| Line 24: |
Line 24: |
| | [| \downharpoonleft s \downharpoonright |] | | [| \downharpoonleft s \downharpoonright |] |
| | & = & [| F |] | | & = & [| F |] |
| − | \\[6pt] | + | \\[4pt] |
| | & = & F^{-1} (1) | | & = & F^{-1} (1) |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ s ~\} | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ s ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ F(x, y) = 1 ~\} | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ F(x, y) = 1 ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ F(x, y) ~\} | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ F(x, y) ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ \texttt{(}~x~,~y~\texttt{)} = 1 ~\} | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ \texttt{(}~x~,~y~\texttt{)} = 1 ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ \texttt{(}~x~,~y~\texttt{)} ~\} | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ \texttt{(}~x~,~y~\texttt{)} ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x ~\mathrm{exclusive~or}~ y ~\} | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x ~\mathrm{exclusive~or}~ y ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ \mathrm{just~one~true~of}~ x, y ~\} | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ \mathrm{just~one~true~of}~ x, y ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x ~\mathrm{not~equal~to}~ y ~\} | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x ~\mathrm{not~equal~to}~ y ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x \nLeftrightarrow y ~\} | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x \nLeftrightarrow y ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x \neq y ~\} | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x \neq y ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x + y ~\}. | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x + y ~\}. |
| | \end{array}</math> | | \end{array}</math> |
| Line 62: |
Line 62: |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | p | + | p & = & \upharpoonleft P \upharpoonright & : & X \to \mathbb{B} |
| − | & = & | + | \\[4pt] |
| − | \upharpoonleft P \upharpoonright | + | q & = & \upharpoonleft Q \upharpoonright & : & X \to \mathbb{B} |
| − | & : & | + | \\[4pt] |
| − | X \to \mathbb{B} | + | (p, q) & = & (\upharpoonleft P \upharpoonright, \upharpoonleft Q \upharpoonright) & : & (X \to \mathbb{B})^2 |
| − | \\ | |
| − | \\
| |
| − | q | |
| − | & = & | |
| − | \upharpoonleft Q \upharpoonright | |
| − | & : & | |
| − | X \to \mathbb{B} | |
| − | \\ | |
| − | \\
| |
| − | (p, q) | |
| − | & = & | |
| − | (\upharpoonleft P \upharpoonright, \upharpoonleft Q \upharpoonright) | |
| − | & : & | |
| − | (X \to \mathbb{B})^2 | |
| − | \\
| |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | |} | | |} |
| Line 90: |
Line 75: |
| | | | | | |
| | <math>\begin{array}{ccccl} | | <math>\begin{array}{ccccl} |
| − | F^\$ | + | F^\$ & = & \underline{(} \ldots, \ldots \underline{)}^\$ & : & (X \to \mathbb{B})^2 \to (X \to \mathbb{B}) |
| − | & = & | + | \\[4pt] |
| − | \underline{(} \ldots, \ldots \underline{)}^\$ | + | F^\$ (p, q) & = & \underline{(}~p~,~q~\underline{)}^\$ & : & X \to \mathbb{B} |
| − | & : & | |
| − | (X \to \mathbb{B})^2 \to (X \to \mathbb{B}) | |
| − | \\ | |
| − | \\
| |
| − | F^\$ (p, q) | |
| − | & = & | |
| − | \underline{(}~p~,~q~\underline{)}^\$ | |
| − | & : & | |
| − | X \to \mathbb{B} | |
| − | \\
| |
| | \end{array}</math> | | \end{array}</math> |
| | |} | | |} |
| Line 112: |
Line 87: |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| | F^\$ (p, q)(x) & = & \underline{(}~p~,~q~\underline{)}^\$ (x) & \in & \mathbb{B} | | F^\$ (p, q)(x) & = & \underline{(}~p~,~q~\underline{)}^\$ (x) & \in & \mathbb{B} |
| − | \\ | + | \\[4pt] |
| − | \\
| |
| | \Updownarrow & & \Updownarrow | | \Updownarrow & & \Updownarrow |
| − | \\ | + | \\[4pt] |
| − | \\
| |
| | F(p(x), q(x)) & = & \underline{(}~p(x)~,~q(x)~\underline{)} & \in & \mathbb{B} | | F(p(x), q(x)) & = & \underline{(}~p(x)~,~q(x)~\underline{)} & \in & \mathbb{B} |
| − | \\
| |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | |} | | |} |
| Line 129: |
Line 101: |
| | [| F^\$ (p, q) |] | | [| F^\$ (p, q) |] |
| | & = & [| \underline{(}~p~,~q~\underline{)}^\$ |] | | & = & [| \underline{(}~p~,~q~\underline{)}^\$ |] |
| − | \\[6pt] | + | \\[4pt] |
| | & = & (F^\$ (p, q))^{-1} (1) | | & = & (F^\$ (p, q))^{-1} (1) |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ x \in X ~:~ F^\$ (p, q)(x) ~\} | | & = & \{~ x \in X ~:~ F^\$ (p, q)(x) ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ x \in X ~:~ \underline{(}~p~,~q~\underline{)}^\$ (x) ~\} | | & = & \{~ x \in X ~:~ \underline{(}~p~,~q~\underline{)}^\$ (x) ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ x \in X ~:~ \underline{(}~p(x)~,~q(x)~\underline{)} ~\} | | & = & \{~ x \in X ~:~ \underline{(}~p(x)~,~q(x)~\underline{)} ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ x \in X ~:~ p(x) + q(x) ~\} | | & = & \{~ x \in X ~:~ p(x) + q(x) ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ x \in X ~:~ p(x) \neq q(x) ~\} | | & = & \{~ x \in X ~:~ p(x) \neq q(x) ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ x \in X ~:~ \upharpoonleft P \upharpoonright (x) ~\neq~ \upharpoonleft Q \upharpoonright (x) ~\} | | & = & \{~ x \in X ~:~ \upharpoonleft P \upharpoonright (x) ~\neq~ \upharpoonleft Q \upharpoonright (x) ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ x \in X ~:~ x \in P ~\nLeftrightarrow~ x \in Q ~\} | | & = & \{~ x \in X ~:~ x \in P ~\nLeftrightarrow~ x \in Q ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ x \in X ~:~ x \in P\!-\!Q ~\mathrm{or}~ x \in Q\!-\!P ~\} | | & = & \{~ x \in X ~:~ x \in P\!-\!Q ~\mathrm{or}~ x \in Q\!-\!P ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ x \in X ~:~ x \in P\!-\!Q ~\cup~ Q\!-\!P ~\} | | & = & \{~ x \in X ~:~ x \in P\!-\!Q ~\cup~ Q\!-\!P ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ x \in X ~:~ x \in P + Q ~\} | | & = & \{~ x \in X ~:~ x \in P + Q ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & P + Q ~\subseteq~ X | | & = & P + Q ~\subseteq~ X |
| − | \\[6pt] | + | \\[4pt] |
| | & = & [|p|] + [|q|] ~\subseteq~ X | | & = & [|p|] + [|q|] ~\subseteq~ X |
| | \end{array}</math> | | \end{array}</math> |
| | |} | | |} |