Changes

Line 24: Line 24:  
[| \downharpoonleft s \downharpoonright |]
 
[| \downharpoonleft s \downharpoonright |]
 
& = & [| F |]
 
& = & [| F |]
\\[6pt]
+
\\[4pt]
 
& = & F^{-1} (1)
 
& = & F^{-1} (1)
\\[6pt]
+
\\[4pt]
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ s ~\}
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ s ~\}
\\[6pt]
+
\\[4pt]
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ F(x, y) = 1 ~\}
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ F(x, y) = 1 ~\}
\\[6pt]
+
\\[4pt]
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ F(x, y) ~\}
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ F(x, y) ~\}
\\[6pt]
+
\\[4pt]
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ \texttt{(}~x~,~y~\texttt{)} = 1 ~\}
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ \texttt{(}~x~,~y~\texttt{)} = 1 ~\}
\\[6pt]
+
\\[4pt]
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ \texttt{(}~x~,~y~\texttt{)} ~\}
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ \texttt{(}~x~,~y~\texttt{)} ~\}
\\[6pt]
+
\\[4pt]
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x ~\mathrm{exclusive~or}~ y ~\}
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x ~\mathrm{exclusive~or}~ y ~\}
\\[6pt]
+
\\[4pt]
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ \mathrm{just~one~true~of}~ x, y ~\}
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ \mathrm{just~one~true~of}~ x, y ~\}
\\[6pt]
+
\\[4pt]
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x ~\mathrm{not~equal~to}~ y ~\}
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x ~\mathrm{not~equal~to}~ y ~\}
\\[6pt]
+
\\[4pt]
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x \nLeftrightarrow y ~\}
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x \nLeftrightarrow y ~\}
\\[6pt]
+
\\[4pt]
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x \neq y ~\}
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x \neq y ~\}
\\[6pt]
+
\\[4pt]
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x + y ~\}.
 
& = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x + y ~\}.
 
\end{array}</math>
 
\end{array}</math>
Line 62: Line 62:  
|
 
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
p
+
p & = & \upharpoonleft P \upharpoonright & : & X \to \mathbb{B}
& = &
+
\\[4pt]
\upharpoonleft P \upharpoonright
+
q & = & \upharpoonleft Q \upharpoonright & : & X \to \mathbb{B}
& : &
+
\\[4pt]
X \to \mathbb{B}
+
(p, q) & = & (\upharpoonleft P \upharpoonright, \upharpoonleft Q \upharpoonright) & : & (X \to \mathbb{B})^2
\\
  −
\\
  −
q
  −
& = &
  −
\upharpoonleft Q \upharpoonright
  −
& : &
  −
X \to \mathbb{B}
  −
\\
  −
\\
  −
(p, q)
  −
& = &
  −
(\upharpoonleft P \upharpoonright, \upharpoonleft Q \upharpoonright)
  −
& : &
  −
(X \to \mathbb{B})^2
  −
\\
   
\end{matrix}</math>
 
\end{matrix}</math>
 
|}
 
|}
Line 90: Line 75:  
|
 
|
 
<math>\begin{array}{ccccl}
 
<math>\begin{array}{ccccl}
F^\$
+
F^\$ & = & \underline{(} \ldots, \ldots \underline{)}^\$ & : & (X \to \mathbb{B})^2 \to (X \to \mathbb{B})
& = &
+
\\[4pt]
\underline{(} \ldots, \ldots \underline{)}^\$
+
F^\$ (p, q) & = & \underline{(}~p~,~q~\underline{)}^\$ & : & X \to \mathbb{B}
& : &
  −
(X \to \mathbb{B})^2 \to (X \to \mathbb{B})
  −
\\
  −
\\
  −
F^\$ (p, q)
  −
& = &
  −
\underline{(}~p~,~q~\underline{)}^\$
  −
& : &
  −
X \to \mathbb{B}
  −
\\
   
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 112: Line 87:  
<math>\begin{matrix}
 
<math>\begin{matrix}
 
F^\$ (p, q)(x) & = & \underline{(}~p~,~q~\underline{)}^\$ (x) & \in & \mathbb{B}
 
F^\$ (p, q)(x) & = & \underline{(}~p~,~q~\underline{)}^\$ (x) & \in & \mathbb{B}
\\
+
\\[4pt]
\\
   
\Updownarrow  &  & \Updownarrow
 
\Updownarrow  &  & \Updownarrow
\\
+
\\[4pt]
\\
   
F(p(x), q(x))  & = & \underline{(}~p(x)~,~q(x)~\underline{)}  & \in & \mathbb{B}
 
F(p(x), q(x))  & = & \underline{(}~p(x)~,~q(x)~\underline{)}  & \in & \mathbb{B}
\\
   
\end{matrix}</math>
 
\end{matrix}</math>
 
|}
 
|}
Line 129: Line 101:  
[| F^\$ (p, q) |]
 
[| F^\$ (p, q) |]
 
& = & [| \underline{(}~p~,~q~\underline{)}^\$ |]
 
& = & [| \underline{(}~p~,~q~\underline{)}^\$ |]
\\[6pt]
+
\\[4pt]
 
& = & (F^\$ (p, q))^{-1} (1)
 
& = & (F^\$ (p, q))^{-1} (1)
\\[6pt]
+
\\[4pt]
 
& = & \{~ x \in X ~:~ F^\$ (p, q)(x) ~\}
 
& = & \{~ x \in X ~:~ F^\$ (p, q)(x) ~\}
\\[6pt]
+
\\[4pt]
 
& = & \{~ x \in X ~:~ \underline{(}~p~,~q~\underline{)}^\$ (x) ~\}
 
& = & \{~ x \in X ~:~ \underline{(}~p~,~q~\underline{)}^\$ (x) ~\}
\\[6pt]
+
\\[4pt]
 
& = & \{~ x \in X ~:~ \underline{(}~p(x)~,~q(x)~\underline{)} ~\}
 
& = & \{~ x \in X ~:~ \underline{(}~p(x)~,~q(x)~\underline{)} ~\}
\\[6pt]
+
\\[4pt]
 
& = & \{~ x \in X ~:~ p(x) + q(x) ~\}
 
& = & \{~ x \in X ~:~ p(x) + q(x) ~\}
\\[6pt]
+
\\[4pt]
 
& = & \{~ x \in X ~:~ p(x) \neq q(x) ~\}
 
& = & \{~ x \in X ~:~ p(x) \neq q(x) ~\}
\\[6pt]
+
\\[4pt]
 
& = & \{~ x \in X ~:~ \upharpoonleft P \upharpoonright (x) ~\neq~ \upharpoonleft Q \upharpoonright (x) ~\}
 
& = & \{~ x \in X ~:~ \upharpoonleft P \upharpoonright (x) ~\neq~ \upharpoonleft Q \upharpoonright (x) ~\}
\\[6pt]
+
\\[4pt]
 
& = & \{~ x \in X ~:~ x \in P ~\nLeftrightarrow~ x \in Q ~\}
 
& = & \{~ x \in X ~:~ x \in P ~\nLeftrightarrow~ x \in Q ~\}
\\[6pt]
+
\\[4pt]
 
& = & \{~ x \in X ~:~ x \in P\!-\!Q ~\mathrm{or}~ x \in Q\!-\!P ~\}
 
& = & \{~ x \in X ~:~ x \in P\!-\!Q ~\mathrm{or}~ x \in Q\!-\!P ~\}
\\[6pt]
+
\\[4pt]
 
& = & \{~ x \in X ~:~ x \in P\!-\!Q ~\cup~ Q\!-\!P ~\}
 
& = & \{~ x \in X ~:~ x \in P\!-\!Q ~\cup~ Q\!-\!P ~\}
\\[6pt]
+
\\[4pt]
 
& = & \{~ x \in X ~:~ x \in P + Q ~\}
 
& = & \{~ x \in X ~:~ x \in P + Q ~\}
\\[6pt]
+
\\[4pt]
 
& = & P + Q ~\subseteq~ X
 
& = & P + Q ~\subseteq~ X
\\[6pt]
+
\\[4pt]
 
& = & [|p|] + [|q|] ~\subseteq~ X
 
& = & [|p|] + [|q|] ~\subseteq~ X
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
12,144

edits