
| + | | | | | \ * |`````````````````````````| |
| + | o-------------------------o | | \ / o-------------------------o |
| + | \ | | | \ / | / |
| + | \ ((u)(v)) | | | \/ | ((u, v)) / |
| + | \ | | | /\ | / |
| + | \ | | | / \ | / |
| + | \ | | | / \ | / |
| + | \ | | | / * | / |
| + | \ | | | / | | / |
| + | \ | | |/ | | / |
| + | \ | | / | | / |
| + | \ | | /| | | / |
| + | o-------\----|---|-------/-|---------|---|----/-------o |
| + | | X \ | | / | | | / | |
| + | | \| | / | | |/ | |
| + | | o---|----/--o | o-------|---o | |
| + | | /' ' | ' / ' '\|/` ` ` ` | ` `\ | |
| + | | / ' ' | '/' ' ' | ` ` ` ` | ` ` \ | |
| + | | /' ' ' | / ' ' '/|\` ` ` ` | ` ` `\ | |
| + | | / ' ' ' |/' ' ' /^|^\ ` ` ` | ` ` ` \ | |
| + | | @ o' ' ' ' @ ' ' 'o^^@^^o` ` ` @ ` ` ` `o | |
| + | | |' ' ' ' ' ' ' '|^^^^^|` ` ` ` ` ` ` `| | |
| + | | |' ' ' ' f ' ' '|^^^^^|` ` ` g ` ` ` `| | |
| + | | |' ' ' ' ' ' ' '|^^^^^|` ` ` ` ` ` ` `| | |
| + | | o' ' ' ' ' ' ' 'o^^^^^o` ` ` ` ` ` ` `o | |
| + | | \ ' ' ' ' ' ' ' \^^^/ ` ` ` ` ` ` ` / | |
| + | | \' ' ' ' ' ' ' '\^/` ` ` ` ` ` ` `/ | |
| + | | \ ' ' ' ' ' ' ' o ` ` ` ` ` ` ` / | |
| + | | \' ' ' ' ' ' '/ \` ` ` ` ` ` `/ | |
| + | | o-----------o o-----------o | |
| + | | | |
| + | | | |
| + | o-----------------------------------------------------o |
| + | Figure 63. Transformation of Positions |
| + | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 63 -- Transformation of Positions.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 63. Transformation of Positions'''</font></center></p> |
| + | |
| + | ===Table 64. Transformation of Positions=== |
| + | |
| + | <pre> |
| + | Table 64. Transformation of Positions |
| + | o-----o----------o----------o-------o-------o--------o--------o-------------o |
| + | | u v | x | y | x y | x(y) | (x)y | (x)(y) | X% = [x, y] | |
| + | o-----o----------o----------o-------o-------o--------o--------o-------------o |
| + | | | | | | | | | ^ | |
| + | | 0 0 | 0 | 1 | 0 | 0 | 1 | 0 | | | |
| + | | | | | | | | | | |
| + | | 0 1 | 1 | 0 | 0 | 1 | 0 | 0 | F | |
| + | | | | | | | | | = | |
| + | | 1 0 | 1 | 0 | 0 | 1 | 0 | 0 | <f , g> | |
| + | | | | | | | | | | |
| + | | 1 1 | 1 | 1 | 1 | 0 | 0 | 0 | ^ | |
| + | | | | | | | | | | | |
| + | o-----o----------o----------o-------o-------o--------o--------o-------------o |
| + | | | ((u)(v)) | ((u, v)) | u v | (u,v) | (u)(v) | 0 | U% = [u, v] | |
| + | o-----o----------o----------o-------o-------o--------o--------o-------------o |
| + | </pre> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | |+ '''Table 64. Transformation of Positions''' |
| + | |- style="background:paleturquoise" |
| + | | ''u'' ''v'' |
| + | | ''x'' |
| + | | ''y'' |
| + | | ''x'' ''y'' |
| + | | ''x'' (''y'') |
| + | | (''x'') ''y'' |
| + | | (''x'')(''y'') |
| + | | ''X''<sup> •</sup> = [''x'', ''y'' ] |
| + | |- |
| + | | width="12%" | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 0 |
| + | |- |
| + | | 0 1 |
| + | |- |
| + | | 1 0 |
| + | |- |
| + | | 1 1 |
| + | |} |
| + | | width="12%" | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 1 |
| + | |} |
| + | | width="12%" | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |} |
| + | | width="12%" | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |} |
| + | | width="12%" | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 1 |
| + | |- |
| + | | 0 |
| + | |} |
| + | | width="12%" | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |} |
| + | | width="12%" | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |- |
| + | | 0 |
| + | |} |
| + | | width="12%" | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | ↑ |
| + | |- |
| + | | ''F'' |
| + | |- |
| + | | ‹''f'', ''g'' › |
| + | |- |
| + | | ↑ |
| + | |} |
| + | |- |
| + | | |
| + | | ((''u'')(''v'')) |
| + | | ((''u'', ''v'')) |
| + | | ''u'' ''v'' |
| + | | (''u'', ''v'') |
| + | | (''u'')(''v'') |
| + | | ( ) |
| + | | ''U''<sup> •</sup> = [''u'', ''v'' ] |
| + | |} |
| + | <br> |
| + | |
| + | ===Table 65. Induced Transformation on Propositions=== |
| + | |
| + | <pre> |
| + | Table 65. Induced Transformation on Propositions |
| + | o------------o---------------------------------o------------o |
| + | | X% | <--- F = <f , g> <--- | U% | |
| + | o------------o----------o-----------o----------o------------o |
| + | | | u = | 1 1 0 0 | = u | | |
| + | | | v = | 1 0 1 0 | = v | | |
| + | | f_i <x, y> o----------o-----------o----------o f_j <u, v> | |
| + | | | x = | 1 1 1 0 | = f<u,v> | | |
| + | | | y = | 1 0 0 1 | = g<u,v> | | |
| + | o------------o----------o-----------o----------o------------o |
| + | | | | | | | |
| + | | f_0 | () | 0 0 0 0 | () | f_0 | |
| + | | | | | | | |
| + | | f_1 | (x)(y) | 0 0 0 1 | () | f_0 | |
| + | | | | | | | |
| + | | f_2 | (x) y | 0 0 1 0 | (u)(v) | f_1 | |
| + | | | | | | | |
| + | | f_3 | (x) | 0 0 1 1 | (u)(v) | f_1 | |
| + | | | | | | | |
| + | | f_4 | x (y) | 0 1 0 0 | (u, v) | f_6 | |
| + | | | | | | | |
| + | | f_5 | (y) | 0 1 0 1 | (u, v) | f_6 | |
| + | | | | | | | |
| + | | f_6 | (x, y) | 0 1 1 0 | (u v) | f_7 | |
| + | | | | | | | |
| + | | f_7 | (x y) | 0 1 1 1 | (u v) | f_7 | |
| + | | | | | | | |
| + | o------------o----------o-----------o----------o------------o |
| + | | | | | | | |
| + | | f_8 | x y | 1 0 0 0 | u v | f_8 | |
| + | | | | | | | |
| + | | f_9 | ((x, y)) | 1 0 0 1 | u v | f_8 | |
| + | | | | | | | |
| + | | f_10 | y | 1 0 1 0 | ((u, v)) | f_9 | |
| + | | | | | | | |
| + | | f_11 | (x (y)) | 1 0 1 1 | ((u, v)) | f_9 | |
| + | | | | | | | |
| + | | f_12 | x | 1 1 0 0 | ((u)(v)) | f_14 | |
| + | | | | | | | |
| + | | f_13 | ((x) y) | 1 1 0 1 | ((u)(v)) | f_14 | |
| + | | | | | | | |
| + | | f_14 | ((x)(y)) | 1 1 1 0 | (()) | f_15 | |
| + | | | | | | | |
| + | | f_15 | (()) | 1 1 1 1 | (()) | f_15 | |
| + | | | | | | | |
| + | o------------o----------o-----------o----------o------------o |
| + | </pre> |
| + | |
| + | <br><font face="courier new"> |
| + | {| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | |+ Table 65. Induced Transformation on Propositions |
| + | |- style="background:paleturquoise" |
| + | | ''X''<sup> •</sup> |
| + | | colspan="3" | |
| + | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:80%" |
| + | | ← |
| + | | ''F'' = ‹''f'' , ''g''› |
| + | | ← |
| + | |} |
| + | | ''U''<sup> •</sup> |
| + | |- style="background:paleturquoise" |
| + | | rowspan="2" | ''f''<sub>''i''</sub>‹''x'', ''y''› |
| + | | |
| + | {| align="right" style="background:paleturquoise; text-align:right" |
| + | | ''u'' = |
| + | |- |
| + | | ''v'' = |
| + | |} |
| + | | |
| + | {| align="center" style="background:paleturquoise; text-align:center" |
| + | | 1 1 0 0 |
| + | |- |
| + | | 1 0 1 0 |
| + | |} |
| + | | |
| + | {| align="left" style="background:paleturquoise; text-align:left" |
| + | | = ''u'' |
| + | |- |
| + | | = ''v'' |
| + | |} |
| + | | rowspan="2" | ''f''<sub>''j''</sub>‹''u'', ''v''› |
| + | |- style="background:paleturquoise" |
| + | | |
| + | {| align="right" style="background:paleturquoise; text-align:right" |
| + | | ''x'' = |
| + | |- |
| + | | ''y'' = |
| + | |} |
| + | | |
| + | {| align="center" style="background:paleturquoise; text-align:center" |
| + | | 1 1 1 0 |
| + | |- |
| + | | 1 0 0 1 |
| + | |} |
| + | | |
| + | {| align="left" style="background:paleturquoise; text-align:left" |
| + | | = ''f''‹''u'', ''v''› |
| + | |- |
| + | | = ''g''‹''u'', ''v''› |
| + | |} |
| + | |- |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | ''f''<sub>0</sub> |
| + | |- |
| + | | ''f''<sub>1</sub> |
| + | |- |
| + | | ''f''<sub>2</sub> |
| + | |- |
| + | | ''f''<sub>3</sub> |
| + | |- |
| + | | ''f''<sub>4</sub> |
| + | |- |
| + | | ''f''<sub>5</sub> |
| + | |- |
| + | | ''f''<sub>6</sub> |
| + | |- |
| + | | ''f''<sub>7</sub> |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | () |
| + | |- |
| + | | (''x'')(''y'') |
| + | |- |
| + | | (''x'') ''y'' |
| + | |- |
| + | | (''x'') |
| + | |- |
| + | | ''x'' (''y'') |
| + | |- |
| + | | (''y'') |
| + | |- |
| + | | (''x'', ''y'') |
| + | |- |
| + | | (''x'' ''y'') |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | 0 0 0 0 |
| + | |- |
| + | | 0 0 0 1 |
| + | |- |
| + | | 0 0 1 0 |
| + | |- |
| + | | 0 0 1 1 |
| + | |- |
| + | | 0 1 0 0 |
| + | |- |
| + | | 0 1 0 1 |
| + | |- |
| + | | 0 1 1 0 |
| + | |- |
| + | | 0 1 1 1 |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | () |
| + | |- |
| + | | () |
| + | |- |
| + | | (''u'')(''v'') |
| + | |- |
| + | | (''u'')(''v'') |
| + | |- |
| + | | (''u'', ''v'') |
| + | |- |
| + | | (''u'', ''v'') |
| + | |- |
| + | | (''u'' ''v'') |
| + | |- |
| + | | (''u'' ''v'') |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | ''f''<sub>0</sub> |
| + | |- |
| + | | ''f''<sub>0</sub> |
| + | |- |
| + | | ''f''<sub>1</sub> |
| + | |- |
| + | | ''f''<sub>1</sub> |
| + | |- |
| + | | ''f''<sub>6</sub> |
| + | |- |
| + | | ''f''<sub>6</sub> |
| + | |- |
| + | | ''f''<sub>7</sub> |
| + | |- |
| + | | ''f''<sub>7</sub> |
| + | |} |
| + | |- |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | ''f''<sub>8</sub> |
| + | |- |
| + | | ''f''<sub>9</sub> |
| + | |- |
| + | | ''f''<sub>10</sub> |
| + | |- |
| + | | ''f''<sub>11</sub> |
| + | |- |
| + | | ''f''<sub>12</sub> |
| + | |- |
| + | | ''f''<sub>13</sub> |
| + | |- |
| + | | ''f''<sub>14</sub> |
| + | |- |
| + | | ''f''<sub>15</sub> |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | ''x'' ''y'' |
| + | |- |
| + | | ((''x'', ''y'')) |
| + | |- |
| + | | ''y'' |
| + | |- |
| + | | (''x'' (''y'')) |
| + | |- |
| + | | ''x'' |
| + | |- |
| + | | ((''x'') ''y'') |
| + | |- |
| + | | ((''x'')(''y'')) |
| + | |- |
| + | | (()) |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | 1 0 0 0 |
| + | |- |
| + | | 1 0 0 1 |
| + | |- |
| + | | 1 0 1 0 |
| + | |- |
| + | | 1 0 1 1 |
| + | |- |
| + | | 1 1 0 0 |
| + | |- |
| + | | 1 1 0 1 |
| + | |- |
| + | | 1 1 1 0 |
| + | |- |
| + | | 1 1 1 1 |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | ''u'' ''v'' |
| + | |- |
| + | | ''u'' ''v'' |
| + | |- |
| + | | ((''u'', ''v'')) |
| + | |- |
| + | | ((''u'', ''v'')) |
| + | |- |
| + | | ((''u'')(''v'')) |
| + | |- |
| + | | ((''u'')(''v'')) |
| + | |- |
| + | | (()) |
| + | |- |
| + | | (()) |
| + | |} |
| + | | |
| + | {| cellpadding="2" style="background:lightcyan" |
| + | | ''f''<sub>8</sub> |
| + | |- |
| + | | ''f''<sub>8</sub> |
| + | |- |
| + | | ''f''<sub>9</sub> |
| + | |- |
| + | | ''f''<sub>9</sub> |
| + | |- |
| + | | ''f''<sub>14</sub> |
| + | |- |
| + | | ''f''<sub>14</sub> |
| + | |- |
| + | | ''f''<sub>15</sub> |
| + | |- |
| + | | ''f''<sub>15</sub> |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Formula Display 14=== |
| + | |
| + | <pre> |
| + | o-------------------------------------------------o |
| + | | | |
| + | | EG_i = G_i <u + du, v + dv> | |
| + | | | |
| + | o-------------------------------------------------o |
| + | </pre> |
| + | |
| + | <br><font face="courier new"> |
| + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" |
| + | | |
| + | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" |
| + | | width="8%" | E''G''<sub>''i''</sub> |
| + | | width="4%" | = |
| + | | width="88%" | ''G''<sub>''i''</sub>‹''u'' + d''u'', ''v'' + d''v''› |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Formula Display 15=== |
| + | |
| + | <pre> |
| + | o-------------------------------------------------o |
| + | | | |
| + | | DG_i = G_i <u, v> + EG_i <u, v, du, dv> | |
| + | | | |
| + | | = G_i <u, v> + G_i <u + du, v + dv> | |
| + | | | |
| + | o-------------------------------------------------o |
| + | </pre> |
| + | |
| + | <br><font face="courier new"> |
| + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" |
| + | | |
| + | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" |
| + | | width="8%" | D''G''<sub>''i''</sub> |
| + | | width="4%" | = |
| + | | width="20%" | ''G''<sub>''i''</sub>‹''u'', ''v''› |
| + | | width="4%" | + |
| + | | width="64%" | E''G''<sub>''i''</sub>‹''u'', ''v'', d''u'', d''v''› |
| + | |- |
| + | | width="8%" | |
| + | | width="4%" | = |
| + | | width="20%" | ''G''<sub>''i''</sub>‹''u'', ''v''› |
| + | | width="4%" | + |
| + | | width="64%" | ''G''<sub>''i''</sub>‹''u'' + d''u'', ''v'' + d''v''› |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Formula Display 16=== |
| + | |
| + | <pre> |
| + | o-------------------------------------------------o |
| + | | | |
| + | | Ef = ((u + du)(v + dv)) | |
| + | | | |
| + | | Eg = ((u + du, v + dv)) | |
| + | | | |
| + | o-------------------------------------------------o |
| + | </pre> |
| + | |
| + | <br><font face="courier new"> |
| + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" |
| + | | |
| + | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" |
| + | | width="8%" | E''f'' |
| + | | width="4%" | = |
| + | | width="88%" | ((''u'' + d''u'')(''v'' + d''v'')) |
| + | |- |
| + | | width="8%" | E''g'' |
| + | | width="4%" | = |
| + | | width="88%" | ((''u'' + d''u'', ''v'' + d''v'')) |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Formula Display 17=== |
| + | |
| + | <pre> |
| + | o-------------------------------------------------o |
| + | | | |
| + | | Df = ((u)(v)) + ((u + du)(v + dv)) | |
| + | | | |
| + | | Dg = ((u, v)) + ((u + du, v + dv)) | |
| + | | | |
| + | o-------------------------------------------------o |
| + | </pre> |
| + | |
| + | <br><font face="courier new"> |
| + | {| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%" |
| + | | |
| + | {| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%" |
| + | | width="8%" | D''f'' |
| + | | width="4%" | = |
| + | | width="20%" | ((''u'')(''v'')) |
| + | | width="4%" | + |
| + | | width="64%" | ((''u'' + d''u'')(''v'' + d''v'')) |
| + | |- |
| + | | width="8%" | D''g'' |
| + | | width="4%" | = |
| + | | width="20%" | ((''u'', ''v'')) |
| + | | width="4%" | + |
| + | | width="64%" | ((''u'' + d''u'', ''v'' + d''v'')) |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Table 66-i. Computation Summary for f‹u, v› = ((u)(v))=== |
| + | |
| + | <pre> |
| + | Table 66-i. Computation Summary for f<u, v> = ((u)(v)) |
| + | o--------------------------------------------------------------------------------o |
| + | | | |
| + | | !e!f = uv. 1 + u(v). 1 + (u)v. 1 + (u)(v). 0 | |
| + | | | |
| + | | Ef = uv. (du dv) + u(v). (du (dv)) + (u)v.((du) dv) + (u)(v).((du)(dv)) | |
| + | | | |
| + | | Df = uv. du dv + u(v). du (dv) + (u)v. (du) dv + (u)(v).((du)(dv)) | |
| + | | | |
| + | | df = uv. 0 + u(v). du + (u)v. dv + (u)(v). (du, dv) | |
| + | | | |
| + | | rf = uv. du dv + u(v). du dv + (u)v. du dv + (u)(v). du dv | |
| + | | | |
| + | o--------------------------------------------------------------------------------o |
| + | </pre> |
| + | |
| + | <font face="courier new"> |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | |+ Table 66-i. Computation Summary for ''f''‹''u'', ''v''› = ((''u'')(''v'')) |
| + | | |
| + | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | <math>\epsilon</math>''f'' |
| + | | = || ''uv'' || <math>\cdot</math> || 1 |
| + | | + || ''u''(''v'') || <math>\cdot</math> || 1 |
| + | | + || (''u'')''v'' || <math>\cdot</math> || 1 |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || 0 |
| + | |- |
| + | | E''f'' |
| + | | = || ''uv'' || <math>\cdot</math> || (d''u'' d''v'') |
| + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u (d''v'')) |
| + | | + || (''u'')''v'' || <math>\cdot</math> || ((d''u'') d''v'') |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v'')) |
| + | |- |
| + | | D''f'' |
| + | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v'' |
| + | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' (d''v'') |
| + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'') d''v'' |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v'')) |
| + | |- |
| + | | d''f'' |
| + | | = || ''uv'' || <math>\cdot</math> || 0 |
| + | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' |
| + | | + || (''u'')''v'' || <math>\cdot</math> || d''v'' |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | |- |
| + | | r''f'' |
| + | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v'' |
| + | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' d''v'' |
| + | | + || (''u'')''v'' || <math>\cdot</math> || d''u'' d''v'' |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || d''u'' d''v'' |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Table 66-ii. Computation Summary for g‹u, v› = ((u, v))=== |
| + | |
| + | <pre> |
| + | Table 66-ii. Computation Summary for g<u, v> = ((u, v)) |
| + | o--------------------------------------------------------------------------------o |
| + | | | |
| + | | !e!g = uv. 1 + u(v). 0 + (u)v. 0 + (u)(v). 1 | |
| + | | | |
| + | | Eg = uv.((du, dv)) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v).((du, dv)) | |
| + | | | |
| + | | Dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) | |
| + | | | |
| + | | dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) | |
| + | | | |
| + | | rg = uv. 0 + u(v). 0 + (u)v. 0 + (u)(v). 0 | |
| + | | | |
| + | o--------------------------------------------------------------------------------o |
| + | </pre> |
| + | |
| + | <font face="courier new"> |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | |+ Table 66-ii. Computation Summary for g‹''u'', ''v''› = ((''u'', ''v'')) |
| + | | |
| + | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | <math>\epsilon</math>''g'' |
| + | | = || ''uv'' || <math>\cdot</math> || 1 |
| + | | + || ''u''(''v'') || <math>\cdot</math> || 0 |
| + | | + || (''u'')''v'' || <math>\cdot</math> || 0 |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || 1 |
| + | |- |
| + | | E''g'' |
| + | | = || ''uv'' || <math>\cdot</math> || ((d''u'', d''v'')) |
| + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'', d''v'')) |
| + | |- |
| + | | D''g'' |
| + | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | |- |
| + | | d''g'' |
| + | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'') |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'') |
| + | |- |
| + | | r''g'' |
| + | | = || ''uv'' || <math>\cdot</math> || 0 |
| + | | + || ''u''(''v'') || <math>\cdot</math> || 0 |
| + | | + || (''u'')''v'' || <math>\cdot</math> || 0 |
| + | | + || (''u'')(''v'') || <math>\cdot</math> || 0 |
| + | |} |
| + | |} |
| + | </font><br> |
| + | |
| + | ===Table 67. Computation of an Analytic Series in Terms of Coordinates=== |
| + | |
| + | <pre> |
| + | Table 67. Computation of an Analytic Series in Terms of Coordinates |
| + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| + | | u v | du dv | u' v' | f g | Ef Eg | Df Dg | df dg | rf rg | |
| + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| + | | | | | | | | | | |
| + | | 0 0 | 0 0 | 0 0 | 0 1 | 0 1 | 0 0 | 0 0 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 0 1 | 0 1 | | 1 0 | 1 1 | 1 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 0 | 1 0 | | 1 0 | 1 1 | 1 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 1 | 1 1 | | 1 1 | 1 0 | 0 0 | 1 0 | |
| + | | | | | | | | | | |
| + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| + | | | | | | | | | | |
| + | | 0 1 | 0 0 | 0 1 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 0 1 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 0 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 1 | 1 0 | | 1 0 | 0 0 | 1 0 | 1 0 | |
| + | | | | | | | | | | |
| + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| + | | | | | | | | | | |
| + | | 1 0 | 0 0 | 1 0 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 0 1 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 0 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 1 | 0 1 | | 1 0 | 0 0 | 1 0 | 1 0 | |
| + | | | | | | | | | | |
| + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| + | | | | | | | | | | |
| + | | 1 1 | 0 0 | 1 1 | 1 1 | 1 1 | 0 0 | 0 0 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 0 1 | 1 0 | | 1 0 | 0 1 | 0 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 0 | 0 1 | | 1 0 | 0 1 | 0 1 | 0 0 | |
| + | | | | | | | | | | |
| + | | | 1 1 | 0 0 | | 0 1 | 1 0 | 0 0 | 1 0 | |
| + | | | | | | | | | | |
| + | o--------o-------o-------o--------o-------o-------o-------o-------o |
| + | </pre> |
| + | |
| + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | |+ Table 67. Computation of an Analytic Series in Terms of Coordinates |
| + | | |
| + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | ''u'' |
| + | | ''v'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | d''u'' |
| + | | d''v'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | ''u''<font face="courier new">’</font> |
| + | | ''v''<font face="courier new">’</font> |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | |} |
| + | | |
| + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | <math>\epsilon</math>''f'' |
| + | | <math>\epsilon</math>''g'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | E''f'' |
| + | | E''g'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | D''f'' |
| + | | D''g'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | d''f'' |
| + | | d''g'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%" |
| + | | d<sup>2</sup>''f'' |
| + | | d<sup>2</sup>''g'' |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | |- |
| + | | valign="top" | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 1 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 0 || 1 |
| + | |- |
| + | | 0 || 0 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 0 || 0 |
| + | |- |
| + | | 1 || 0 |
| + | |} |
| + | |} |
| + | |} |
| + | <br> |
| + | |
| + | ===Table 68. Computation of an Analytic Series in Symbolic Terms=== |
| + | |
| + | <pre> |
| + | Table 68. Computation of an Analytic Series in Symbolic Terms |
| + | o-----o-----o------------o----------o----------o----------o----------o----------o |
| + | | u v | f g | Df | Dg | df | dg | rf | rg | |
| + | o-----o-----o------------o----------o----------o----------o----------o----------o |
| + | | | | | | | | | | |
| + | | 0 0 | 0 1 | ((du)(dv)) | (du, dv) | (du, dv) | (du, dv) | du dv | () | |
| + | | | | | | | | | | |
| + | | 0 1 | 1 0 | (du) dv | (du, dv) | dv | (du, dv) | du dv | () | |
| + | | | | | | | | | | |
| + | | 1 0 | 1 0 | du (dv) | (du, dv) | du | (du, dv) | du dv | () | |
| + | | | | | | | | | | |
| + | | 1 1 | 1 1 | du dv | (du, dv) | () | (du, dv) | du dv | () | |
| + | | | | | | | | | | |
| + | o-----o-----o------------o----------o----------o----------o----------o----------o |
| + | </pre> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | |+ '''Table 68. Computation of an Analytic Series in Symbolic Terms''' |
| + | |- style="background:paleturquoise" |
| + | | ''u'' ''v'' |
| + | | ''f'' ''g'' |
| + | | D''f'' |
| + | | D''g'' |
| + | | d''f'' |
| + | | d''g'' |
| + | | d<sup>2</sup>''f'' |
| + | | d<sup>2</sup>''g'' |
| + | |- |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 0 |
| + | |- |
| + | | 0 1 |
| + | |- |
| + | | 1 0 |
| + | |- |
| + | | 1 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | 0 1 |
| + | |- |
| + | | 1 0 |
| + | |- |
| + | | 1 0 |
| + | |- |
| + | | 1 1 |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | ((d''u'')(d''v'')) |
| + | |- |
| + | | (d''u'') d''v'' |
| + | |- |
| + | | d''u'' (d''v'') |
| + | |- |
| + | | d''u'' d''v'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | (d''u'', d''v'') |
| + | |- |
| + | | (d''u'', d''v'') |
| + | |- |
| + | | (d''u'', d''v'') |
| + | |- |
| + | | (d''u'', d''v'') |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | (d''u'', d''v'') |
| + | |- |
| + | | d''v'' |
| + | |- |
| + | | d''u'' |
| + | |- |
| + | | ( ) |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | (d''u'', d''v'') |
| + | |- |
| + | | (d''u'', d''v'') |
| + | |- |
| + | | (d''u'', d''v'') |
| + | |- |
| + | | (d''u'', d''v'') |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | d''u'' d''v'' |
| + | |- |
| + | | d''u'' d''v'' |
| + | |- |
| + | | d''u'' d''v'' |
| + | |- |
| + | | d''u'' d''v'' |
| + | |} |
| + | | |
| + | {| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | ( ) |
| + | |- |
| + | | ( ) |
| + | |- |
| + | | ( ) |
| + | |- |
| + | | ( ) |
| + | |} |
| + | |} |
| + | <br> |
| + | |
| + | ===Formula Display 18=== |
| + | |
| + | <pre> |
| + | o-------------------------------------------------------------------------o |
| + | | | |
| + | | Df = uv. du dv + u(v). du (dv) + (u)v.(du) dv + (u)(v).((du)(dv)) | |
| + | | | |
| + | | Dg = uv.(du, dv) + u(v).(du, dv) + (u)v.(du, dv) + (u)(v). (du, dv) | |
| + | | | |
| + | o-------------------------------------------------------------------------o |
| + | </pre> |
| + | |
| + | <br><font face="courier new"> |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%" |
| + | | |
| + | {| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%" |
| + | | |
| |- | | |- |
| | D''f'' | | | D''f'' |
Line 8,891: |
Line 10,449: |
| </font><br> | | </font><br> |
| | | |
− | ===Figure 69. Difference Map of F = ‹f, g› = ‹((u)(v)), ((u, v))›=== | + | ===Figure 69. Difference Map of F = ‹f, g› = ‹((u)(v)), ((u, v))›=== |
| | | |
| <pre> | | <pre> |
Line 8,957: |
Line 10,515: |
| Figure 69. Difference Map of F = <f, g> = <((u)(v)), ((u, v))> | | Figure 69. Difference Map of F = <f, g> = <((u)(v)), ((u, v))> |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 69 -- Difference Map (Short Form).gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 69. Difference Map of F = ‹f, g› = ‹((u)(v)), ((u, v))›'''</font></center></p> |
| | | |
| ===Formula Display 19=== | | ===Formula Display 19=== |
Line 8,995: |
Line 10,557: |
| </font><br> | | </font><br> |
| | | |
− | ===Figure 70-a. Tangent Functor Diagram for F‹u, v› = ‹((u)(v)), ((u, v))›=== | + | ===Figure 70-a. Tangent Functor Diagram for F‹u, v› = ‹((u)(v)), ((u, v))›=== |
| | | |
| <pre> | | <pre> |
Line 9,080: |
Line 10,642: |
| Figure 70-a. Tangent Functor Diagram for F‹u, v› = <((u)(v)), ((u, v))> | | Figure 70-a. Tangent Functor Diagram for F‹u, v› = <((u)(v)), ((u, v))> |
| </pre> | | </pre> |
| + | |
| + | <br> |
| + | <p>[[Image:Diff Log Dyn Sys -- Figure 70-a -- Tangent Functor Diagram.gif|center]]</p> |
| + | <p><center><font size="+1">'''Figure 70-a. Tangent Functor Diagram for F‹u, v› = ‹((u)(v)), ((u, v))›'''</font></center></p> |
| | | |
| ===Figure 70-b. Tangent Functor Ferris Wheel for F‹u, v› = ‹((u)(v)), ((u, v))›=== | | ===Figure 70-b. Tangent Functor Ferris Wheel for F‹u, v› = ‹((u)(v)), ((u, v))›=== |
− |
| |
− | [[Image:Tangent_Functor_Ferris_Wheel.gif|frame|<font size="3">'''Figure 70-b. Tangent Functor Ferris Wheel for F‹u, v› = ‹((u)(v)), ((u, v))›'''</font>]]
| |
| | | |
| <pre> | | <pre> |
Line 9,263: |
Line 10,827: |
| Figure 70-b. Tangent Functor Ferris Wheel for F<u, v> = <((u)(v)), ((u, v))> | | Figure 70-b. Tangent Functor Ferris Wheel for F<u, v> = <((u)(v)), ((u, v))> |
| </pre> | | </pre> |
| + | |
| + | [[Image:Tangent_Functor_Ferris_Wheel.gif|frame|<font size="3">'''Figure 70-b. Tangent Functor Ferris Wheel for F‹u, v› = ‹((u)(v)), ((u, v))›'''</font>]] |