Line 1,141:
Line 1,141:
Figure 12. The Anchor
Figure 12. The Anchor
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 12 -- The Anchor.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 12. The Anchor'''</font></center></p>
===Figure 13. The Tiller===
===Figure 13. The Tiller===
Line 1,174:
Line 1,178:
Figure 13. The Tiller
Figure 13. The Tiller
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 13 -- The Tiller.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 13. The Tiller'''</font></center></p>
===Table 14. Differential Propositions===
===Table 14. Differential Propositions===
Line 1,667:
Line 1,675:
|}
|}
</font><br>
</font><br>
+
+
===Figure 16. A Couple of Fourth Gear Orbits===
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 16 -- A Couple of Fourth Gear Orbits.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 16. A Couple of Fourth Gear Orbits'''</font></center></p>
===Figure 16-a. A Couple of Fourth Gear Orbits: 1===
===Figure 16-a. A Couple of Fourth Gear Orbits: 1===
Line 2,064:
Line 2,078:
Figure 18-a. Extension from 1 to 2 Dimensions: Areal
Figure 18-a. Extension from 1 to 2 Dimensions: Areal
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 18-a -- Extension from 1 to 2 Dimensions.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 18-a. Extension from 1 to 2 Dimensions: Areal'''</font></center></p>
===Figure 18-b. Extension from 1 to 2 Dimensions: Bundle===
===Figure 18-b. Extension from 1 to 2 Dimensions: Bundle===
Line 2,093:
Line 2,111:
Figure 18-b. Extension from 1 to 2 Dimensions: Bundle
Figure 18-b. Extension from 1 to 2 Dimensions: Bundle
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 18-b -- Extension from 1 to 2 Dimensions.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 18-b. Extension from 1 to 2 Dimensions: Bundle'''</font></center></p>
===Figure 18-c. Extension from 1 to 2 Dimensions: Compact===
===Figure 18-c. Extension from 1 to 2 Dimensions: Compact===
Line 2,124:
Line 2,146:
Figure 18-c. Extension from 1 to 2 Dimensions: Compact
Figure 18-c. Extension from 1 to 2 Dimensions: Compact
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 18-c -- Extension from 1 to 2 Dimensions.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 18-c. Extension from 1 to 2 Dimensions: Compact'''</font></center></p>
===Figure 18-d. Extension from 1 to 2 Dimensions: Digraph===
===Figure 18-d. Extension from 1 to 2 Dimensions: Digraph===
Line 2,143:
Line 2,169:
Figure 18-d. Extension from 1 to 2 Dimensions: Digraph
Figure 18-d. Extension from 1 to 2 Dimensions: Digraph
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 18-d -- Extension from 1 to 2 Dimensions.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 18-d. Extension from 1 to 2 Dimensions: Digraph'''</font></center></p>
===Figure 19-a. Extension from 2 to 4 Dimensions: Areal===
===Figure 19-a. Extension from 2 to 4 Dimensions: Areal===
Line 2,186:
Line 2,216:
Figure 19-a. Extension from 2 to 4 Dimensions: Areal
Figure 19-a. Extension from 2 to 4 Dimensions: Areal
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 19-a -- Extension from 2 to 4 Dimensions.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 19-a. Extension from 2 to 4 Dimensions: Areal'''</font></center></p>
===Figure 19-b. Extension from 2 to 4 Dimensions: Bundle===
===Figure 19-b. Extension from 2 to 4 Dimensions: Bundle===
Line 2,247:
Line 2,281:
Figure 19-b. Extension from 2 to 4 Dimensions: Bundle
Figure 19-b. Extension from 2 to 4 Dimensions: Bundle
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 19-b -- Extension from 2 to 4 Dimensions.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 19-b. Extension from 2 to 4 Dimensions: Bundle'''</font></center></p>
===Figure 19-c. Extension from 2 to 4 Dimensions: Compact===
===Figure 19-c. Extension from 2 to 4 Dimensions: Compact===
Line 2,287:
Line 2,325:
Figure 19-c. Extension from 2 to 4 Dimensions: Compact
Figure 19-c. Extension from 2 to 4 Dimensions: Compact
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 19-c -- Extension from 2 to 4 Dimensions.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 19-c. Extension from 2 to 4 Dimensions: Compact'''</font></center></p>
===Figure 19-d. Extension from 2 to 4 Dimensions: Digraph===
===Figure 19-d. Extension from 2 to 4 Dimensions: Digraph===
Line 2,330:
Line 2,372:
Figure 19-d. Extension from 2 to 4 Dimensions: Digraph
Figure 19-d. Extension from 2 to 4 Dimensions: Digraph
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 19-d -- Extension from 2 to 4 Dimensions.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 19-d. Extension from 2 to 4 Dimensions: Digraph'''</font></center></p>
===Figure 20-i. Thematization of Conjunction (Stage 1)===
===Figure 20-i. Thematization of Conjunction (Stage 1)===
Line 2,360:
Line 2,406:
Figure 20-i. Thematization of Conjunction (Stage 1)
Figure 20-i. Thematization of Conjunction (Stage 1)
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 20-i -- Thematization of Conjunction (Stage 1).gif|center]]</p>
+
<p><center><font size="+1">'''Figure 20-i. Thematization of Conjunction (Stage 1)'''</font></center></p>
===Figure 20-ii. Thematization of Conjunction (Stage 2)===
===Figure 20-ii. Thematization of Conjunction (Stage 2)===
Line 2,407:
Line 2,457:
Figure 20-ii. Thematization of Conjunction (Stage 2)
Figure 20-ii. Thematization of Conjunction (Stage 2)
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 20-ii -- Thematization of Conjunction (Stage 2).gif|center]]</p>
+
<p><center><font size="+1">'''Figure 20-ii. Thematization of Conjunction (Stage 2)'''</font></center></p>
===Figure 20-iii. Thematization of Conjunction (Stage 3)===
===Figure 20-iii. Thematization of Conjunction (Stage 3)===
Line 2,450:
Line 2,504:
Figure 20-iii. Thematization of Conjunction (Stage 3)
Figure 20-iii. Thematization of Conjunction (Stage 3)
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 20-iii -- Thematization of Conjunction (Stage 3).gif|center]]</p>
+
<p><center><font size="+1">'''Figure 20-iii. Thematization of Conjunction (Stage 3)'''</font></center></p>
===Figure 21. Thematization of Disjunction and Equality===
===Figure 21. Thematization of Disjunction and Equality===
Line 2,516:
Line 2,574:
Figure 21. Thematization of Disjunction and Equality
Figure 21. Thematization of Disjunction and Equality
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 21 -- Thematization of Disjunction and Equality.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 21. Thematization of Disjunction and Equality'''</font></center></p>
===Table 22. Disjunction ''f'' and Equality ''g''===
===Table 22. Disjunction ''f'' and Equality ''g''===
Line 3,673:
Line 3,735:
Figure 30. Generic Frame of a Logical Transformation
Figure 30. Generic Frame of a Logical Transformation
</pre>
</pre>
+
+
'''Note.''' The following image was corrupted in transit between software platforms.
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 30 -- Generic Frame of a Logical Transformation.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 30. Generic Frame of a Logical Transformation'''</font></center></p>
===Formula Display 3===
===Formula Display 3===
Line 3,729:
Line 3,797:
Figure 31. Operator Diagram (1)
Figure 31. Operator Diagram (1)
</pre>
</pre>
+
+
'''Note.''' The following image was corrupted in transit between software platforms.
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 31 -- Operator Diagram (1).gif|center]]</p>
+
<p><center><font size="+1">'''Figure 31. Operator Diagram (1)'''</font></center></p>
===Figure 32. Operator Diagram (2)===
===Figure 32. Operator Diagram (2)===
Line 3,754:
Line 3,828:
Figure 32. Operator Diagram (2)
Figure 32. Operator Diagram (2)
</pre>
</pre>
+
+
'''Note.''' The following image was corrupted in transit between software platforms.
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 32 -- Operator Diagram (2).gif|center]]</p>
+
<p><center><font size="+1">'''Figure 32. Operator Diagram (2)'''</font></center></p>
===Figure 33-i. Analytic Diagram (1)===
===Figure 33-i. Analytic Diagram (1)===
Line 3,774:
Line 3,854:
Figure 33-i. Analytic Diagram (1)
Figure 33-i. Analytic Diagram (1)
</pre>
</pre>
+
+
'''Note.''' The following image was corrupted in transit between software platforms.
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 33-i -- Analytic Diagram (1).gif|center]]</p>
+
<p><center><font size="+1">'''Figure 33-i. Analytic Diagram (1)'''</font></center></p>
===Figure 33-ii. Analytic Diagram (2)===
===Figure 33-ii. Analytic Diagram (2)===
Line 3,794:
Line 3,880:
Figure 33-ii. Analytic Diagram (2)
Figure 33-ii. Analytic Diagram (2)
</pre>
</pre>
+
+
'''Note.''' The following image was corrupted in transit between software platforms.
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 33-ii -- Analytic Diagram (2).gif|center]]</p>
+
<p><center><font size="+1">'''Figure 33-ii. Analytic Diagram (2)'''</font></center></p>
===Formula Display 4===
===Formula Display 4===
Line 4,012:
Line 4,104:
Figure 34. Tangent Functor Diagram
Figure 34. Tangent Functor Diagram
</pre>
</pre>
+
+
'''Note.''' The following image was corrupted in transit between software platforms.
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 34 -- Tangent Functor Diagram.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 34. Tangent Functor Diagram'''</font></center></p>
===Figure 35. Conjunction as Transformation===
===Figure 35. Conjunction as Transformation===
Line 4,067:
Line 4,165:
Figure 35. Conjunction as Transformation
Figure 35. Conjunction as Transformation
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 35 -- A Conjunction Viewed as a Transformation.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 35. Conjunction as Transformation'''</font></center></p>
===Table 36. Computation of !e!J===
===Table 36. Computation of !e!J===
Line 4,140:
Line 4,242:
</font><br>
</font><br>
−
===Figure 37-a. Tacit Extension of J (Areal)===
+
===Figure 37-a. Tacit Extension of ''J'' (Areal)===
<pre>
<pre>
Line 4,183:
Line 4,285:
</pre>
</pre>
−
===Figure 37-b. Tacit Extension of J (Bundle)===
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 37-a -- Tacit Extension of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 37-a. Tacit Extension of ''J'' (Areal)'''</font></center></p>
+
+
===Figure 37-b. Tacit Extension of ''J'' (Bundle)===
<pre>
<pre>
Line 4,252:
Line 4,358:
</pre>
</pre>
−
===Figure 37-c. Tacit Extension of J (Compact)===
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 37-b -- Tacit Extension of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 37-b. Tacit Extension of ''J'' (Bundle)'''</font></center></p>
+
+
===Figure 37-c. Tacit Extension of ''J'' (Compact)===
<pre>
<pre>
Line 4,292:
Line 4,402:
</pre>
</pre>
−
===Figure 37-d. Tacit Extension of J (Digraph)===
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 37-c -- Tacit Extension of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 37-c. Tacit Extension of ''J'' (Compact)'''</font></center></p>
+
+
===Figure 37-d. Tacit Extension of ''J'' (Digraph)===
<pre>
<pre>
Line 4,333:
Line 4,447:
Figure 37-d. Tacit Extension of J (Digraph)
Figure 37-d. Tacit Extension of J (Digraph)
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 37-d -- Tacit Extension of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 37-d. Tacit Extension of ''J'' (Digraph)'''</font></center></p>
===Table 38. Computation of EJ (Method 1)===
===Table 38. Computation of EJ (Method 1)===
Line 4,504:
Line 4,622:
</font><br>
</font><br>
−
===Figure 40-a. Enlargement of J (Areal)===
+
===Figure 40-a. Enlargement of ''J'' (Areal)===
<pre>
<pre>
Line 4,547:
Line 4,665:
</pre>
</pre>
−
===Figure 40-b. Enlargement of J (Bundle)===
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 40-a -- Enlargement of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 40-a. Enlargement of ''J'' (Areal)'''</font></center></p>
+
+
===Figure 40-b. Enlargement of ''J'' (Bundle)===
<pre>
<pre>
Line 4,616:
Line 4,738:
</pre>
</pre>
−
===Figure 40-c. Enlargement of J (Compact)===
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 40-b -- Enlargement of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 40-b. Enlargement of ''J'' (Bundle)'''</font></center></p>
+
+
===Figure 40-c. Enlargement of ''J'' (Compact)===
<pre>
<pre>
Line 4,656:
Line 4,782:
</pre>
</pre>
−
===Figure 40-d. Enlargement of J (Digraph)===
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 40-c -- Enlargement of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 40-c. Enlargement of ''J'' (Compact)'''</font></center></p>
+
+
===Figure 40-d. Enlargement of ''J'' (Digraph)===
<pre>
<pre>
Line 4,697:
Line 4,827:
Figure 40-d. Enlargement of J (Digraph)
Figure 40-d. Enlargement of J (Digraph)
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 40-d -- Enlargement of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 40-d. Enlargement of ''J'' (Digraph)'''</font></center></p>
===Table 41. Computation of DJ (Method 1)===
===Table 41. Computation of DJ (Method 1)===
Line 4,964:
Line 5,098:
</font><br>
</font><br>
−
===Figure 44-a. Difference Map of J (Areal)===
+
===Figure 44-a. Difference Map of ''J'' (Areal)===
<pre>
<pre>
Line 5,007:
Line 5,141:
</pre>
</pre>
−
===Figure 44-b. Difference Map of J (Bundle)===
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 44-a -- Difference Map of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 44-a. Difference Map of ''J'' (Areal)'''</font></center></p>
+
+
===Figure 44-b. Difference Map of ''J'' (Bundle)===
<pre>
<pre>
Line 5,076:
Line 5,214:
</pre>
</pre>
−
===Figure 44-c. Difference Map of J (Compact)===
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 44-b -- Difference Map of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 44-b. Difference Map of ''J'' (Bundle)'''</font></center></p>
+
+
===Figure 44-c. Difference Map of ''J'' (Compact)===
<pre>
<pre>
Line 5,117:
Line 5,259:
</pre>
</pre>
−
===Figure 44-d. Difference Map of J (Digraph)===
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 44-c -- Difference Map of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 44-c. Difference Map of ''J'' (Compact)'''</font></center></p>
+
+
===Figure 44-d. Difference Map of ''J'' (Digraph)===
<pre>
<pre>
Line 5,155:
Line 5,301:
Figure 44-d. Difference Map of J (Digraph)
Figure 44-d. Difference Map of J (Digraph)
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 44-d -- Difference Map of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 44-d. Difference Map of ''J'' (Digraph)'''</font></center></p>
===Table 45. Computation of dJ===
===Table 45. Computation of dJ===
Line 5,193:
Line 5,343:
</font><br>
</font><br>
−
===Figure 46-a. Differential of J (Areal)===
+
===Figure 46-a. Differential of ''J'' (Areal)===
<pre>
<pre>
Line 5,236:
Line 5,386:
</pre>
</pre>
−
===Figure 46-b. Differential of J (Bundle)===
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 46-a -- Differential of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 46-a. Differential of ''J'' (Areal)'''</font></center></p>
+
+
===Figure 46-b. Differential of ''J'' (Bundle)===
<pre>
<pre>
Line 5,305:
Line 5,459:
</pre>
</pre>
−
===Figure 46-c. Differential of J (Compact)===
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 46-b -- Differential of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 46-b. Differential of ''J'' (Bundle)'''</font></center></p>
+
+
===Figure 46-c. Differential of ''J'' (Compact)===
<pre>
<pre>
Line 5,342:
Line 5,500:
</pre>
</pre>
−
===Figure 46-d. Differential of J (Digraph)===
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 46-c -- Differential of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 46-c. Differential of ''J'' (Compact)'''</font></center></p>
+
+
===Figure 46-d. Differential of ''J'' (Digraph)===
<pre>
<pre>
Line 5,378:
Line 5,540:
Figure 46-d. Differential of J (Digraph)
Figure 46-d. Differential of J (Digraph)
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 46-d -- Differential of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 46-d. Differential of ''J'' (Digraph)'''</font></center></p>
===Table 47. Computation of rJ===
===Table 47. Computation of rJ===
Line 5,439:
Line 5,605:
</font><br>
</font><br>
−
===Figure 48-a. Remainder of J (Areal)===
+
===Figure 48-a. Remainder of ''J'' (Areal)===
<pre>
<pre>
Line 5,482:
Line 5,648:
</pre>
</pre>
−
===Figure 48-b. Remainder of J (Bundle)===
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 48-a -- Remainder of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 48-a. Remainder of ''J'' (Areal)'''</font></center></p>
+
+
===Figure 48-b. Remainder of ''J'' (Bundle)===
<pre>
<pre>
Line 5,551:
Line 5,721:
</pre>
</pre>
−
===Figure 48-c. Remainder of J (Compact)===
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 48-b -- Remainder of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 48-b. Remainder of ''J'' (Bundle)'''</font></center></p>
+
+
===Figure 48-c. Remainder of ''J'' (Compact)===
<pre>
<pre>
Line 5,591:
Line 5,765:
</pre>
</pre>
−
===Figure 48-d. Remainder of J (Digraph)===
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 48-c -- Remainder of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 48-c. Remainder of ''J'' (Compact)'''</font></center></p>
+
+
===Figure 48-d. Remainder of ''J'' (Digraph)===
<pre>
<pre>
Line 5,627:
Line 5,805:
Figure 48-d. Remainder of J (Digraph)
Figure 48-d. Remainder of J (Digraph)
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 48-d -- Remainder of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 48-d. Remainder of ''J'' (Digraph)'''</font></center></p>
===Table 49. Computation Summary for J===
===Table 49. Computation Summary for J===
Line 6,228:
Line 6,410:
Figure 52. Decomposition of the Enlarged Conjunction EJ = (J, DJ)
Figure 52. Decomposition of the Enlarged Conjunction EJ = (J, DJ)
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 52 -- Decomposition of EJ.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 52. Decomposition of E''J'''''</font></center></p>
===Figure 53. Decomposition of the Differed Conjunction DJ = (dJ, ddJ)===
===Figure 53. Decomposition of the Differed Conjunction DJ = (dJ, ddJ)===
Line 6,279:
Line 6,465:
Figure 53. Decomposition of the Differed Conjunction DJ = (dJ, ddJ)
Figure 53. Decomposition of the Differed Conjunction DJ = (dJ, ddJ)
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 53 -- Decomposition of DJ.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 53. Decomposition of D''J'''''</font></center></p>
===Table 54. Cast of Characters: Expansive Subtypes of Objects and Operators===
===Table 54. Cast of Characters: Expansive Subtypes of Objects and Operators===
Line 6,386:
Line 6,576:
| Transformation, or Mapping
| Transformation, or Mapping
| ['''B'''<sup>2</sup>] → ['''B'''<sup>1</sup>]
| ['''B'''<sup>2</sup>] → ['''B'''<sup>1</sup>]
−
|-
|-
|-
| valign="top" |
| valign="top" |
Line 6,614:
Line 6,803:
| <math>\epsilon</math> :
| <math>\epsilon</math> :
|-
|-
−
| ''U''<sup> •</sup> → E''U''<sup> •</sup>, ''X''<sup> •</sup> → E''X''<sup> •</sup>,
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
|-
|-
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → ''X''<sup> •</sup>)
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → ''X''<sup> •</sup>)
Line 6,622:
Line 6,811:
| <math>\epsilon</math>''J'' :
| <math>\epsilon</math>''J'' :
|-
|-
−
| 〈''u'', ''v'', d''u'', d''v''〉 → '''B'''
+
| 〈''u'', ''v'', d''u'', d''v''〉 → '''B'''
|-
|-
−
| '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''B'''
+
| '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''B'''
|}
|}
|
|
Line 6,630:
Line 6,819:
| <math>\epsilon</math>''J'' :
| <math>\epsilon</math>''J'' :
|-
|-
−
| [''u'', ''v'', d''u'', d''v''] → [''x'']
+
| [''u'', ''v'', d''u'', d''v''] → [''x'']
|-
|-
−
| ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B'''<sup>1</sup>]
+
| ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B'''<sup>1</sup>]
|}
|}
|-
|-
Line 6,645:
Line 6,834:
| <math>\eta</math> :
| <math>\eta</math> :
|-
|-
−
|
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
|-
|-
−
|
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>)
|}
|}
|
|
Line 6,653:
Line 6,842:
| <math>\eta</math>''J'' :
| <math>\eta</math>''J'' :
|-
|-
−
|
+
| 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
|-
|-
−
|
+
| '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D'''
|}
|}
|
|
Line 6,661:
Line 6,850:
| <math>\eta</math>''J'' :
| <math>\eta</math>''J'' :
|-
|-
−
|
+
| [''u'', ''v'', d''u'', d''v''] → [d''x'']
|-
|-
−
|
+
| ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''D'''<sup>1</sup>]
|}
|}
|-
|-
Line 6,676:
Line 6,865:
| E :
| E :
|-
|-
−
|
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
|-
|-
−
|
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>)
|}
|}
|
|
Line 6,684:
Line 6,873:
| E''J'' :
| E''J'' :
|-
|-
−
|
+
| 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
|-
|-
−
|
+
| '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D'''
|}
|}
|
|
Line 6,692:
Line 6,881:
| E''J'' :
| E''J'' :
|-
|-
−
|
+
| [''u'', ''v'', d''u'', d''v''] → [d''x'']
|-
|-
−
|
+
| ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''D'''<sup>1</sup>]
|}
|}
|-
|-
Line 6,707:
Line 6,896:
| D :
| D :
|-
|-
−
|
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
|-
|-
−
|
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>)
|}
|}
|
|
Line 6,715:
Line 6,904:
| D''J'' :
| D''J'' :
|-
|-
−
|
+
| 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
|-
|-
−
|
+
| '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D'''
|}
|}
|
|
Line 6,723:
Line 6,912:
| D''J'' :
| D''J'' :
|-
|-
−
|
+
| [''u'', ''v'', d''u'', d''v''] → [d''x'']
|-
|-
−
|
+
| ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''D'''<sup>1</sup>]
|}
|}
|-
|-
Line 6,738:
Line 6,927:
| d :
| d :
|-
|-
−
|
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
|-
|-
−
|
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>)
|}
|}
|
|
Line 6,746:
Line 6,935:
| d''J'' :
| d''J'' :
|-
|-
−
|
+
| 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
|-
|-
−
|
+
| '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D'''
|}
|}
|
|
Line 6,754:
Line 6,943:
| d''J'' :
| d''J'' :
|-
|-
−
|
+
| [''u'', ''v'', d''u'', d''v''] → [d''x'']
|-
|-
−
|
+
| ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''D'''<sup>1</sup>]
|}
|}
|-
|-
Line 6,769:
Line 6,958:
| r :
| r :
|-
|-
−
|
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
|-
|-
−
|
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>)
|}
|}
|
|
Line 6,777:
Line 6,966:
| r''J'' :
| r''J'' :
|-
|-
−
|
+
| 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
|-
|-
−
|
+
| '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D'''
|}
|}
|
|
Line 6,785:
Line 6,974:
| r''J'' :
| r''J'' :
|-
|-
−
|
+
| [''u'', ''v'', d''u'', d''v''] → [d''x'']
|-
|-
−
|
+
| ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''D'''<sup>1</sup>]
|}
|}
|-
|-
Line 6,800:
Line 6,989:
| <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› :
| <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› :
|-
|-
−
|
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
|-
|-
−
|
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>)
|}
|}
|
|
Line 6,816:
Line 7,005:
| <font face=georgia>'''e'''</font>''J'' :
| <font face=georgia>'''e'''</font>''J'' :
|-
|-
−
|
+
| [''u'', ''v'', d''u'', d''v''] → [''x'', d''x'']
|-
|-
−
|
+
| ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B''' × '''D''']
|}
|}
|-
|-
Line 6,831:
Line 7,020:
| <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› :
| <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› :
|-
|-
−
|
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
|-
|-
−
|
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>)
|}
|}
|
|
Line 6,847:
Line 7,036:
| <font face=georgia>'''E'''</font>''J'' :
| <font face=georgia>'''E'''</font>''J'' :
|-
|-
−
|
+
| [''u'', ''v'', d''u'', d''v''] → [''x'', d''x'']
|-
|-
−
|
+
| ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B''' × '''D''']
|}
|}
|-
|-
Line 6,862:
Line 7,051:
| <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› :
| <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› :
|-
|-
−
|
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
|-
|-
−
|
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>)
|}
|}
|
|
Line 6,878:
Line 7,067:
| <font face=georgia>'''D'''</font>''J'' :
| <font face=georgia>'''D'''</font>''J'' :
|-
|-
−
|
+
| [''u'', ''v'', d''u'', d''v''] → [''x'', d''x'']
|-
|-
−
|
+
| ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B''' × '''D''']
|}
|}
−
|-
|-
|
|
Line 6,894:
Line 7,082:
| <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› :
| <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› :
|-
|-
−
|
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
|-
|-
−
|
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>)
|}
|}
|
|
Line 6,902:
Line 7,090:
| d''J'' :
| d''J'' :
|-
|-
−
|
+
| 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
|-
|-
−
|
+
| '''B'''<sup>2</sup> × '''D'''<sup>2</sup> → '''D'''
|}
|}
|
|
Line 6,910:
Line 7,098:
| <font face=georgia>'''T'''</font>''J'' :
| <font face=georgia>'''T'''</font>''J'' :
|-
|-
−
|
+
| [''u'', ''v'', d''u'', d''v''] → [''x'', d''x'']
|-
|-
−
|
+
| ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B''' × '''D''']
−
|}
|}
|}
+
|}<br>
+
+
===Figure 56-a1. Radius Map of the Conjunction J = uv===
<pre>
<pre>
−
--------------o
+
o
−
+
/X\
−
| Tacit | !e! : | !e!J : | !e!J : |
+
/XXX\
−
| Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> B | [u,v,du,dv]->[x] |
+
oXXXXXo
−
| | (U%->X%)->(EU%->X%) | B^2 x D^2 -> B | [B^2 x D^2]->[B^1] |
+
/X\XXX/X\
−
+
/XXX\X/XXX\
−
--------------o
+
oXXXXXoXXXXXo
−
+
/ \XXX/X\XXX/ \
−
| Trope | !h! : | !h!J : | !h!J : |
+
/ \X/XXX\X/ \
−
| Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx] |
+
o oXXXXXo o
−
| | (U%->X%)->(EU%->dX%) | B^2 x D^2 -> D | [B^2 x D^2]->[D^1] |
+
/ \ / \XXX/ \ / \
−
+
/ \ / \X/ \ / \
−
--------------o
+
o o o o o
−
+
=|\ / \ / \ / \ /|=
−
| Enlargement | E : | EJ : | EJ : |
−
| Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx] |
−
| | (U%->X%)->(EU%->dX%) | B^2 x D^2 -> D | [B^2 x D^2]->[D^1] |
−
−
--------------o
−
−
| Difference | D : | DJ : | DJ : |
−
| Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx] |
−
| | (U%->X%)->(EU%->dX%) | B^2 x D^2 -> D | [B^2 x D^2]->[D^1] |
−
−
--------------o
−
−
| Differential | d : | dJ : | dJ : |
−
| Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx] |
−
| | (U%->X%)->(EU%->dX%) | B^2 x D^2 -> D | [B^2 x D^2]->[D^1] |
−
−
--------------o
−
−
| Remainder | r : | rJ : | rJ : |
−
| Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx] |
−
| | (U%->X%)->(EU%->dX%) | B^2 x D^2 -> D | [B^2 x D^2]->[D^1] |
−
−
--------------o
−
−
| Radius | $e$ = <!e!, !h!> : | | $e$J : |
−
| Operator | U%->EU%, X%->EX%, | | [u,v,du,dv]->[x, dx] |
−
| | (U%->X%)->(EU%->EX%) | | [B^2 x D^2]->[B x D] |
−
−
--------------o
−
−
| Secant | $E$ = <!e!, E> : | | $E$J : |
−
| Operator | U%->EU%, X%->EX%, | | [u,v,du,dv]->[x, dx] |
−
| | (U%->X%)->(EU%->EX%) | | [B^2 x D^2]->[B x D] |
−
−
--------------o
−
−
| Chord | $D$ = <!e!, D> : | | $D$J : |
−
| Operator | U%->EU%, X%->EX%, | | [u,v,du,dv]->[x, dx] |
−
| | (U%->X%)->(EU%->EX%) | | [B^2 x D^2]->[B x D] |
−
−
--------------o
−
−
| Tangent | $T$ = <!e!, d> : | dJ : | $T$J : |
−
| Functor | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[x, dx] |
−
| | (U%->X%)->(EU%->EX%) | B^2 x D^2 -> D | [B^2 x D^2]->[B x D] |
−
−
--------------o
−
</pre>
−
−
===Figure 56-a1. Radius Map of the Conjunction J = uv===
−
−
<pre>
−
o
−
/X\
−
/XXX\
−
oXXXXXo
−
/X\XXX/X\
−
/XXX\X/XXX\
−
oXXXXXoXXXXXo
−
/ \XXX/X\XXX/ \
−
/ \X/XXX\X/ \
−
o oXXXXXo o
−
/ \ / \XXX/ \ / \
−
/ \ / \X/ \ / \
−
o o o o o
−
=|\ / \ / \ / \ /|=
= | \ / \ / \ / \ / | =
= | \ / \ / \ / \ / | =
= | o o o o | =
= | o o o o | =
Line 7,047:
Line 7,171:
Figure 56-a1. Radius Map of the Conjunction J = uv
Figure 56-a1. Radius Map of the Conjunction J = uv
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 56-a1 -- Radius Map of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 56-a1. Radius Map of the Conjunction ''J'' = ''uv'''''</font></center></p>
===Figure 56-a2. Secant Map of the Conjunction J = uv===
===Figure 56-a2. Secant Map of the Conjunction J = uv===
Line 7,115:
Line 7,243:
Figure 56-a2. Secant Map of the Conjunction J = uv
Figure 56-a2. Secant Map of the Conjunction J = uv
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 56-a2 -- Secant Map of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 56-a2. Secant Map of the Conjunction ''J'' = ''uv'''''</font></center></p>
===Figure 56-a3. Chord Map of the Conjunction J = uv===
===Figure 56-a3. Chord Map of the Conjunction J = uv===
Line 7,183:
Line 7,315:
Figure 56-a3. Chord Map of the Conjunction J = uv
Figure 56-a3. Chord Map of the Conjunction J = uv
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 56-a3 -- Chord Map of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 56-a3. Chord Map of the Conjunction ''J'' = ''uv'''''</font></center></p>
===Figure 56-a4. Tangent Map of the Conjunction J = uv===
===Figure 56-a4. Tangent Map of the Conjunction J = uv===
Line 7,251:
Line 7,387:
Figure 56-a4. Tangent Map of the Conjunction J = uv
Figure 56-a4. Tangent Map of the Conjunction J = uv
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 56-a4 -- Tangent Map of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 56-a4. Tangent Map of the Conjunction ''J'' = ''uv'''''</font></center></p>
===Figure 56-b1. Radius Map of the Conjunction J = uv===
===Figure 56-b1. Radius Map of the Conjunction J = uv===
Line 7,351:
Line 7,491:
Figure 56-b1. Radius Map of the Conjunction J = uv
Figure 56-b1. Radius Map of the Conjunction J = uv
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 56-b1 -- Radius Map of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 56-b1. Radius Map of the Conjunction ''J'' = ''uv'''''</font></center></p>
===Figure 56-b2. Secant Map of the Conjunction J = uv===
===Figure 56-b2. Secant Map of the Conjunction J = uv===
Line 7,451:
Line 7,595:
Figure 56-b2. Secant Map of the Conjunction J = uv
Figure 56-b2. Secant Map of the Conjunction J = uv
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 56-b2 -- Secant Map of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 56-b2. Secant Map of the Conjunction ''J'' = ''uv'''''</font></center></p>
===Figure 56-b3. Chord Map of the Conjunction J = uv===
===Figure 56-b3. Chord Map of the Conjunction J = uv===
Line 7,551:
Line 7,699:
Figure 56-b3. Chord Map of the Conjunction J = uv
Figure 56-b3. Chord Map of the Conjunction J = uv
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 56-b3 -- Chord Map of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 56-b3. Chord Map of the Conjunction ''J'' = ''uv'''''</font></center></p>
===Figure 56-b4. Tangent Map of the Conjunction J = uv===
===Figure 56-b4. Tangent Map of the Conjunction J = uv===
Line 7,651:
Line 7,803:
Figure 56-b4. Tangent Map of the Conjunction J = uv
Figure 56-b4. Tangent Map of the Conjunction J = uv
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 56-b4 -- Tangent Map of J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 56-b4. Tangent Map of the Conjunction ''J'' = ''uv'''''</font></center></p>
===Figure 57-1. Radius Operator Diagram for the Conjunction J = uv===
===Figure 57-1. Radius Operator Diagram for the Conjunction J = uv===
Line 7,721:
Line 7,877:
Figure 57-1. Radius Operator Diagram for the Conjunction J = uv
Figure 57-1. Radius Operator Diagram for the Conjunction J = uv
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 57-1 -- Radius Operator Diagram for J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 57-1. Radius Operator Diagram for the Conjunction ''J'' = ''uv'''''</font></center></p>
===Figure 57-2. Secant Operator Diagram for the Conjunction J = uv===
===Figure 57-2. Secant Operator Diagram for the Conjunction J = uv===
Line 7,791:
Line 7,951:
Figure 57-2. Secant Operator Diagram for the Conjunction J = uv
Figure 57-2. Secant Operator Diagram for the Conjunction J = uv
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 57-2 -- Secant Operator Diagram for J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 57-2. Secant Operator Diagram for the Conjunction ''J'' = ''uv'''''</font></center></p>
===Figure 57-3. Chord Operator Diagram for the Conjunction J = uv===
===Figure 57-3. Chord Operator Diagram for the Conjunction J = uv===
Line 7,861:
Line 8,025:
Figure 57-3. Chord Operator Diagram for the Conjunction J = uv
Figure 57-3. Chord Operator Diagram for the Conjunction J = uv
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 57-3 -- Chord Operator Diagram for J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 57-3. Chord Operator Diagram for the Conjunction ''J'' = ''uv'''''</font></center></p>
===Figure 57-4. Tangent Functor Diagram for the Conjunction J = uv===
===Figure 57-4. Tangent Functor Diagram for the Conjunction J = uv===
Line 7,931:
Line 8,099:
Figure 57-4. Tangent Functor Diagram for the Conjunction J = uv
Figure 57-4. Tangent Functor Diagram for the Conjunction J = uv
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 57-4 -- Tangent Functor Diagram for J.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 57-4. Tangent Functor Diagram for the Conjunction ''J'' = ''uv'''''</font></center></p>
===Formula Display 11===
===Formula Display 11===
Line 8,090:
Line 8,262:
</pre>
</pre>
−
===Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes===
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; text-align:left; width:96%"
−
+
|+ '''Table 58. Cast of Characters: Expansive Subtypes of Objects and Operators'''
−
<pre>
+
|- style="background:paleturquoise"
−
Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes
+
! Item
−
o--------------o----------------------o--------------------o----------------------o
+
! Notation
−
| | Operator | Proposition | Transformation |
+
! Description
−
| | or | or | or |
+
! Type
−
| | Operand | Component | Mapping |
+
|-
−
o--------------o----------------------o--------------------o----------------------o
+
| valign="top" | ''U''<sup> •</sup>
−
| | | | |
+
| valign="top" | <font face="courier new">= </font>[''u'', ''v'']
−
| Operand | F = <F_1, F_2> | F_i : <|u,v|> -> B | F : [u, v] -> [x, y] |
+
| valign="top" | Source Universe
−
| | | | |
+
| valign="top" | ['''B'''<sup>''n''</sup>]
−
| | F = <f, g> : U -> X | F_i : B^n -> B | F : B^n -> B^k |
+
|-
−
| | | | |
+
| valign="top" | ''X''<sup> •</sup>
−
o--------------o----------------------o--------------------o----------------------o
+
| valign="top" |
−
| | | | |
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| Tacit | !e! : | !e!F_i : | !e!F : |
+
| <font face="courier new">= </font>[''x'', ''y'']
−
| Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> B | [u,v,du,dv]->[x, y] |
+
|-
−
| | (U%->X%)->(EU%->X%) | B^n x D^n -> B | [B^n x D^n]->[B^k] |
+
| <font face="courier new">= </font>[''f'', ''g'']
−
| | | | |
+
|}
−
o--------------o----------------------o--------------------o----------------------o
+
| valign="top" | Target Universe
−
| | | | |
+
| valign="top" | ['''B'''<sup>''k''</sup>]
−
| Trope | !h! : | !h!F_i : | !h!F : |
+
|-
−
| Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
+
| valign="top" | E''U''<sup> •</sup>
−
| | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
+
| valign="top" | <font face="courier new">= </font>[''u'', ''v'', d''u'', d''v'']
−
| | | | |
+
| valign="top" | Extended Source Universe
−
o--------------o----------------------o--------------------o----------------------o
+
| valign="top" | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>]
−
| | | | |
+
|-
−
| Enlargement | E : | EF_i : | EF : |
+
| valign="top" | E''X''<sup> •</sup>
−
| Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
+
| valign="top" |
−
| | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
+
{| align="left" border="0" cellpadding="0" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| | | | |
+
| <font face="courier new">= </font>[''x'', ''y'', d''x'', d''y'']
−
o--------------o----------------------o--------------------o----------------------o
+
|-
−
| | | | |
+
| <font face="courier new">= </font>[''f'', ''g'', d''f'', d''g'']
−
| Difference | D : | DF_i : | DF : |
+
|}
−
| Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
+
| valign="top" | Extended Target Universe
−
| | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
+
| valign="top" | ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]
−
| | | | |
+
|-
−
o--------------o----------------------o--------------------o----------------------o
+
| ''F''
−
| | | | |
+
| ''F'' = ‹''f'', ''g''› : ''U''<sup> •</sup> → ''X''<sup> •</sup>
−
| Differential | d : | dF_i : | dF : |
+
| Transformation, or Mapping
−
| Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
+
| ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>]
−
| | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
+
|-
−
| | | | |
+
| valign="top" |
−
o--------------o----------------------o--------------------o----------------------o
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| | | | |
+
|
−
| Remainder | r : | rF_i : | rF : |
+
|-
−
| Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
+
| ''f''
−
| | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
+
|-
−
| | | | |
+
| ''g''
−
o--------------o----------------------o--------------------o----------------------o
+
|}
−
| | | | |
+
| valign="top" |
−
| Radius | $e$ = <!e!, !h!> : | | $e$F : |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| Operator | | | |
+
| ''f'', ''g'' : ''U'' → '''B'''
−
| | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
+
|-
−
| | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
+
| ''f'' : ''U'' → [''x''] ⊆ ''X''<sup> •</sup>
−
| | | | |
+
|-
−
| | | | [B^n x D^n] -> |
+
| ''g'' : ''U'' → [''y''] ⊆ ''X''<sup> •</sup>
−
| | | | [B^k x D^k] |
+
|}
−
| | | | |
+
| valign="top" |
−
o--------------o----------------------o--------------------o----------------------o
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| | | | |
+
| Proposition
−
| Secant | $E$ = <!e!, E> : | | $E$F : |
+
|}
−
| Operator | | | |
+
| valign="top" |
−
| | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100"
−
| | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
+
| '''B'''<sup>''n''</sup> → '''B'''
−
| | | | |
+
|-
−
| | | | [B^n x D^n] -> |
+
| ∈ ('''B'''<sup>''n''</sup>, '''B'''<sup>''n''</sup> → '''B''')
−
| | | | [B^k x D^k] |
+
|-
−
| | | | |
+
| = ('''B'''<sup>''n''</sup> +→ '''B''') = ['''B'''<sup>''n''</sup>]
−
o--------------o----------------------o--------------------o----------------------o
+
|}
−
| | | | |
+
|-
−
| Chord | $D$ = <!e!, D> : | | $D$F : |
+
| valign="top" |
−
| Operator | | | |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
+
| W
−
| | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
+
|}
−
| | | | |
+
| valign="top" |
−
| | | | [B^n x D^n] -> |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| | | | [B^k x D^k] |
+
| W :
−
| | | | |
+
|-
−
o--------------o----------------------o--------------------o----------------------o
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> ,
−
| | | | |
+
|-
−
| Tangent | $T$ = <!e!, d> : | dF_i : | $T$F : |
+
| ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
−
| Functor | | | |
+
|-
−
| | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u, v, du, dv] -> |
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>)
−
| | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
+
|-
−
| | | | |
+
| →
−
| | | B^n x D^n -> D | [B^n x D^n] -> |
+
|-
−
| | | | [B^k x D^k] |
+
| (E''U''<sup> •</sup> → E''X''<sup> •</sup>) ,
−
| | | | |
+
|-
−
o--------------o----------------------o--------------------o----------------------o
+
| for each W in the set:
−
</pre>
+
|-
−
+
| {<math>\epsilon</math>, <math>\eta</math>, E, D, d}
−
===Formula Display 12===
+
|}
−
+
| valign="top" |
−
<pre>
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
o-----------------------------------------------------------o
+
| Operator
−
| |
+
|}
−
| x = f(u, v) = ((u)(v)) |
+
| valign="top" |
−
| |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100"
−
| y = g(u, v) = ((u, v)) |
+
|
−
| |
+
|-
−
o-----------------------------------------------------------o
+
| ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] ,
−
</pre>
+
|-
−
+
| ['''B'''<sup>''k''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] ,
−
<br><font face="courier new">
+
|-
−
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
| (['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>])
−
|
+
|-
−
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| →
−
|
+
|-
−
| ''x''
+
| (['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>])
−
| =
+
|-
−
| ''f''‹''u'', ''v''›
+
|
−
| =
−
| ((''u'')(''v''))
−
|
|-
|-
−
|
−
| ''y''
−
| =
−
| ''g''‹''u'', ''v''›
−
| =
−
| ((''u'', ''v''))
|
|
|}
|}
+
|-
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| <math>\epsilon</math>
+
|-
+
| <math>\eta</math>
+
|-
+
| E
+
|-
+
| D
+
|-
+
| d
|}
|}
−
</font><br>
+
| valign="top" |
−
+
| colspan="2" |
−
===Formula Display 13===
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%"
−
+
| Tacit Extension Operator || <math>\epsilon</math>
−
<pre>
+
|-
−
o-----------------------------------------------------------o
+
| Trope Extension Operator || <math>\eta</math>
−
| |
+
|-
−
| <x, y> = F<u, v> = <((u)(v)), ((u, v))> |
+
| Enlargement Operator || E
−
| |
+
|-
−
o-----------------------------------------------------------o
+
| Difference Operator || D
−
</pre>
+
|-
−
+
| Differential Operator || d
−
<br><font face="courier new">
−
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
−
|
−
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
−
| ‹''x'', ''y''›
−
| =
−
| ''F''‹''u'', ''v''›
−
| =
−
| ‹((''u'')(''v'')), ((''u'', ''v''))›
|}
|}
+
|-
+
| valign="top" |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| <font face=georgia>'''W'''</font>
|}
|}
−
</font><br>
+
| valign="top" |
−
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
<br><font face="courier new">
+
| <font face=georgia>'''W'''</font> :
−
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
|-
−
|
+
| ''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''U''<sup> •</sup> = E''U''<sup> •</sup> ,
−
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
|-
−
|
+
| ''X''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup> = E''X''<sup> •</sup> ,
−
| ‹''x'', ''y''›
+
|-
−
| =
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>)
−
| ''F''‹''u'', ''v''›
+
|-
−
| =
+
| →
−
| ‹((''u'')(''v'')), ((''u'', ''v''))›
+
|-
+
| (<font face=georgia>'''T'''</font>''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup>) ,
+
|-
+
| for each <font face=georgia>'''W'''</font> in the set:
+
|-
+
| {<font face=georgia>'''e'''</font>, <font face=georgia>'''E'''</font>, <font face=georgia>'''D'''</font>, <font face=georgia>'''T'''</font>}
+
|}
+
| valign="top" |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| Operator
+
|}
+
| valign="top" |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100"
+
|
+
|-
+
| ['''B'''<sup>''n''</sup>] → ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] ,
+
|-
+
| ['''B'''<sup>''k''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>] ,
+
|-
+
| (['''B'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>])
+
|-
+
| →
+
|-
+
| (['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>])
+
|-
+
|
+
|-
|
|
|}
|}
+
|-
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| <font face=georgia>'''e'''</font>
+
|-
+
| <font face=georgia>'''E'''</font>
+
|-
+
| <font face=georgia>'''D'''</font>
+
|-
+
| <font face=georgia>'''T'''</font>
|}
|}
−
</font><br>
+
| valign="top" |
+
| colspan="2" |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:60%"
+
| Radius Operator || <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>›
+
|-
+
| Secant Operator || <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E›
+
|-
+
| Chord Operator || <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D›
+
|-
+
| Tangent Functor || <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d›
+
|}
+
|}<br>
−
===Table 60. Propositional Transformation===
+
===Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes===
<pre>
<pre>
−
Table 60. Propositional Transformation
+
Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes
−
o-------------o-------------o-------------o-------------o
+
o--------------o----------------------o--------------------o----------------------o
−
| u | v | f | g |
+
| | Operator | Proposition | Transformation |
−
o-------------o-------------o-------------o-------------o
+
| | or | or | or |
−
| | | | |
+
| | Operand | Component | Mapping |
−
| 0 | 0 | 0 | 1 |
+
o--------------o----------------------o--------------------o----------------------o
−
| | | | |
+
| | | | |
−
| 0 | 1 | 1 | 0 |
+
| Operand | F = <F_1, F_2> | F_i : <|u,v|> -> B | F : [u, v] -> [x, y] |
−
| | | | |
+
| | | | |
−
| 1 | 0 | 1 | 0 |
+
| | F = <f, g> : U -> X | F_i : B^n -> B | F : B^n -> B^k |
−
| | | | |
+
| | | | |
−
| 1 | 1 | 1 | 1 |
+
o--------------o----------------------o--------------------o----------------------o
−
| | | | |
+
| | | | |
−
o-------------o-------------o-------------o-------------o
+
| Tacit | !e! : | !e!F_i : | !e!F : |
−
| | | ((u)(v)) | ((u, v)) |
+
| Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> B | [u,v,du,dv]->[x, y] |
−
o-------------o-------------o-------------o-------------o
+
| | (U%->X%)->(EU%->X%) | B^n x D^n -> B | [B^n x D^n]->[B^k] |
−
</pre>
+
| | | | |
−
+
o--------------o----------------------o--------------------o----------------------o
−
===Figure 61. Propositional Transformation===
+
| | | | |
−
+
| Trope | !h! : | !h!F_i : | !h!F : |
−
<pre>
+
| Extension | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
−
o-----------------------------------------------------o
+
| | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
−
| U |
+
| | | | |
−
| |
+
o--------------o----------------------o--------------------o----------------------o
−
| o-----------o o-----------o |
+
| | | | |
−
| / \ / \ |
+
| Enlargement | E : | EF_i : | EF : |
−
| / o \ |
+
| Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
−
| / / \ \ |
+
| | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
−
| / / \ \ |
+
| | | | |
−
| o o o o |
+
o--------------o----------------------o--------------------o----------------------o
−
| | | | | |
+
| | | | |
−
| | u | | v | |
+
| Difference | D : | DF_i : | DF : |
−
| | | | | |
+
| Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
−
| o o o o |
+
| | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
−
| \ \ / / |
+
| | | | |
−
| \ \ / / |
+
o--------------o----------------------o--------------------o----------------------o
−
| \ o / |
+
| | | | |
−
| \ / \ / |
+
| Differential | d : | dF_i : | dF : |
−
| o-----------o o-----------o |
+
| Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
−
| |
+
| | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
−
| |
+
| | | | |
−
o-----------------------------------------------------o
+
o--------------o----------------------o--------------------o----------------------o
−
/ \ / \
+
| | | | |
−
/ \ / \
+
| Remainder | r : | rF_i : | rF : |
−
/ \ / \
+
| Operator | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u,v,du,dv]->[dx,dy] |
−
/ \ / \
+
| | (U%->X%)->(EU%->dX%) | B^n x D^n -> D | [B^n x D^n]->[D^k] |
−
/ \ / \
+
| | | | |
−
/ \ / \
+
o--------------o----------------------o--------------------o----------------------o
−
/ \ / \
+
| | | | |
−
/ \ / \
+
| Radius | $e$ = <!e!, !h!> : | | $e$F : |
−
/ \ / \
+
| Operator | | | |
−
/ \ / \
+
| | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
−
/ \ / \
+
| | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
−
/ \ / \
+
| | | | |
−
o-------------------------o o-------------------------o
+
| | | | [B^n x D^n] -> |
−
| U | |\U \\\\\\\\\\\\\\\\\\\\\\|
+
| | | | [B^k x D^k] |
−
| o---o o---o | |\\\\\\o---o\\\o---o\\\\\\|
+
| | | | |
−
| //////\ //////\ | |\\\\\/ \\/ \\\\\\|
+
o--------------o----------------------o--------------------o----------------------o
−
| ////////o///////\ | |\\\\/ o \\\\\|
+
| | | | |
−
| //////////\///////\ | |\\\/ /\\ \\\\|
+
| Secant | $E$ = <!e!, E> : | | $E$F : |
−
| o///////o///o///////o | |\\o o\\\o o\\|
+
| Operator | | | |
−
| |// u //|///|// v //| | |\\| u |\\\| v |\\|
+
| | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
−
| o///////o///o///////o | |\\o o\\\o o\\|
+
| | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
−
| \///////\////////// | |\\\\ \\/ /\\\|
+
| | | | |
−
| \///////o//////// | |\\\\\ o /\\\\|
+
| | | | [B^n x D^n] -> |
−
| \////// \////// | |\\\\\\ /\\ /\\\\\|
+
| | | | [B^k x D^k] |
−
| o---o o---o | |\\\\\\o---o\\\o---o\\\\\\|
+
| | | | |
−
| | |\\\\\\\\\\\\\\\\\\\\\\\\\|
+
o--------------o----------------------o--------------------o----------------------o
−
o-------------------------o o-------------------------o
+
| | | | |
−
\ | | /
+
| Chord | $D$ = <!e!, D> : | | $D$F : |
−
\ | | /
+
| Operator | | | |
−
\ | | /
+
| | U%->EU%, X%->EX%, | | [u, v, du, dv] -> |
−
\ f | | g /
+
| | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
−
\ | | /
+
| | | | |
−
\ | | /
+
| | | | [B^n x D^n] -> |
−
\ | | /
+
| | | | [B^k x D^k] |
−
\ | | /
+
| | | | |
−
\ | | /
+
o--------------o----------------------o--------------------o----------------------o
−
\ | | /
+
| | | | |
−
o-------\----|---------------------------|----/-------o
+
| Tangent | $T$ = <!e!, d> : | dF_i : | $T$F : |
−
| X \ | | / |
+
| Functor | | | |
−
| \| |/ |
+
| | U%->EU%, X%->EX%, | <|u,v,du,dv|> -> D | [u, v, du, dv] -> |
−
| o-----------o o-----------o |
+
| | (U%->X%)->(EU%->EX%) | | [x, y, dx, dy], |
−
| //////////////\ /\\\\\\\\\\\\\\ |
+
| | | | |
−
| ////////////////o\\\\\\\\\\\\\\\\ |
+
| | | B^n x D^n -> D | [B^n x D^n] -> |
−
| /////////////////X\\\\\\\\\\\\\\\\\ |
+
| | | | [B^k x D^k] |
−
| /////////////////XXX\\\\\\\\\\\\\\\\\ |
+
| | | | |
−
| o///////////////oXXXXXo\\\\\\\\\\\\\\\o |
+
o--------------o----------------------o--------------------o----------------------o
−
| |///////////////|XXXXX|\\\\\\\\\\\\\\\| |
−
| |////// x //////|XXXXX|\\\\\\ y \\\\\\| |
−
| |///////////////|XXXXX|\\\\\\\\\\\\\\\| |
−
| o///////////////oXXXXXo\\\\\\\\\\\\\\\o |
−
| \///////////////\XXX/\\\\\\\\\\\\\\\/ |
−
| \///////////////\X/\\\\\\\\\\\\\\\/ |
−
| \///////////////o\\\\\\\\\\\\\\\/ |
−
| \////////////// \\\\\\\\\\\\\\/ |
−
| o-----------o o-----------o |
−
| |
−
| |
−
o-----------------------------------------------------o
−
Figure 61. Propositional Transformation
</pre>
</pre>
−
===Figure 62. Propositional Transformation (Short Form)===
+
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; text-align:left; width:96%"
−
+
|+ '''Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes'''
−
<pre>
+
|- style="background:paleturquoise"
−
o-------------------------o o-------------------------o
+
|
−
| U | |\U \\\\\\\\\\\\\\\\\\\\\\|
+
| align="center" | '''Operator<br>or<br>Operand'''
−
| o---o o---o | |\\\\\\o---o\\\o---o\\\\\\|
+
| align="center" | '''Proposition<br>or<br>Component'''
−
| //////\ //////\ | |\\\\\/ \\/ \\\\\\|
+
| align="center" | '''Transformation<br>or<br>Mapping'''
−
| ////////o///////\ | |\\\\/ o \\\\\|
+
|-
−
| //////////\///////\ | |\\\/ /\\ \\\\|
+
| Operand
−
| o///////o///o///////o | |\\o o\\\o o\\|
+
| valign="top" |
−
| |// u //|///|// v //| | |\\| u |\\\| v |\\|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| o///////o///o///////o | |\\o o\\\o o\\|
+
| ''F'' = ‹''F''<sub>1</sub>, ''F''<sub>2</sub>›
−
| \///////\////////// | |\\\\ \\/ /\\\|
+
|-
−
| \///////o//////// | |\\\\\ o /\\\\|
+
| ''F'' = ‹''f'', ''g''› : ''U'' → ''X''
−
| \////// \////// | |\\\\\\ /\\ /\\\\\|
+
|}
−
| o---o o---o | |\\\\\\o---o\\\o---o\\\\\\|
+
| valign="top" |
−
| | |\\\\\\\\\\\\\\\\\\\\\\\\\|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
o-------------------------o o-------------------------o
+
| ''F''<sub>''i''</sub> : 〈''u'', ''v''〉 → '''B'''
−
\ / \ /
+
|-
−
\ / \ /
+
| ''F''<sub>''i''</sub> : '''B'''<sup>''n''</sup> → '''B'''
−
\ / \ /
+
|}
−
\ f / \ g /
+
| valign="top" |
−
\ / \ /
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100"
−
\ / \ /
+
| ''F'' : [''u'', ''v''] → [''x'', ''y'']
−
\ / \ /
+
|-
−
\ / \ /
+
| ''F'' : '''B'''<sup>''n''</sup> → '''B'''<sup>''k''</sup>
−
\ / \ /
+
|}
−
o---------\-----/---------------------\-----/---------o
+
|-
−
| X \ / \ / |
+
|
−
| \ / \ / |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| o-----------o o-----------o |
+
| Tacit
−
| //////////////\ /\\\\\\\\\\\\\\ |
+
|-
−
| ////////////////o\\\\\\\\\\\\\\\\ |
+
| Extension
−
| /////////////////X\\\\\\\\\\\\\\\\\ |
+
|}
−
| /////////////////XXX\\\\\\\\\\\\\\\\\ |
+
|
−
| o///////////////oXXXXXo\\\\\\\\\\\\\\\o |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| |///////////////|XXXXX|\\\\\\\\\\\\\\\| |
+
| <math>\epsilon</math> :
−
| |////// x //////|XXXXX|\\\\\\ y \\\\\\| |
+
|-
−
| |///////////////|XXXXX|\\\\\\\\\\\\\\\| |
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
−
| o///////////////oXXXXXo\\\\\\\\\\\\\\\o |
+
|-
−
| \///////////////\XXX/\\\\\\\\\\\\\\\/ |
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → ''X''<sup> •</sup>)
−
| \///////////////\X/\\\\\\\\\\\\\\\/ |
+
|}
−
| \///////////////o\\\\\\\\\\\\\\\/ |
+
|
−
| \////////////// \\\\\\\\\\\\\\/ |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| o-----------o o-----------o |
+
| <math>\epsilon</math>''F''<sub>''i''</sub> :
−
| |
+
|-
−
| |
+
| 〈''u'', ''v'', d''u'', d''v''〉 → '''B'''
−
o-----------------------------------------------------o
+
|-
−
Figure 62. Propositional Transformation (Short Form)
+
| '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''B'''
−
</pre>
+
|}
−
+
|
−
===Figure 63. Transformation of Positions===
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
+
| <math>\epsilon</math>''F'' :
−
<pre>
+
|-
−
o-----------------------------------------------------o
+
| [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'']
−
|`U` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `|
+
|-
−
|` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `|
+
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>]
−
|` ` ` ` ` ` o-----------o ` o-----------o ` ` ` ` ` `|
+
|}
−
|` ` ` ` ` `/' ' ' ' ' ' '\`/' ' ' ' ' ' '\` ` ` ` ` `|
+
|-
−
|` ` ` ` ` / ' ' ' ' ' ' ' o ' ' ' ' ' ' ' \ ` ` ` ` `|
+
|
−
|` ` ` ` `/' ' ' ' ' ' ' '/^\' ' ' ' ' ' ' '\` ` ` ` `|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
|` ` ` ` / ' ' ' ' ' ' ' /^^^\ ' ' ' ' ' ' ' \ ` ` ` `|
+
| Trope
−
|` ` ` `o' ' ' ' ' ' ' 'o^^^^^o' ' ' ' ' ' ' 'o` ` ` `|
+
|-
−
|` ` ` `|' ' ' ' ' ' ' '|^^^^^|' ' ' ' ' ' ' '|` ` ` `|
+
| Extension
−
|` ` ` `|' ' ' ' u ' ' '|^^^^^|' ' ' v ' ' ' '|` ` ` `|
+
|}
−
|` ` ` `|' ' ' ' ' ' ' '|^^^^^|' ' ' ' ' ' ' '|` ` ` `|
+
|
−
|` `@` `o' ' ' ' @ ' ' 'o^^@^^o' ' ' @ ' ' ' 'o` ` ` `|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
|` ` \ ` \ ' ' ' | ' ' ' \^|^/ ' ' ' | ' ' ' / ` ` ` `|
+
| <math>\eta</math> :
−
|` ` `\` `\' ' ' | ' ' ' '\|/' ' ' ' | ' ' '/` ` ` ` `|
+
|-
−
|` ` ` \ ` \ ' ' | ' ' ' ' | ' ' ' ' | ' ' / ` ` ` ` `|
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
−
|` ` ` `\` `\' ' | ' ' ' '/|\' ' ' ' | ' '/` ` ` ` ` `|
+
|-
−
|` ` ` ` \ ` o---|-------o | o-------|---o ` ` ` ` ` `|
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>)
−
|` ` ` ` `\` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` `|
+
|}
−
|` ` ` ` ` \ ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` `|
+
|
−
o-----------\----|---------|---------|----------------o
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
" " \ | | | " "
+
| <math>\eta</math>''F''<sub>''i''</sub> :
−
" " \ | | | " "
+
|-
−
" " \ | | | " "
+
| 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
−
" " \| | | " "
+
|-
−
o-------------------------o \ | | o-------------------------o
+
| '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D'''
−
| U | |\ | | |`U```````````````````````|
+
|}
−
| o---o o---o | | \ | | |``````o---o```o---o``````|
+
|
−
| /'''''\ /'''''\ | | \ | | |`````/ \`/ \`````|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| /'''''''o'''''''\ | | \ | | |````/ o \````|
+
| <math>\eta</math>''F'' :
−
| /'''''''/'\'''''''\ | | \ | | |```/ /`\ \```|
+
|-
−
| o'''''''o'''o'''''''o | | \ | | |``o o```o o``|
+
| [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y'']
−
| |'''u'''|'''|'''v'''| | | \ | | |``| u |```| v |``|
+
|-
−
| o'''''''o'''o'''''''o | | \ | | |``o o```o o``|
+
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>]
−
| \'''''''\'/'''''''/ | | \| | |```\ \`/ /```|
+
|}
−
| \'''''''o'''''''/ | | \ | |````\ o /````|
+
|-
−
| \'''''/ \'''''/ | | |\ | |`````\ /`\ /`````|
+
|
−
| o---o o---o | | | \ | |``````o---o```o---o``````|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| | | | \ * |`````````````````````````|
+
| Enlargement
−
o-------------------------o | | \ / o-------------------------o
+
|-
−
\ | | | \ / | /
+
| Operator
−
\ ((u)(v)) | | | \/ | ((u, v)) /
+
|}
−
\ | | | /\ | /
+
|
−
\ | | | / \ | /
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
\ | | | / \ | /
+
| E :
−
\ | | | / * | /
+
|-
−
\ | | | / | | /
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
−
\ | | |/ | | /
+
|-
−
\ | | / | | /
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>)
−
\ | | /| | | /
+
|}
−
o-------\----|---|-------/-|---------|---|----/-------o
+
|
−
| X \ | | / | | | / |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| \| | / | | |/ |
+
| E''F''<sub>''i''</sub> :
−
| o---|----/--o | o-------|---o |
+
|-
−
| /' ' | ' / ' '\|/` ` ` ` | ` `\ |
+
| 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
−
| / ' ' | '/' ' ' | ` ` ` ` | ` ` \ |
+
|-
−
| /' ' ' | / ' ' '/|\` ` ` ` | ` ` `\ |
+
| '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D'''
−
| / ' ' ' |/' ' ' /^|^\ ` ` ` | ` ` ` \ |
+
|}
−
| @ o' ' ' ' @ ' ' 'o^^@^^o` ` ` @ ` ` ` `o |
+
|
−
| |' ' ' ' ' ' ' '|^^^^^|` ` ` ` ` ` ` `| |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| |' ' ' ' f ' ' '|^^^^^|` ` ` g ` ` ` `| |
+
| E''F'' :
−
| |' ' ' ' ' ' ' '|^^^^^|` ` ` ` ` ` ` `| |
+
|-
−
| o' ' ' ' ' ' ' 'o^^^^^o` ` ` ` ` ` ` `o |
+
| [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y'']
−
| \ ' ' ' ' ' ' ' \^^^/ ` ` ` ` ` ` ` / |
+
|-
−
| \' ' ' ' ' ' ' '\^/` ` ` ` ` ` ` `/ |
+
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>]
−
| \ ' ' ' ' ' ' ' o ` ` ` ` ` ` ` / |
+
|}
−
| \' ' ' ' ' ' '/ \` ` ` ` ` ` `/ |
+
|-
−
| o-----------o o-----------o |
+
|
−
| |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| |
+
| Difference
−
o-----------------------------------------------------o
+
|-
−
Figure 63. Transformation of Positions
+
| Operator
−
</pre>
+
|}
−
+
|
−
===Table 64. Transformation of Positions===
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
+
| D :
−
<pre>
+
|-
−
Table 64. Transformation of Positions
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
−
o-----o----------o----------o-------o-------o--------o--------o-------------o
+
|-
−
| u v | x | y | x y | x(y) | (x)y | (x)(y) | X% = [x, y] |
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>)
−
o-----o----------o----------o-------o-------o--------o--------o-------------o
+
|}
−
| | | | | | | | ^ |
+
|
−
| 0 0 | 0 | 1 | 0 | 0 | 1 | 0 | | |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| | | | | | | | |
+
| D''F''<sub>''i''</sub> :
−
| 0 1 | 1 | 0 | 0 | 1 | 0 | 0 | F |
+
|-
−
| | | | | | | | = |
+
| 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
−
| 1 0 | 1 | 0 | 0 | 1 | 0 | 0 | <f , g> |
+
|-
−
| | | | | | | | |
+
| '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D'''
−
| 1 1 | 1 | 1 | 1 | 0 | 0 | 0 | ^ |
+
|}
−
| | | | | | | | | |
+
|
−
o-----o----------o----------o-------o-------o--------o--------o-------------o
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| | ((u)(v)) | ((u, v)) | u v | (u,v) | (u)(v) | 0 | U% = [u, v] |
+
| D''F'' :
−
o-----o----------o----------o-------o-------o--------o--------o-------------o
+
|-
−
</pre>
+
| [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y'']
−
+
|-
−
===Table 65. Induced Transformation on Propositions===
+
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>]
−
+
|}
−
<pre>
+
|-
−
Table 65. Induced Transformation on Propositions
+
|
−
o------------o---------------------------------o------------o
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| X% | <--- F = <f , g> <--- | U% |
+
| Differential
−
o------------o----------o-----------o----------o------------o
+
|-
−
| | u = | 1 1 0 0 | = u | |
+
| Operator
−
| | v = | 1 0 1 0 | = v | |
+
|}
−
| f_i <x, y> o----------o-----------o----------o f_j <u, v> |
+
|
−
| | x = | 1 1 1 0 | = f<u,v> | |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| | y = | 1 0 0 1 | = g<u,v> | |
+
| d :
−
o------------o----------o-----------o----------o------------o
+
|-
−
| | | | | |
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
−
| f_0 | () | 0 0 0 0 | () | f_0 |
+
|-
−
| | | | | |
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>)
−
| f_1 | (x)(y) | 0 0 0 1 | () | f_0 |
+
|}
−
| | | | | |
+
|
−
| f_2 | (x) y | 0 0 1 0 | (u)(v) | f_1 |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| | | | | |
+
| d''F''<sub>''i''</sub> :
−
| f_3 | (x) | 0 0 1 1 | (u)(v) | f_1 |
+
|-
−
| | | | | |
+
| 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
−
| f_4 | x (y) | 0 1 0 0 | (u, v) | f_6 |
+
|-
−
| | | | | |
+
| '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D'''
−
| f_5 | (y) | 0 1 0 1 | (u, v) | f_6 |
+
|}
−
| | | | | |
+
|
−
| f_6 | (x, y) | 0 1 1 0 | (u v) | f_7 |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| | | | | |
+
| d''F'' :
−
| f_7 | (x y) | 0 1 1 1 | (u v) | f_7 |
+
|-
−
| | | | | |
+
| [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y'']
−
o------------o----------o-----------o----------o------------o
+
|-
−
| | | | | |
+
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>]
−
| f_8 | x y | 1 0 0 0 | u v | f_8 |
+
|}
−
| | | | | |
+
|-
−
| f_9 | ((x, y)) | 1 0 0 1 | u v | f_8 |
+
|
−
| | | | | |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| f_10 | y | 1 0 1 0 | ((u, v)) | f_9 |
+
| Remainder
−
| | | | | |
+
|-
−
| f_11 | (x (y)) | 1 0 1 1 | ((u, v)) | f_9 |
+
| Operator
−
| | | | | |
+
|}
−
| f_12 | x | 1 1 0 0 | ((u)(v)) | f_14 |
+
|
−
| | | | | |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| f_13 | ((x) y) | 1 1 0 1 | ((u)(v)) | f_14 |
+
| r :
−
| | | | | |
+
|-
−
| f_14 | ((x)(y)) | 1 1 1 0 | (()) | f_15 |
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
−
| | | | | |
+
|-
−
| f_15 | (()) | 1 1 1 1 | (()) | f_15 |
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>)
−
| | | | | |
+
|}
−
o------------o----------o-----------o----------o------------o
+
|
−
</pre>
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
+
| r''F''<sub>''i''</sub> :
−
===Formula Display 14===
+
|-
−
+
| 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
−
<pre>
+
|-
−
o-------------------------------------------------o
+
| '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D'''
−
| |
+
|}
−
| EG_i = G_i <u + du, v + dv> |
+
|
−
| |
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
o-------------------------------------------------o
+
| r''F'' :
−
</pre>
+
|-
−
+
| [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y'']
−
<br><font face="courier new">
+
|-
−
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>]
+
|}
+
|-
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| Radius
+
|-
+
| Operator
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› :
+
|-
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
+
|-
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>)
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
|
+
|-
+
|
+
|-
+
|
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| <font face=georgia>'''e'''</font>''F'' :
+
|-
+
| [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y'']
+
|-
+
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]
+
|}
+
|-
|
|
−
{| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| width="8%" | E''G''<sub>''i''</sub>
+
| Secant
−
| width="4%" | =
+
|-
−
| width="88%" | ''G''<sub>''i''</sub>‹''u'' + d''u'', ''v'' + d''v''›
+
| Operator
|}
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› :
+
|-
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
+
|-
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>)
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
|
+
|-
+
|
+
|-
+
|
|}
|}
−
</font><br>
−
−
===Formula Display 15===
−
−
<pre>
−
o-------------------------------------------------o
−
| |
−
| DG_i = G_i <u, v> + EG_i <u, v, du, dv> |
−
| |
−
| = G_i <u, v> + G_i <u + du, v + dv> |
−
| |
−
o-------------------------------------------------o
−
</pre>
−
−
<br><font face="courier new">
−
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
|
|
−
{| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| width="8%" | D''G''<sub>''i''</sub>
+
| <font face=georgia>'''E'''</font>''F'' :
−
| width="4%" | =
+
|-
−
| width="20%" | ''G''<sub>''i''</sub>‹''u'', ''v''›
+
| [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y'']
−
| width="4%" | +
−
| width="64%" | E''G''<sub>''i''</sub>‹''u'', ''v'', d''u'', d''v''›
|-
|-
−
| width="8%" |
+
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]
−
| width="4%" | =
−
| width="20%" | ''G''<sub>''i''</sub>‹''u'', ''v''›
−
| width="4%" | +
−
| width="64%" | ''G''<sub>''i''</sub>‹''u'' + d''u'', ''v'' + d''v''›
|}
|}
+
|-
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| Chord
+
|-
+
| Operator
|}
|}
−
</font><br>
−
−
===Formula Display 16===
−
−
<pre>
−
o-------------------------------------------------o
−
| |
−
| Ef = ((u + du)(v + dv)) |
−
| |
−
| Eg = ((u + du, v + dv)) |
−
| |
−
o-------------------------------------------------o
−
</pre>
−
−
<br><font face="courier new">
−
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
|
|
−
{| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
−
| width="8%" | E''f''
+
| <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› :
−
| width="4%" | =
−
| width="88%" | ((''u'' + d''u'')(''v'' + d''v''))
|-
|-
−
| width="8%" | E''g''
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
−
| width="4%" | =
+
|-
−
| width="88%" | ((''u'' + d''u'', ''v'' + d''v''))
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>)
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
|
+
|-
+
|
+
|-
+
|
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| <font face=georgia>'''D'''</font>''F'' :
+
|-
+
| [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y'']
+
|-
+
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]
+
|}
+
|-
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| Tangent
+
|-
+
| Functor
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› :
+
|-
+
| ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
+
|-
+
| (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>)
+
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| d''F''<sub>''i''</sub> :
+
|-
+
| 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
+
|-
+
| '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D'''
|}
|}
+
|
+
{| align="left" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; text-align:left; width:100%"
+
| <font face=georgia>'''T'''</font>''F'' :
+
|-
+
| [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y'']
+
|-
+
| ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]
|}
|}
−
</font><br>
+
|}<br>
−
===Formula Display 17===
+
===Formula Display 12===
<pre>
<pre>
−
o-------------------------------------------------o
+
o-----------------------------------------------------------o
−
| |
+
| |
−
| Df = ((u)(v)) + ((u + du)(v + dv)) |
+
| x = f(u, v) = ((u)(v)) |
−
| |
+
| |
−
| Dg = ((u, v)) + ((u + du, v + dv)) |
+
| y = g(u, v) = ((u, v)) |
−
| |
+
| |
−
o-------------------------------------------------o
+
o-----------------------------------------------------------o
</pre>
</pre>
<br><font face="courier new">
<br><font face="courier new">
−
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
|
|
−
{| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
−
| width="8%" | D''f''
+
|
−
| width="4%" | =
+
| ''x''
−
| width="20%" | ((''u'')(''v''))
+
| =
−
| width="4%" | +
+
| ''f''‹''u'', ''v''›
−
| width="64%" | ((''u'' + d''u'')(''v'' + d''v''))
+
| =
+
| ((''u'')(''v''))
+
|
|-
|-
−
| width="8%" | D''g''
+
|
−
| width="4%" | =
+
| ''y''
−
| width="20%" | ((''u'', ''v''))
+
| =
−
| width="4%" | +
+
| ''g''‹''u'', ''v''›
−
| width="64%" | ((''u'' + d''u'', ''v'' + d''v''))
+
| =
+
| ((''u'', ''v''))
+
|
|}
|}
|}
|}
</font><br>
</font><br>
−
===Table 66-i. Computation Summary for f‹u, v› = ((u)(v))===
+
===Formula Display 13===
<pre>
<pre>
−
Table 66-i. Computation Summary for f<u, v> = ((u)(v))
+
o-----------------------------------------------------------o
−
o--------------------------------------------------------------------------------o
+
| |
−
| |
+
| <x, y> = F<u, v> = <((u)(v)), ((u, v))> |
−
| !e!f = uv. 1 + u(v). 1 + (u)v. 1 + (u)(v). 0 |
+
| |
−
| |
+
o-----------------------------------------------------------o
−
| Ef = uv. (du dv) + u(v). (du (dv)) + (u)v.((du) dv) + (u)(v).((du)(dv)) |
−
| |
−
| Df = uv. du dv + u(v). du (dv) + (u)v. (du) dv + (u)(v).((du)(dv)) |
−
| |
−
| df = uv. 0 + u(v). du + (u)v. dv + (u)(v). (du, dv) |
−
| |
−
| rf = uv. du dv + u(v). du dv + (u)v. du dv + (u)(v). du dv |
−
| |
−
o--------------------------------------------------------------------------------o
</pre>
</pre>
−
<font face="courier new">
+
<br><font face="courier new">
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
−
|+ Table 66-i. Computation Summary for ''f''‹''u'', ''v''› = ((''u'')(''v''))
|
|
−
{| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
−
| <math>\epsilon</math>''f''
+
| ‹''x'', ''y''›
−
| = || ''uv'' || <math>\cdot</math> || 1
+
| =
−
| + || ''u''(''v'') || <math>\cdot</math> || 1
+
| ''F''‹''u'', ''v''›
−
| + || (''u'')''v'' || <math>\cdot</math> || 1
+
| =
−
| + || (''u'')(''v'') || <math>\cdot</math> || 0
+
| ‹((''u'')(''v'')), ((''u'', ''v''))›
−
|-
+
|}
−
| E''f''
+
|}
−
| = || ''uv'' || <math>\cdot</math> || (d''u'' d''v'')
+
</font><br>
−
| + || ''u''(''v'') || <math>\cdot</math> || (d''u (d''v''))
+
−
| + || (''u'')''v'' || <math>\cdot</math> || ((d''u'') d''v'')
+
<br><font face="courier new">
−
| + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v''))
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
−
|-
+
|
−
| D''f''
+
{| align="center" border="0" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
−
| = || ''uv'' || <math>\cdot</math> || d''u'' d''v''
+
|
−
| + || ''u''(''v'') || <math>\cdot</math> || d''u'' (d''v'')
+
| ‹''x'', ''y''›
−
| + || (''u'')''v'' || <math>\cdot</math> || (d''u'') d''v''
+
| =
−
| + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v''))
+
| ''F''‹''u'', ''v''›
−
|-
+
| =
−
| d''f''
+
| ‹((''u'')(''v'')), ((''u'', ''v''))›
−
| = || ''uv'' || <math>\cdot</math> || 0
+
|
−
| + || ''u''(''v'') || <math>\cdot</math> || d''u''
−
| + || (''u'')''v'' || <math>\cdot</math> || d''v''
−
| + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
−
|-
−
| r''f''
−
| = || ''uv'' || <math>\cdot</math> || d''u'' d''v''
−
| + || ''u''(''v'') || <math>\cdot</math> || d''u'' d''v''
−
| + || (''u'')''v'' || <math>\cdot</math> || d''u'' d''v''
−
| + || (''u'')(''v'') || <math>\cdot</math> || d''u'' d''v''
|}
|}
|}
|}
</font><br>
</font><br>
−
===Table 66-ii. Computation Summary for g‹u, v› = ((u, v))===
+
===Table 60. Propositional Transformation===
<pre>
<pre>
−
Table 66-ii. Computation Summary for g<u, v> = ((u, v))
+
Table 60. Propositional Transformation
−
o--------------------------------------------------------------------------------o
+
o-------------o-------------o-------------o-------------o
−
| |
+
| u | v | f | g |
−
| !e!g = uv. 1 + u(v). 0 + (u)v. 0 + (u)(v). 1 |
+
o-------------o-------------o-------------o-------------o
−
| |
+
| | | | |
−
| Eg = uv.((du, dv)) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v).((du, dv)) |
+
| 0 | 0 | 0 | 1 |
−
| |
+
| | | | |
−
| Dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) |
+
| 0 | 1 | 1 | 0 |
−
| |
+
| | | | |
−
| dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) |
+
| 1 | 0 | 1 | 0 |
−
| |
+
| | | | |
−
| rg = uv. 0 + u(v). 0 + (u)v. 0 + (u)(v). 0 |
+
| 1 | 1 | 1 | 1 |
−
| |
+
| | | | |
−
o--------------------------------------------------------------------------------o
+
o-------------o-------------o-------------o-------------o
−
</pre>
+
| | | ((u)(v)) | ((u, v)) |
+
o-------------o-------------o-------------o-------------o
+
</pre>
<font face="courier new">
<font face="courier new">
−
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
−
|+ Table 66-ii. Computation Summary for g‹''u'', ''v''› = ((''u'', ''v''))
+
|+ '''Table 60. Propositional Transformation'''
−
|
+
|- style="background:paleturquoise"
−
{| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| width="25%" | ''u''
−
| <math>\epsilon</math>''g''
+
| width="25%" | ''v''
−
| = || ''uv'' || <math>\cdot</math> || 1
+
| width="25%" | ''f''
−
| + || ''u''(''v'') || <math>\cdot</math> || 0
+
| width="25%" | ''g''
−
| + || (''u'')''v'' || <math>\cdot</math> || 0
−
| + || (''u'')(''v'') || <math>\cdot</math> || 1
|-
|-
−
| E''g''
+
| width="25%" |
−
| = || ''uv'' || <math>\cdot</math> || ((d''u'', d''v''))
+
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
−
| + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'')
+
| 0
−
| + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'')
−
| + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'', d''v''))
|-
|-
−
| D''g''
+
| 0
−
| = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'')
−
| + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'')
−
| + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'')
−
| + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
|-
|-
−
| d''g''
+
| 1
−
| = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'')
−
| + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'')
−
| + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'')
−
| + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
|-
|-
−
| r''g''
+
| 1
−
| = || ''uv'' || <math>\cdot</math> || 0
−
| + || ''u''(''v'') || <math>\cdot</math> || 0
−
| + || (''u'')''v'' || <math>\cdot</math> || 0
−
| + || (''u'')(''v'') || <math>\cdot</math> || 0
|}
|}
+
| width="25%" |
+
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0
+
|-
+
| 1
+
|-
+
| 0
+
|-
+
| 1
+
|}
+
| width="25%" |
+
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0
+
|-
+
| 1
+
|-
+
| 1
+
|-
+
| 1
+
|}
+
| width="25%" |
+
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1
+
|-
+
| 0
+
|-
+
| 0
+
|-
+
| 1
+
|}
+
|-
+
| width="25%" |
+
| width="25%" |
+
| width="25%" | ((''u'')(''v''))
+
| width="25%" | ((''u'', ''v''))
|}
|}
</font><br>
</font><br>
−
===Table 67. Computation of an Analytic Series in Terms of Coordinates===
+
===Figure 61. Propositional Transformation===
<pre>
<pre>
−
Table 67. Computation of an Analytic Series in Terms of Coordinates
+
o-----------------------------------------------------o
−
o--------o-------o-------o--------o-------o-------o-------o-------o
+
| U |
−
| u v | du dv | u' v' | f g | Ef Eg | Df Dg | df dg | rf rg |
+
| |
−
o--------o-------o-------o--------o-------o-------o-------o-------o
+
| o-----------o o-----------o |
−
| | | | | | | | |
+
| / \ / \ |
−
| 0 0 | 0 0 | 0 0 | 0 1 | 0 1 | 0 0 | 0 0 | 0 0 |
+
| / o \ |
−
| | | | | | | | |
+
| / / \ \ |
−
| | 0 1 | 0 1 | | 1 0 | 1 1 | 1 1 | 0 0 |
+
| / / \ \ |
−
| | | | | | | | |
+
| o o o o |
−
| | 1 0 | 1 0 | | 1 0 | 1 1 | 1 1 | 0 0 |
+
| | | | | |
−
| | | | | | | | |
+
| | u | | v | |
−
| | 1 1 | 1 1 | | 1 1 | 1 0 | 0 0 | 1 0 |
+
| | | | | |
−
| | | | | | | | |
+
| o o o o |
−
o--------o-------o-------o--------o-------o-------o-------o-------o
+
| \ \ / / |
−
| | | | | | | | |
+
| \ \ / / |
−
| 0 1 | 0 0 | 0 1 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 |
+
| \ o / |
−
| | | | | | | | |
+
| \ / \ / |
−
| | 0 1 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 |
+
| o-----------o o-----------o |
−
| | | | | | | | |
+
| |
−
| | 1 0 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 |
+
| |
−
| | | | | | | | |
+
o-----------------------------------------------------o
−
| | 1 1 | 1 0 | | 1 0 | 0 0 | 1 0 | 1 0 |
+
/ \ / \
−
| | | | | | | | |
+
/ \ / \
−
o--------o-------o-------o--------o-------o-------o-------o-------o
+
/ \ / \
−
| | | | | | | | |
+
/ \ / \
−
| 1 0 | 0 0 | 1 0 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 |
+
/ \ / \
−
| | | | | | | | |
+
/ \ / \
−
| | 0 1 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 |
+
/ \ / \
−
| | | | | | | | |
+
/ \ / \
−
| | 1 0 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 |
+
/ \ / \
−
| | | | | | | | |
+
/ \ / \
−
| | 1 1 | 0 1 | | 1 0 | 0 0 | 1 0 | 1 0 |
+
/ \ / \
−
| | | | | | | | |
+
/ \ / \
−
o--------o-------o-------o--------o-------o-------o-------o-------o
+
o-------------------------o o-------------------------o
−
| | | | | | | | |
+
| U | |\U \\\\\\\\\\\\\\\\\\\\\\|
−
| 1 1 | 0 0 | 1 1 | 1 1 | 1 1 | 0 0 | 0 0 | 0 0 |
+
| o---o o---o | |\\\\\\o---o\\\o---o\\\\\\|
−
| | | | | | | | |
+
| //////\ //////\ | |\\\\\/ \\/ \\\\\\|
−
| | 0 1 | 1 0 | | 1 0 | 0 1 | 0 1 | 0 0 |
+
| ////////o///////\ | |\\\\/ o \\\\\|
−
| | | | | | | | |
+
| //////////\///////\ | |\\\/ /\\ \\\\|
−
| | 1 0 | 0 1 | | 1 0 | 0 1 | 0 1 | 0 0 |
+
| o///////o///o///////o | |\\o o\\\o o\\|
−
| | | | | | | | |
+
| |// u //|///|// v //| | |\\| u |\\\| v |\\|
−
| | 1 1 | 0 0 | | 0 1 | 1 0 | 0 0 | 1 0 |
+
| o///////o///o///////o | |\\o o\\\o o\\|
−
| | | | | | | | |
+
| \///////\////////// | |\\\\ \\/ /\\\|
−
o--------o-------o-------o--------o-------o-------o-------o-------o
+
| \///////o//////// | |\\\\\ o /\\\\|
−
</pre>
+
| \////// \////// | |\\\\\\ /\\ /\\\\\|
−
+
| o---o o---o | |\\\\\\o---o\\\o---o\\\\\\|
−
===Table 68. Computation of an Analytic Series in Symbolic Terms===
+
| | |\\\\\\\\\\\\\\\\\\\\\\\\\|
−
+
o-------------------------o o-------------------------o
−
<pre>
+
\ | | /
−
Table 68. Computation of an Analytic Series in Symbolic Terms
+
\ | | /
−
o-----o-----o------------o----------o----------o----------o----------o----------o
+
\ | | /
−
| u v | f g | Df | Dg | df | dg | rf | rf |
+
\ f | | g /
−
o-----o-----o------------o----------o----------o----------o----------o----------o
+
\ | | /
−
| | | | | | | | |
+
\ | | /
−
| 0 0 | 0 1 | ((du)(dv)) | (du, dv) | (du, dv) | (du, dv) | du dv | () |
+
\ | | /
−
| | | | | | | | |
+
\ | | /
−
| 0 1 | 1 0 | (du) dv | (du, dv) | dv | (du, dv) | du dv | () |
+
\ | | /
−
| | | | | | | | |
+
\ | | /
−
| 1 0 | 1 0 | du (dv) | (du, dv) | du | (du, dv) | du dv | () |
+
o-------\----|---------------------------|----/-------o
−
| | | | | | | | |
+
| X \ | | / |
−
| 1 1 | 1 1 | du dv | (du, dv) | () | (du, dv) | du dv | () |
+
| \| |/ |
−
| | | | | | | | |
+
| o-----------o o-----------o |
−
o-----o-----o------------o----------o----------o----------o----------o----------o
+
| //////////////\ /\\\\\\\\\\\\\\ |
−
</pre>
+
| ////////////////o\\\\\\\\\\\\\\\\ |
−
+
| /////////////////X\\\\\\\\\\\\\\\\\ |
−
===Formula Display 18===
+
| /////////////////XXX\\\\\\\\\\\\\\\\\ |
−
+
| o///////////////oXXXXXo\\\\\\\\\\\\\\\o |
−
<pre>
+
| |///////////////|XXXXX|\\\\\\\\\\\\\\\| |
−
o-------------------------------------------------------------------------o
+
| |////// x //////|XXXXX|\\\\\\ y \\\\\\| |
−
| |
+
| |///////////////|XXXXX|\\\\\\\\\\\\\\\| |
−
| Df = uv. du dv + u(v). du (dv) + (u)v.(du) dv + (u)(v).((du)(dv)) |
+
| o///////////////oXXXXXo\\\\\\\\\\\\\\\o |
−
| |
+
| \///////////////\XXX/\\\\\\\\\\\\\\\/ |
−
| Dg = uv.(du, dv) + u(v).(du, dv) + (u)v.(du, dv) + (u)(v). (du, dv) |
+
| \///////////////\X/\\\\\\\\\\\\\\\/ |
−
| |
+
| \///////////////o\\\\\\\\\\\\\\\/ |
−
o-------------------------------------------------------------------------o
+
| \////////////// \\\\\\\\\\\\\\/ |
−
</pre>
+
| o-----------o o-----------o |
−
+
| |
−
<br><font face="courier new">
+
| |
−
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
o-----------------------------------------------------o
−
|
+
Figure 61. Propositional Transformation
−
{| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
</pre>
−
|
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 61 -- Propositional Transformation.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 61. Propositional Transformation'''</font></center></p>
+
+
===Figure 62. Propositional Transformation (Short Form)===
+
+
<pre>
+
o-------------------------o o-------------------------o
+
| U | |\U \\\\\\\\\\\\\\\\\\\\\\|
+
| o---o o---o | |\\\\\\o---o\\\o---o\\\\\\|
+
| //////\ //////\ | |\\\\\/ \\/ \\\\\\|
+
| ////////o///////\ | |\\\\/ o \\\\\|
+
| //////////\///////\ | |\\\/ /\\ \\\\|
+
| o///////o///o///////o | |\\o o\\\o o\\|
+
| |// u //|///|// v //| | |\\| u |\\\| v |\\|
+
| o///////o///o///////o | |\\o o\\\o o\\|
+
| \///////\////////// | |\\\\ \\/ /\\\|
+
| \///////o//////// | |\\\\\ o /\\\\|
+
| \////// \////// | |\\\\\\ /\\ /\\\\\|
+
| o---o o---o | |\\\\\\o---o\\\o---o\\\\\\|
+
| | |\\\\\\\\\\\\\\\\\\\\\\\\\|
+
o-------------------------o o-------------------------o
+
\ / \ /
+
\ / \ /
+
\ / \ /
+
\ f / \ g /
+
\ / \ /
+
\ / \ /
+
\ / \ /
+
\ / \ /
+
\ / \ /
+
o---------\-----/---------------------\-----/---------o
+
| X \ / \ / |
+
| \ / \ / |
+
| o-----------o o-----------o |
+
| //////////////\ /\\\\\\\\\\\\\\ |
+
| ////////////////o\\\\\\\\\\\\\\\\ |
+
| /////////////////X\\\\\\\\\\\\\\\\\ |
+
| /////////////////XXX\\\\\\\\\\\\\\\\\ |
+
| o///////////////oXXXXXo\\\\\\\\\\\\\\\o |
+
| |///////////////|XXXXX|\\\\\\\\\\\\\\\| |
+
| |////// x //////|XXXXX|\\\\\\ y \\\\\\| |
+
| |///////////////|XXXXX|\\\\\\\\\\\\\\\| |
+
| o///////////////oXXXXXo\\\\\\\\\\\\\\\o |
+
| \///////////////\XXX/\\\\\\\\\\\\\\\/ |
+
| \///////////////\X/\\\\\\\\\\\\\\\/ |
+
| \///////////////o\\\\\\\\\\\\\\\/ |
+
| \////////////// \\\\\\\\\\\\\\/ |
+
| o-----------o o-----------o |
+
| |
+
| |
+
o-----------------------------------------------------o
+
Figure 62. Propositional Transformation (Short Form)
+
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 62 -- Propositional Transformation (Short Form).gif|center]]</p>
+
<p><center><font size="+1">'''Figure 62. Propositional Transformation (Short Form)'''</font></center></p>
+
+
===Figure 63. Transformation of Positions===
+
+
<pre>
+
o-----------------------------------------------------o
+
|`U` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `|
+
|` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `|
+
|` ` ` ` ` ` o-----------o ` o-----------o ` ` ` ` ` `|
+
|` ` ` ` ` `/' ' ' ' ' ' '\`/' ' ' ' ' ' '\` ` ` ` ` `|
+
|` ` ` ` ` / ' ' ' ' ' ' ' o ' ' ' ' ' ' ' \ ` ` ` ` `|
+
|` ` ` ` `/' ' ' ' ' ' ' '/^\' ' ' ' ' ' ' '\` ` ` ` `|
+
|` ` ` ` / ' ' ' ' ' ' ' /^^^\ ' ' ' ' ' ' ' \ ` ` ` `|
+
|` ` ` `o' ' ' ' ' ' ' 'o^^^^^o' ' ' ' ' ' ' 'o` ` ` `|
+
|` ` ` `|' ' ' ' ' ' ' '|^^^^^|' ' ' ' ' ' ' '|` ` ` `|
+
|` ` ` `|' ' ' ' u ' ' '|^^^^^|' ' ' v ' ' ' '|` ` ` `|
+
|` ` ` `|' ' ' ' ' ' ' '|^^^^^|' ' ' ' ' ' ' '|` ` ` `|
+
|` `@` `o' ' ' ' @ ' ' 'o^^@^^o' ' ' @ ' ' ' 'o` ` ` `|
+
|` ` \ ` \ ' ' ' | ' ' ' \^|^/ ' ' ' | ' ' ' / ` ` ` `|
+
|` ` `\` `\' ' ' | ' ' ' '\|/' ' ' ' | ' ' '/` ` ` ` `|
+
|` ` ` \ ` \ ' ' | ' ' ' ' | ' ' ' ' | ' ' / ` ` ` ` `|
+
|` ` ` `\` `\' ' | ' ' ' '/|\' ' ' ' | ' '/` ` ` ` ` `|
+
|` ` ` ` \ ` o---|-------o | o-------|---o ` ` ` ` ` `|
+
|` ` ` ` `\` ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` `|
+
|` ` ` ` ` \ ` ` | ` ` ` ` | ` ` ` ` | ` ` ` ` ` ` ` `|
+
o-----------\----|---------|---------|----------------o
+
" " \ | | | " "
+
" " \ | | | " "
+
" " \ | | | " "
+
" " \| | | " "
+
o-------------------------o \ | | o-------------------------o
+
| U | |\ | | |`U```````````````````````|
+
| o---o o---o | | \ | | |``````o---o```o---o``````|
+
| /'''''\ /'''''\ | | \ | | |`````/ \`/ \`````|
+
| /'''''''o'''''''\ | | \ | | |````/ o \````|
+
| /'''''''/'\'''''''\ | | \ | | |```/ /`\ \```|
+
| o'''''''o'''o'''''''o | | \ | | |``o o```o o``|
+
| |'''u'''|'''|'''v'''| | | \ | | |``| u |```| v |``|
+
| o'''''''o'''o'''''''o | | \ | | |``o o```o o``|
+
| \'''''''\'/'''''''/ | | \| | |```\ \`/ /```|
+
| \'''''''o'''''''/ | | \ | |````\ o /````|
+
| \'''''/ \'''''/ | | |\ | |`````\ /`\ /`````|
+
| o---o o---o | | | \ | |``````o---o```o---o``````|
+
| | | | \ * |`````````````````````````|
+
o-------------------------o | | \ / o-------------------------o
+
\ | | | \ / | /
+
\ ((u)(v)) | | | \/ | ((u, v)) /
+
\ | | | /\ | /
+
\ | | | / \ | /
+
\ | | | / \ | /
+
\ | | | / * | /
+
\ | | | / | | /
+
\ | | |/ | | /
+
\ | | / | | /
+
\ | | /| | | /
+
o-------\----|---|-------/-|---------|---|----/-------o
+
| X \ | | / | | | / |
+
| \| | / | | |/ |
+
| o---|----/--o | o-------|---o |
+
| /' ' | ' / ' '\|/` ` ` ` | ` `\ |
+
| / ' ' | '/' ' ' | ` ` ` ` | ` ` \ |
+
| /' ' ' | / ' ' '/|\` ` ` ` | ` ` `\ |
+
| / ' ' ' |/' ' ' /^|^\ ` ` ` | ` ` ` \ |
+
| @ o' ' ' ' @ ' ' 'o^^@^^o` ` ` @ ` ` ` `o |
+
| |' ' ' ' ' ' ' '|^^^^^|` ` ` ` ` ` ` `| |
+
| |' ' ' ' f ' ' '|^^^^^|` ` ` g ` ` ` `| |
+
| |' ' ' ' ' ' ' '|^^^^^|` ` ` ` ` ` ` `| |
+
| o' ' ' ' ' ' ' 'o^^^^^o` ` ` ` ` ` ` `o |
+
| \ ' ' ' ' ' ' ' \^^^/ ` ` ` ` ` ` ` / |
+
| \' ' ' ' ' ' ' '\^/` ` ` ` ` ` ` `/ |
+
| \ ' ' ' ' ' ' ' o ` ` ` ` ` ` ` / |
+
| \' ' ' ' ' ' '/ \` ` ` ` ` ` `/ |
+
| o-----------o o-----------o |
+
| |
+
| |
+
o-----------------------------------------------------o
+
Figure 63. Transformation of Positions
+
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 63 -- Transformation of Positions.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 63. Transformation of Positions'''</font></center></p>
+
+
===Table 64. Transformation of Positions===
+
+
<pre>
+
Table 64. Transformation of Positions
+
o-----o----------o----------o-------o-------o--------o--------o-------------o
+
| u v | x | y | x y | x(y) | (x)y | (x)(y) | X% = [x, y] |
+
o-----o----------o----------o-------o-------o--------o--------o-------------o
+
| | | | | | | | ^ |
+
| 0 0 | 0 | 1 | 0 | 0 | 1 | 0 | | |
+
| | | | | | | | |
+
| 0 1 | 1 | 0 | 0 | 1 | 0 | 0 | F |
+
| | | | | | | | = |
+
| 1 0 | 1 | 0 | 0 | 1 | 0 | 0 | <f , g> |
+
| | | | | | | | |
+
| 1 1 | 1 | 1 | 1 | 0 | 0 | 0 | ^ |
+
| | | | | | | | | |
+
o-----o----------o----------o-------o-------o--------o--------o-------------o
+
| | ((u)(v)) | ((u, v)) | u v | (u,v) | (u)(v) | 0 | U% = [u, v] |
+
o-----o----------o----------o-------o-------o--------o--------o-------------o
+
</pre>
+
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
|+ '''Table 64. Transformation of Positions'''
+
|- style="background:paleturquoise"
+
| ''u'' ''v''
+
| ''x''
+
| ''y''
+
| ''x'' ''y''
+
| ''x'' (''y'')
+
| (''x'') ''y''
+
| (''x'')(''y'')
+
| ''X''<sup> •</sup> = [''x'', ''y'' ]
+
|-
+
| width="12%" |
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 0
+
|-
+
| 0 1
+
|-
+
| 1 0
+
|-
+
| 1 1
+
|}
+
| width="12%" |
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0
+
|-
+
| 1
+
|-
+
| 1
+
|-
+
| 1
+
|}
+
| width="12%" |
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1
+
|-
+
| 0
+
|-
+
| 0
+
|-
+
| 1
+
|}
+
| width="12%" |
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0
+
|-
+
| 0
+
|-
+
| 0
+
|-
+
| 1
+
|}
+
| width="12%" |
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0
+
|-
+
| 1
+
|-
+
| 1
+
|-
+
| 0
+
|}
+
| width="12%" |
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1
+
|-
+
| 0
+
|-
+
| 0
+
|-
+
| 0
+
|}
+
| width="12%" |
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0
+
|-
+
| 0
+
|-
+
| 0
+
|-
+
| 0
+
|}
+
| width="12%" |
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| ↑
+
|-
+
| ''F''
+
|-
+
| ‹''f'', ''g'' ›
+
|-
+
| ↑
+
|}
+
|-
+
|
+
| ((''u'')(''v''))
+
| ((''u'', ''v''))
+
| ''u'' ''v''
+
| (''u'', ''v'')
+
| (''u'')(''v'')
+
| ( )
+
| ''U''<sup> •</sup> = [''u'', ''v'' ]
+
|}
+
<br>
+
+
===Table 65. Induced Transformation on Propositions===
+
+
<pre>
+
Table 65. Induced Transformation on Propositions
+
o------------o---------------------------------o------------o
+
| X% | <--- F = <f , g> <--- | U% |
+
o------------o----------o-----------o----------o------------o
+
| | u = | 1 1 0 0 | = u | |
+
| | v = | 1 0 1 0 | = v | |
+
| f_i <x, y> o----------o-----------o----------o f_j <u, v> |
+
| | x = | 1 1 1 0 | = f<u,v> | |
+
| | y = | 1 0 0 1 | = g<u,v> | |
+
o------------o----------o-----------o----------o------------o
+
| | | | | |
+
| f_0 | () | 0 0 0 0 | () | f_0 |
+
| | | | | |
+
| f_1 | (x)(y) | 0 0 0 1 | () | f_0 |
+
| | | | | |
+
| f_2 | (x) y | 0 0 1 0 | (u)(v) | f_1 |
+
| | | | | |
+
| f_3 | (x) | 0 0 1 1 | (u)(v) | f_1 |
+
| | | | | |
+
| f_4 | x (y) | 0 1 0 0 | (u, v) | f_6 |
+
| | | | | |
+
| f_5 | (y) | 0 1 0 1 | (u, v) | f_6 |
+
| | | | | |
+
| f_6 | (x, y) | 0 1 1 0 | (u v) | f_7 |
+
| | | | | |
+
| f_7 | (x y) | 0 1 1 1 | (u v) | f_7 |
+
| | | | | |
+
o------------o----------o-----------o----------o------------o
+
| | | | | |
+
| f_8 | x y | 1 0 0 0 | u v | f_8 |
+
| | | | | |
+
| f_9 | ((x, y)) | 1 0 0 1 | u v | f_8 |
+
| | | | | |
+
| f_10 | y | 1 0 1 0 | ((u, v)) | f_9 |
+
| | | | | |
+
| f_11 | (x (y)) | 1 0 1 1 | ((u, v)) | f_9 |
+
| | | | | |
+
| f_12 | x | 1 1 0 0 | ((u)(v)) | f_14 |
+
| | | | | |
+
| f_13 | ((x) y) | 1 1 0 1 | ((u)(v)) | f_14 |
+
| | | | | |
+
| f_14 | ((x)(y)) | 1 1 1 0 | (()) | f_15 |
+
| | | | | |
+
| f_15 | (()) | 1 1 1 1 | (()) | f_15 |
+
| | | | | |
+
o------------o----------o-----------o----------o------------o
+
</pre>
+
+
<br><font face="courier new">
+
{| align="center" border="1" cellpadding="4" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
|+ Table 65. Induced Transformation on Propositions
+
|- style="background:paleturquoise"
+
| ''X''<sup> •</sup>
+
| colspan="3" |
+
{| align="center" border="0" cellpadding="4" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:80%"
+
| ←
+
| ''F'' = ‹''f'' , ''g''›
+
| ←
+
|}
+
| ''U''<sup> •</sup>
+
|- style="background:paleturquoise"
+
| rowspan="2" | ''f''<sub>''i''</sub>‹''x'', ''y''›
+
|
+
{| align="right" style="background:paleturquoise; text-align:right"
+
| ''u'' =
+
|-
+
| ''v'' =
+
|}
+
|
+
{| align="center" style="background:paleturquoise; text-align:center"
+
| 1 1 0 0
+
|-
+
| 1 0 1 0
+
|}
+
|
+
{| align="left" style="background:paleturquoise; text-align:left"
+
| = ''u''
+
|-
+
| = ''v''
+
|}
+
| rowspan="2" | ''f''<sub>''j''</sub>‹''u'', ''v''›
+
|- style="background:paleturquoise"
+
|
+
{| align="right" style="background:paleturquoise; text-align:right"
+
| ''x'' =
+
|-
+
| ''y'' =
+
|}
+
|
+
{| align="center" style="background:paleturquoise; text-align:center"
+
| 1 1 1 0
+
|-
+
| 1 0 0 1
+
|}
+
|
+
{| align="left" style="background:paleturquoise; text-align:left"
+
| = ''f''‹''u'', ''v''›
+
|-
+
| = ''g''‹''u'', ''v''›
+
|}
+
|-
+
|
+
{| cellpadding="2" style="background:lightcyan"
+
| ''f''<sub>0</sub>
+
|-
+
| ''f''<sub>1</sub>
+
|-
+
| ''f''<sub>2</sub>
+
|-
+
| ''f''<sub>3</sub>
+
|-
+
| ''f''<sub>4</sub>
+
|-
+
| ''f''<sub>5</sub>
+
|-
+
| ''f''<sub>6</sub>
+
|-
+
| ''f''<sub>7</sub>
+
|}
+
|
+
{| cellpadding="2" style="background:lightcyan"
+
| ()
+
|-
+
| (''x'')(''y'')
+
|-
+
| (''x'') ''y''
+
|-
+
| (''x'')
+
|-
+
| ''x'' (''y'')
+
|-
+
| (''y'')
+
|-
+
| (''x'', ''y'')
+
|-
+
| (''x'' ''y'')
+
|}
+
|
+
{| cellpadding="2" style="background:lightcyan"
+
| 0 0 0 0
+
|-
+
| 0 0 0 1
+
|-
+
| 0 0 1 0
+
|-
+
| 0 0 1 1
+
|-
+
| 0 1 0 0
+
|-
+
| 0 1 0 1
+
|-
+
| 0 1 1 0
+
|-
+
| 0 1 1 1
+
|}
+
|
+
{| cellpadding="2" style="background:lightcyan"
+
| ()
+
|-
+
| ()
+
|-
+
| (''u'')(''v'')
+
|-
+
| (''u'')(''v'')
+
|-
+
| (''u'', ''v'')
+
|-
+
| (''u'', ''v'')
+
|-
+
| (''u'' ''v'')
+
|-
+
| (''u'' ''v'')
+
|}
+
|
+
{| cellpadding="2" style="background:lightcyan"
+
| ''f''<sub>0</sub>
+
|-
+
| ''f''<sub>0</sub>
+
|-
+
| ''f''<sub>1</sub>
+
|-
+
| ''f''<sub>1</sub>
+
|-
+
| ''f''<sub>6</sub>
+
|-
+
| ''f''<sub>6</sub>
+
|-
+
| ''f''<sub>7</sub>
+
|-
+
| ''f''<sub>7</sub>
+
|}
+
|-
+
|
+
{| cellpadding="2" style="background:lightcyan"
+
| ''f''<sub>8</sub>
+
|-
+
| ''f''<sub>9</sub>
+
|-
+
| ''f''<sub>10</sub>
+
|-
+
| ''f''<sub>11</sub>
+
|-
+
| ''f''<sub>12</sub>
+
|-
+
| ''f''<sub>13</sub>
+
|-
+
| ''f''<sub>14</sub>
+
|-
+
| ''f''<sub>15</sub>
+
|}
+
|
+
{| cellpadding="2" style="background:lightcyan"
+
| ''x'' ''y''
+
|-
+
| ((''x'', ''y''))
+
|-
+
| ''y''
+
|-
+
| (''x'' (''y''))
+
|-
+
| ''x''
+
|-
+
| ((''x'') ''y'')
+
|-
+
| ((''x'')(''y''))
+
|-
+
| (())
+
|}
+
|
+
{| cellpadding="2" style="background:lightcyan"
+
| 1 0 0 0
+
|-
+
| 1 0 0 1
+
|-
+
| 1 0 1 0
+
|-
+
| 1 0 1 1
+
|-
+
| 1 1 0 0
+
|-
+
| 1 1 0 1
+
|-
+
| 1 1 1 0
+
|-
+
| 1 1 1 1
+
|}
+
|
+
{| cellpadding="2" style="background:lightcyan"
+
| ''u'' ''v''
+
|-
+
| ''u'' ''v''
+
|-
+
| ((''u'', ''v''))
+
|-
+
| ((''u'', ''v''))
+
|-
+
| ((''u'')(''v''))
+
|-
+
| ((''u'')(''v''))
+
|-
+
| (())
+
|-
+
| (())
+
|}
+
|
+
{| cellpadding="2" style="background:lightcyan"
+
| ''f''<sub>8</sub>
+
|-
+
| ''f''<sub>8</sub>
+
|-
+
| ''f''<sub>9</sub>
+
|-
+
| ''f''<sub>9</sub>
+
|-
+
| ''f''<sub>14</sub>
+
|-
+
| ''f''<sub>14</sub>
+
|-
+
| ''f''<sub>15</sub>
+
|-
+
| ''f''<sub>15</sub>
+
|}
+
|}
+
</font><br>
+
+
===Formula Display 14===
+
+
<pre>
+
o-------------------------------------------------o
+
| |
+
| EG_i = G_i <u + du, v + dv> |
+
| |
+
o-------------------------------------------------o
+
</pre>
+
+
<br><font face="courier new">
+
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
|
+
{| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
| width="8%" | E''G''<sub>''i''</sub>
+
| width="4%" | =
+
| width="88%" | ''G''<sub>''i''</sub>‹''u'' + d''u'', ''v'' + d''v''›
+
|}
+
|}
+
</font><br>
+
+
===Formula Display 15===
+
+
<pre>
+
o-------------------------------------------------o
+
| |
+
| DG_i = G_i <u, v> + EG_i <u, v, du, dv> |
+
| |
+
| = G_i <u, v> + G_i <u + du, v + dv> |
+
| |
+
o-------------------------------------------------o
+
</pre>
+
+
<br><font face="courier new">
+
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
|
+
{| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
| width="8%" | D''G''<sub>''i''</sub>
+
| width="4%" | =
+
| width="20%" | ''G''<sub>''i''</sub>‹''u'', ''v''›
+
| width="4%" | +
+
| width="64%" | E''G''<sub>''i''</sub>‹''u'', ''v'', d''u'', d''v''›
+
|-
+
| width="8%" |
+
| width="4%" | =
+
| width="20%" | ''G''<sub>''i''</sub>‹''u'', ''v''›
+
| width="4%" | +
+
| width="64%" | ''G''<sub>''i''</sub>‹''u'' + d''u'', ''v'' + d''v''›
+
|}
+
|}
+
</font><br>
+
+
===Formula Display 16===
+
+
<pre>
+
o-------------------------------------------------o
+
| |
+
| Ef = ((u + du)(v + dv)) |
+
| |
+
| Eg = ((u + du, v + dv)) |
+
| |
+
o-------------------------------------------------o
+
</pre>
+
+
<br><font face="courier new">
+
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
|
+
{| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
| width="8%" | E''f''
+
| width="4%" | =
+
| width="88%" | ((''u'' + d''u'')(''v'' + d''v''))
+
|-
+
| width="8%" | E''g''
+
| width="4%" | =
+
| width="88%" | ((''u'' + d''u'', ''v'' + d''v''))
+
|}
+
|}
+
</font><br>
+
+
===Formula Display 17===
+
+
<pre>
+
o-------------------------------------------------o
+
| |
+
| Df = ((u)(v)) + ((u + du)(v + dv)) |
+
| |
+
| Dg = ((u, v)) + ((u + du, v + dv)) |
+
| |
+
o-------------------------------------------------o
+
</pre>
+
+
<br><font face="courier new">
+
{| align="center" border="1" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:96%"
+
|
+
{| align="left" border="0" cellpadding="12" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:left; width:100%"
+
| width="8%" | D''f''
+
| width="4%" | =
+
| width="20%" | ((''u'')(''v''))
+
| width="4%" | +
+
| width="64%" | ((''u'' + d''u'')(''v'' + d''v''))
+
|-
+
| width="8%" | D''g''
+
| width="4%" | =
+
| width="20%" | ((''u'', ''v''))
+
| width="4%" | +
+
| width="64%" | ((''u'' + d''u'', ''v'' + d''v''))
+
|}
+
|}
+
</font><br>
+
+
===Table 66-i. Computation Summary for f‹u, v› = ((u)(v))===
+
+
<pre>
+
Table 66-i. Computation Summary for f<u, v> = ((u)(v))
+
o--------------------------------------------------------------------------------o
+
| |
+
| !e!f = uv. 1 + u(v). 1 + (u)v. 1 + (u)(v). 0 |
+
| |
+
| Ef = uv. (du dv) + u(v). (du (dv)) + (u)v.((du) dv) + (u)(v).((du)(dv)) |
+
| |
+
| Df = uv. du dv + u(v). du (dv) + (u)v. (du) dv + (u)(v).((du)(dv)) |
+
| |
+
| df = uv. 0 + u(v). du + (u)v. dv + (u)(v). (du, dv) |
+
| |
+
| rf = uv. du dv + u(v). du dv + (u)v. du dv + (u)(v). du dv |
+
| |
+
o--------------------------------------------------------------------------------o
+
</pre>
+
+
<font face="courier new">
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
|+ Table 66-i. Computation Summary for ''f''‹''u'', ''v''› = ((''u'')(''v''))
+
|
+
{| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| <math>\epsilon</math>''f''
+
| = || ''uv'' || <math>\cdot</math> || 1
+
| + || ''u''(''v'') || <math>\cdot</math> || 1
+
| + || (''u'')''v'' || <math>\cdot</math> || 1
+
| + || (''u'')(''v'') || <math>\cdot</math> || 0
+
|-
+
| E''f''
+
| = || ''uv'' || <math>\cdot</math> || (d''u'' d''v'')
+
| + || ''u''(''v'') || <math>\cdot</math> || (d''u (d''v''))
+
| + || (''u'')''v'' || <math>\cdot</math> || ((d''u'') d''v'')
+
| + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v''))
+
|-
+
| D''f''
+
| = || ''uv'' || <math>\cdot</math> || d''u'' d''v''
+
| + || ''u''(''v'') || <math>\cdot</math> || d''u'' (d''v'')
+
| + || (''u'')''v'' || <math>\cdot</math> || (d''u'') d''v''
+
| + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v''))
+
|-
+
| d''f''
+
| = || ''uv'' || <math>\cdot</math> || 0
+
| + || ''u''(''v'') || <math>\cdot</math> || d''u''
+
| + || (''u'')''v'' || <math>\cdot</math> || d''v''
+
| + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
+
|-
+
| r''f''
+
| = || ''uv'' || <math>\cdot</math> || d''u'' d''v''
+
| + || ''u''(''v'') || <math>\cdot</math> || d''u'' d''v''
+
| + || (''u'')''v'' || <math>\cdot</math> || d''u'' d''v''
+
| + || (''u'')(''v'') || <math>\cdot</math> || d''u'' d''v''
+
|}
+
|}
+
</font><br>
+
+
===Table 66-ii. Computation Summary for g‹u, v› = ((u, v))===
+
+
<pre>
+
Table 66-ii. Computation Summary for g<u, v> = ((u, v))
+
o--------------------------------------------------------------------------------o
+
| |
+
| !e!g = uv. 1 + u(v). 0 + (u)v. 0 + (u)(v). 1 |
+
| |
+
| Eg = uv.((du, dv)) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v).((du, dv)) |
+
| |
+
| Dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) |
+
| |
+
| dg = uv. (du, dv) + u(v). (du, dv) + (u)v. (du, dv) + (u)(v). (du, dv) |
+
| |
+
| rg = uv. 0 + u(v). 0 + (u)v. 0 + (u)(v). 0 |
+
| |
+
o--------------------------------------------------------------------------------o
+
</pre>
+
+
<font face="courier new">
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
|+ Table 66-ii. Computation Summary for g‹''u'', ''v''› = ((''u'', ''v''))
+
|
+
{| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| <math>\epsilon</math>''g''
+
| = || ''uv'' || <math>\cdot</math> || 1
+
| + || ''u''(''v'') || <math>\cdot</math> || 0
+
| + || (''u'')''v'' || <math>\cdot</math> || 0
+
| + || (''u'')(''v'') || <math>\cdot</math> || 1
+
|-
+
| E''g''
+
| = || ''uv'' || <math>\cdot</math> || ((d''u'', d''v''))
+
| + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'')
+
| + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'')
+
| + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'', d''v''))
+
|-
+
| D''g''
+
| = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'')
+
| + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'')
+
| + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'')
+
| + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
+
|-
+
| d''g''
+
| = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'')
+
| + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'')
+
| + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'')
+
| + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
+
|-
+
| r''g''
+
| = || ''uv'' || <math>\cdot</math> || 0
+
| + || ''u''(''v'') || <math>\cdot</math> || 0
+
| + || (''u'')''v'' || <math>\cdot</math> || 0
+
| + || (''u'')(''v'') || <math>\cdot</math> || 0
+
|}
+
|}
+
</font><br>
+
+
===Table 67. Computation of an Analytic Series in Terms of Coordinates===
+
+
<pre>
+
Table 67. Computation of an Analytic Series in Terms of Coordinates
+
o--------o-------o-------o--------o-------o-------o-------o-------o
+
| u v | du dv | u' v' | f g | Ef Eg | Df Dg | df dg | rf rg |
+
o--------o-------o-------o--------o-------o-------o-------o-------o
+
| | | | | | | | |
+
| 0 0 | 0 0 | 0 0 | 0 1 | 0 1 | 0 0 | 0 0 | 0 0 |
+
| | | | | | | | |
+
| | 0 1 | 0 1 | | 1 0 | 1 1 | 1 1 | 0 0 |
+
| | | | | | | | |
+
| | 1 0 | 1 0 | | 1 0 | 1 1 | 1 1 | 0 0 |
+
| | | | | | | | |
+
| | 1 1 | 1 1 | | 1 1 | 1 0 | 0 0 | 1 0 |
+
| | | | | | | | |
+
o--------o-------o-------o--------o-------o-------o-------o-------o
+
| | | | | | | | |
+
| 0 1 | 0 0 | 0 1 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 |
+
| | | | | | | | |
+
| | 0 1 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 |
+
| | | | | | | | |
+
| | 1 0 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 |
+
| | | | | | | | |
+
| | 1 1 | 1 0 | | 1 0 | 0 0 | 1 0 | 1 0 |
+
| | | | | | | | |
+
o--------o-------o-------o--------o-------o-------o-------o-------o
+
| | | | | | | | |
+
| 1 0 | 0 0 | 1 0 | 1 0 | 1 0 | 0 0 | 0 0 | 0 0 |
+
| | | | | | | | |
+
| | 0 1 | 1 1 | | 1 1 | 0 1 | 0 1 | 0 0 |
+
| | | | | | | | |
+
| | 1 0 | 0 0 | | 0 1 | 1 1 | 1 1 | 0 0 |
+
| | | | | | | | |
+
| | 1 1 | 0 1 | | 1 0 | 0 0 | 1 0 | 1 0 |
+
| | | | | | | | |
+
o--------o-------o-------o--------o-------o-------o-------o-------o
+
| | | | | | | | |
+
| 1 1 | 0 0 | 1 1 | 1 1 | 1 1 | 0 0 | 0 0 | 0 0 |
+
| | | | | | | | |
+
| | 0 1 | 1 0 | | 1 0 | 0 1 | 0 1 | 0 0 |
+
| | | | | | | | |
+
| | 1 0 | 0 1 | | 1 0 | 0 1 | 0 1 | 0 0 |
+
| | | | | | | | |
+
| | 1 1 | 0 0 | | 0 1 | 1 0 | 0 0 | 1 0 |
+
| | | | | | | | |
+
o--------o-------o-------o--------o-------o-------o-------o-------o
+
</pre>
+
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
|+ Table 67. Computation of an Analytic Series in Terms of Coordinates
+
|
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
| ''u''
+
| ''v''
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
| d''u''
+
| d''v''
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
| ''u''<font face="courier new">’</font>
+
| ''v''<font face="courier new">’</font>
+
|}
+
|-
+
| valign="top" |
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 1
+
|-
+
| 1 || 0
+
|-
+
| 1 || 1
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 1
+
|-
+
| 1 || 0
+
|-
+
| 1 || 1
+
|}
+
|-
+
| valign="top" |
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 1
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 1
+
|-
+
| 1 || 0
+
|-
+
| 1 || 1
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 1
+
|-
+
| 0 || 0
+
|-
+
| 1 || 1
+
|-
+
| 1 || 0
+
|}
+
|-
+
| valign="top" |
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 1
+
|-
+
| 1 || 0
+
|-
+
| 1 || 1
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1 || 0
+
|-
+
| 1 || 1
+
|-
+
| 0 || 0
+
|-
+
| 0 || 1
+
|}
+
|-
+
| valign="top" |
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1 || 1
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1 || 1
+
|-
+
| 1 || 0
+
|-
+
| 0 || 1
+
|-
+
| 0 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 1
+
|-
+
| 1 || 0
+
|-
+
| 1 || 1
+
|}
+
|}
+
|
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
| <math>\epsilon</math>''f''
+
| <math>\epsilon</math>''g''
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
| E''f''
+
| E''g''
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
| D''f''
+
| D''g''
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
| d''f''
+
| d''g''
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:paleturquoise; font-weight:bold; text-align:center; width:100%"
+
| d<sup>2</sup>''f''
+
| d<sup>2</sup>''g''
+
|}
+
|-
+
| valign="top" |
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 1
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 1
+
|-
+
| 1 || 0
+
|-
+
| 1 || 0
+
|-
+
| 1 || 1
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 1 || 1
+
|-
+
| 1 || 1
+
|-
+
| 1 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 1 || 1
+
|-
+
| 1 || 1
+
|-
+
| 0 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 0
+
|-
+
| 0 || 0
+
|-
+
| 1 || 0
+
|}
+
|-
+
| valign="top" |
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1 || 0
+
|-
+
| 0 || 1
+
|-
+
| 1 || 1
+
|-
+
| 1 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 1 || 1
+
|-
+
| 0 || 1
+
|-
+
| 0 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 1 || 1
+
|-
+
| 0 || 1
+
|-
+
| 1 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 0
+
|-
+
| 0 || 0
+
|-
+
| 1 || 0
+
|}
+
|-
+
| valign="top" |
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1 || 0
+
|-
+
| 1 || 1
+
|-
+
| 0 || 1
+
|-
+
| 1 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 1
+
|-
+
| 1 || 1
+
|-
+
| 0 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 1
+
|-
+
| 1 || 1
+
|-
+
| 1 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 0
+
|-
+
| 0 || 0
+
|-
+
| 1 || 0
+
|}
+
|-
+
| valign="top" |
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1 || 1
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 1 || 1
+
|-
+
| 1 || 0
+
|-
+
| 1 || 0
+
|-
+
| 0 || 1
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 1
+
|-
+
| 0 || 1
+
|-
+
| 1 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 1
+
|-
+
| 0 || 1
+
|-
+
| 0 || 0
+
|}
+
|
+
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 || 0
+
|-
+
| 0 || 0
+
|-
+
| 0 || 0
+
|-
+
| 1 || 0
+
|}
+
|}
+
|}
+
<br>
+
+
===Table 68. Computation of an Analytic Series in Symbolic Terms===
+
+
<pre>
+
Table 68. Computation of an Analytic Series in Symbolic Terms
+
o-----o-----o------------o----------o----------o----------o----------o----------o
+
| u v | f g | Df | Dg | df | dg | rf | rg |
+
o-----o-----o------------o----------o----------o----------o----------o----------o
+
| | | | | | | | |
+
| 0 0 | 0 1 | ((du)(dv)) | (du, dv) | (du, dv) | (du, dv) | du dv | () |
+
| | | | | | | | |
+
| 0 1 | 1 0 | (du) dv | (du, dv) | dv | (du, dv) | du dv | () |
+
| | | | | | | | |
+
| 1 0 | 1 0 | du (dv) | (du, dv) | du | (du, dv) | du dv | () |
+
| | | | | | | | |
+
| 1 1 | 1 1 | du dv | (du, dv) | () | (du, dv) | du dv | () |
+
| | | | | | | | |
+
o-----o-----o------------o----------o----------o----------o----------o----------o
+
</pre>
+
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
|+ '''Table 68. Computation of an Analytic Series in Symbolic Terms'''
+
|- style="background:paleturquoise"
+
| ''u'' ''v''
+
| ''f'' ''g''
+
| D''f''
+
| D''g''
+
| d''f''
+
| d''g''
+
| d<sup>2</sup>''f''
+
| d<sup>2</sup>''g''
+
|-
+
|
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 0
+
|-
+
| 0 1
+
|-
+
| 1 0
+
|-
+
| 1 1
+
|}
+
|
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| 0 1
+
|-
+
| 1 0
+
|-
+
| 1 0
+
|-
+
| 1 1
+
|}
+
|
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| ((d''u'')(d''v''))
+
|-
+
| (d''u'') d''v''
+
|-
+
| d''u'' (d''v'')
+
|-
+
| d''u'' d''v''
+
|}
+
|
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| (d''u'', d''v'')
+
|-
+
| (d''u'', d''v'')
+
|-
+
| (d''u'', d''v'')
+
|-
+
| (d''u'', d''v'')
+
|}
+
|
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| (d''u'', d''v'')
+
|-
+
| d''v''
+
|-
+
| d''u''
+
|-
+
| ( )
+
|}
+
|
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| (d''u'', d''v'')
+
|-
+
| (d''u'', d''v'')
+
|-
+
| (d''u'', d''v'')
+
|-
+
| (d''u'', d''v'')
+
|}
+
|
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| d''u'' d''v''
+
|-
+
| d''u'' d''v''
+
|-
+
| d''u'' d''v''
+
|-
+
| d''u'' d''v''
+
|}
+
|
+
{| align="center" border="0" cellpadding="2" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
| ( )
+
|-
+
| ( )
+
|-
+
| ( )
+
|-
+
| ( )
+
|}
+
|}
+
<br>
+
+
===Formula Display 18===
+
+
<pre>
+
o-------------------------------------------------------------------------o
+
| |
+
| Df = uv. du dv + u(v). du (dv) + (u)v.(du) dv + (u)(v).((du)(dv)) |
+
| |
+
| Dg = uv.(du, dv) + u(v).(du, dv) + (u)v.(du, dv) + (u)(v). (du, dv) |
+
| |
+
o-------------------------------------------------------------------------o
+
</pre>
+
+
<br><font face="courier new">
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:96%"
+
|
+
{| align="left" border="0" cellpadding="1" cellspacing="0" style="background:lightcyan; font-weight:bold; text-align:center; width:100%"
+
|
|-
|-
| D''f''
| D''f''
Line 8,891:
Line 10,449:
</font><br>
</font><br>
−
===Figure 69. Difference Map of F = ‹f, g› = ‹((u)(v)), ((u, v))›===
+
===Figure 69. Difference Map of F = ‹f, g› = ‹((u)(v)), ((u, v))›===
<pre>
<pre>
Line 8,957:
Line 10,515:
Figure 69. Difference Map of F = <f, g> = <((u)(v)), ((u, v))>
Figure 69. Difference Map of F = <f, g> = <((u)(v)), ((u, v))>
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 69 -- Difference Map (Short Form).gif|center]]</p>
+
<p><center><font size="+1">'''Figure 69. Difference Map of F = ‹f, g› = ‹((u)(v)), ((u, v))›'''</font></center></p>
===Formula Display 19===
===Formula Display 19===
Line 8,995:
Line 10,557:
</font><br>
</font><br>
−
===Figure 70-a. Tangent Functor Diagram for F‹u, v› = ‹((u)(v)), ((u, v))›===
+
===Figure 70-a. Tangent Functor Diagram for F‹u, v› = ‹((u)(v)), ((u, v))›===
<pre>
<pre>
Line 9,080:
Line 10,642:
Figure 70-a. Tangent Functor Diagram for F‹u, v› = <((u)(v)), ((u, v))>
Figure 70-a. Tangent Functor Diagram for F‹u, v› = <((u)(v)), ((u, v))>
</pre>
</pre>
+
+
<br>
+
<p>[[Image:Diff Log Dyn Sys -- Figure 70-a -- Tangent Functor Diagram.gif|center]]</p>
+
<p><center><font size="+1">'''Figure 70-a. Tangent Functor Diagram for F‹u, v› = ‹((u)(v)), ((u, v))›'''</font></center></p>
===Figure 70-b. Tangent Functor Ferris Wheel for F‹u, v› = ‹((u)(v)), ((u, v))›===
===Figure 70-b. Tangent Functor Ferris Wheel for F‹u, v› = ‹((u)(v)), ((u, v))›===
−
−
[[Image:Tangent_Functor_Ferris_Wheel.gif|frame|<font size="3">'''Figure 70-b. Tangent Functor Ferris Wheel for F‹u, v› = ‹((u)(v)), ((u, v))›'''</font>]]
<pre>
<pre>
Line 9,263:
Line 10,827:
Figure 70-b. Tangent Functor Ferris Wheel for F<u, v> = <((u)(v)), ((u, v))>
Figure 70-b. Tangent Functor Ferris Wheel for F<u, v> = <((u)(v)), ((u, v))>
</pre>
</pre>
+
+
[[Image:Tangent_Functor_Ferris_Wheel.gif|frame|<font size="3">'''Figure 70-b. Tangent Functor Ferris Wheel for F‹u, v› = ‹((u)(v)), ((u, v))›'''</font>]]