| Line 9: |
Line 9: |
| | When the cactus notation is used to represent boolean functions, a single <math>\$</math> sign at the end of the expression is enough to remind the reader that the connections are meant to be stretched to several propositions on a universe <math>X.</math> | | When the cactus notation is used to represent boolean functions, a single <math>\$</math> sign at the end of the expression is enough to remind the reader that the connections are meant to be stretched to several propositions on a universe <math>X.</math> |
| | | | |
| − | For example, take the connection <math>F : \mathbb{B}^2 \to \mathbb{B}</math> such that: | + | For example, take the connection <math>F : \mathbb{B}^2 \to \mathbb{B}</math> defined as follows. |
| | | | |
| − | : <math>F(x, y) ~=~ F_{6}^{(2)} (x, y) ~=~ \texttt{(}~x~,~y~\texttt{)}</math>
| + | {| align="center" cellpadding="8" |
| | + | | <math>F(x, y) ~=~ F_{6}^{(2)} (x, y) ~=~ \texttt{(}~x~,~y~\texttt{)}</math> |
| | + | |} |
| | | | |
| | The connection in question is a boolean function on the variables <math>x, y</math> that returns a value of <math>1</math> just when just one of the pair <math>x, y</math> is not equal to <math>1,</math> or what amounts to the same thing, just when just one of the pair <math>x, y</math> is equal to <math>1.</math> There is clearly an isomorphism between this connection, viewed as an operation on the boolean domain <math>\mathbb{B} = \{ 0, 1 \},</math> and the dyadic operation on binary values <math>x, y \in \mathbb{B} = \mathrm{GF}(2)</math> that is otherwise known as <math>x + y.</math> | | The connection in question is a boolean function on the variables <math>x, y</math> that returns a value of <math>1</math> just when just one of the pair <math>x, y</math> is not equal to <math>1,</math> or what amounts to the same thing, just when just one of the pair <math>x, y</math> is equal to <math>1.</math> There is clearly an isomorphism between this connection, viewed as an operation on the boolean domain <math>\mathbb{B} = \{ 0, 1 \},</math> and the dyadic operation on binary values <math>x, y \in \mathbb{B} = \mathrm{GF}(2)</math> that is otherwise known as <math>x + y.</math> |
| | | | |
| − | The same connection <math>F : \mathbb{B}^2 \to \mathbb{B}</math> can also be read as a proposition about things in the universe <math>X = \mathbb{B}^2.</math> If <math>s</math> is a sentence that denotes the proposition <math>F,</math> then the corresponding assertion says exactly what one states in uttering the sentence <math>\text{“} \, x ~\mathrm{is~not~equal~to}~ y \, \text{”}.</math> In such a case, one has <math>\downharpoonleft s \downharpoonright \, = F,</math> and all of the following expressions are ordinarily taken as equivalent descriptions of the same set: | + | The same connection <math>F : \mathbb{B}^2 \to \mathbb{B}</math> can also be read as a proposition about things in the universe <math>X = \mathbb{B}^2.</math> If <math>s</math> is a sentence that denotes the proposition <math>F,</math> then the corresponding assertion says exactly what one states in uttering the sentence <math>\text{“} \, x ~\mathrm{is~not~equal~to}~ y \, \text{”}.</math> In such a case, one has <math>\downharpoonleft s \downharpoonright \, = F,</math> and all of the following expressions are ordinarily taken as equivalent descriptions of the same set. |
| | | | |
| − | {| align="center" cellpadding="8" width="90%" | + | {| align="center" cellpadding="8" |
| | | | | | |
| | <math>\begin{array}{lll} | | <math>\begin{array}{lll} |
| | [| \downharpoonleft s \downharpoonright |] | | [| \downharpoonleft s \downharpoonright |] |
| | & = & [| F |] | | & = & [| F |] |
| − | \\[6pt] | + | \\[4pt] |
| | & = & F^{-1} (1) | | & = & F^{-1} (1) |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ s ~\} | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ s ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ F(x, y) = 1 ~\} | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ F(x, y) = 1 ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ F(x, y) ~\} | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ F(x, y) ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ \texttt{(}~x~,~y~\texttt{)} = 1 ~\} | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ \texttt{(}~x~,~y~\texttt{)} = 1 ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ \texttt{(}~x~,~y~\texttt{)} ~\} | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ \texttt{(}~x~,~y~\texttt{)} ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x ~\mathrm{exclusive~or}~ y ~\} | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x ~\mathrm{exclusive~or}~ y ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ \mathrm{just~one~true~of}~ x, y ~\} | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ \mathrm{just~one~true~of}~ x, y ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x ~\mathrm{not~equal~to}~ y ~\} | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x ~\mathrm{not~equal~to}~ y ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x \nLeftrightarrow y ~\} | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x \nLeftrightarrow y ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x \neq y ~\} | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x \neq y ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x + y ~\}. | | & = & \{~ (x, y) \in \mathbb{B}^2 ~:~ x + y ~\}. |
| | \end{array}</math> | | \end{array}</math> |
| Line 55: |
Line 57: |
| | This covers the properties of the connection <math>F(x, y) = \underline{(}~x~,~y~\underline{)},</math> treated as a proposition about things in the universe <math>X = \mathbb{B}^2.</math> Staying with this same connection, it is time to demonstrate how it can be "stretched" to form an operator on arbitrary propositions. | | This covers the properties of the connection <math>F(x, y) = \underline{(}~x~,~y~\underline{)},</math> treated as a proposition about things in the universe <math>X = \mathbb{B}^2.</math> Staying with this same connection, it is time to demonstrate how it can be "stretched" to form an operator on arbitrary propositions. |
| | | | |
| − | To continue the exercise, let <math>p</math> and <math>q</math> be arbitrary propositions about things in the universe <math>X,</math> that is, maps of the form <math>p, q : X \to \mathbb{B},</math> and suppose that <math>p, q</math> are indicator functions of the sets <math>P, Q \subseteq X,</math> respectively. In other words, we have the following data: | + | To continue the exercise, let <math>p</math> and <math>q</math> be arbitrary propositions about things in the universe <math>X,</math> that is, maps of the form <math>p, q : X \to \mathbb{B},</math> and suppose that <math>p, q</math> are indicator functions of the sets <math>P, Q \subseteq X,</math> respectively. In other words, we have the following data. |
| | | | |
| − | {| align="center" cellpadding="8" width="90%" | + | {| align="center" cellpadding="8" |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| − | p | + | p & = & \upharpoonleft P \upharpoonright & : & X \to \mathbb{B} |
| − | & = & | + | \\[4pt] |
| − | \upharpoonleft P \upharpoonright | + | q & = & \upharpoonleft Q \upharpoonright & : & X \to \mathbb{B} |
| − | & : & | + | \\[4pt] |
| − | X \to \mathbb{B} | + | (p, q) & = & (\upharpoonleft P \upharpoonright, \upharpoonleft Q \upharpoonright) & : & (X \to \mathbb{B})^2 |
| − | \\ | |
| − | \\
| |
| − | q | |
| − | & = & | |
| − | \upharpoonleft Q \upharpoonright | |
| − | & : & | |
| − | X \to \mathbb{B} | |
| − | \\ | |
| − | \\
| |
| − | (p, q) | |
| − | & = & | |
| − | (\upharpoonleft P \upharpoonright, \upharpoonleft Q \upharpoonright) | |
| − | & : & | |
| − | (X \to \mathbb{B})^2 | |
| − | \\
| |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | |} | | |} |
| | | | |
| − | Then one has an operator <math>F^\$,</math> the stretch of the connection <math>F</math> over <math>X,</math> and a proposition <math>F^\$ (p, q),</math> the stretch of <math>F</math> to <math>(p, q)</math> on <math>X,</math> with the following properties: | + | Then one has an operator <math>F^\$,</math> the stretch of the connection <math>F</math> over <math>X,</math> and a proposition <math>F^\$ (p, q),</math> the stretch of <math>F</math> to <math>(p, q)</math> on <math>X,</math> with the following properties. |
| | | | |
| − | {| align="center" cellpadding="8" width="90%" | + | {| align="center" cellpadding="8" |
| | | | | | |
| | <math>\begin{array}{ccccl} | | <math>\begin{array}{ccccl} |
| − | F^\$ | + | F^\$ & = & \underline{(} \ldots, \ldots \underline{)}^\$ & : & (X \to \mathbb{B})^2 \to (X \to \mathbb{B}) |
| − | & = & | + | \\[4pt] |
| − | \underline{(} \ldots, \ldots \underline{)}^\$ | + | F^\$ (p, q) & = & \underline{(}~p~,~q~\underline{)}^\$ & : & X \to \mathbb{B} |
| − | & : & | |
| − | (X \to \mathbb{B})^2 \to (X \to \mathbb{B}) | |
| − | \\ | |
| − | \\
| |
| − | F^\$ (p, q) | |
| − | & = & | |
| − | \underline{(}~p~,~q~\underline{)}^\$ | |
| − | & : & | |
| − | X \to \mathbb{B} | |
| − | \\
| |
| | \end{array}</math> | | \end{array}</math> |
| | |} | | |} |
| | | | |
| − | As a result, the application of the proposition <math>F^\$ (p, q)</math> to each <math>x \in X</math> returns a logical value in <math>\mathbb{B},</math> all in accord with the following equations: | + | As a result, the application of the proposition <math>F^\$ (p, q)</math> to each <math>x \in X</math> returns a logical value in <math>\mathbb{B},</math> all in accord with the following equations. |
| | | | |
| − | {| align="center" cellpadding="8" width="90%" | + | {| align="center" cellpadding="8" |
| | | | | | |
| | <math>\begin{matrix} | | <math>\begin{matrix} |
| | F^\$ (p, q)(x) & = & \underline{(}~p~,~q~\underline{)}^\$ (x) & \in & \mathbb{B} | | F^\$ (p, q)(x) & = & \underline{(}~p~,~q~\underline{)}^\$ (x) & \in & \mathbb{B} |
| − | \\ | + | \\[4pt] |
| − | \\
| |
| | \Updownarrow & & \Updownarrow | | \Updownarrow & & \Updownarrow |
| − | \\ | + | \\[4pt] |
| − | \\
| |
| | F(p(x), q(x)) & = & \underline{(}~p(x)~,~q(x)~\underline{)} & \in & \mathbb{B} | | F(p(x), q(x)) & = & \underline{(}~p(x)~,~q(x)~\underline{)} & \in & \mathbb{B} |
| − | \\
| |
| | \end{matrix}</math> | | \end{matrix}</math> |
| | |} | | |} |
| | | | |
| − | For each choice of propositions <math>p</math> and <math>q</math> about things in <math>X,</math> the stretch of <math>F</math> to <math>p</math> and <math>q</math> on <math>X</math> is just another proposition about things in <math>X,</math> a simple proposition in its own right, no matter how complex its current expression or its present construction as <math>F^\$ (p, q) = \underline{(}~p~,~q~\underline{)}^\$</math> makes it appear in relation to <math>p</math> and <math>q.</math> Like any other proposition about things in <math>X,</math> it indicates a subset of <math>X,</math> namely, the fiber that is variously described in the following ways: | + | For each choice of propositions <math>p</math> and <math>q</math> about things in <math>X,</math> the stretch of <math>F</math> to <math>p</math> and <math>q</math> on <math>X</math> is just another proposition about things in <math>X,</math> a simple proposition in its own right, no matter how complex its current expression or its present construction as <math>F^\$ (p, q) = \underline{(}~p~,~q~\underline{)}^\$</math> makes it appear in relation to <math>p</math> and <math>q.</math> Like any other proposition about things in <math>X,</math> it indicates a subset of <math>X,</math> namely, the fiber that is variously described in the following ways. |
| | | | |
| − | {| align="center" cellpadding="8" width="90%" | + | {| align="center" cellpadding="8" |
| | | | | | |
| | <math>\begin{array}{lll} | | <math>\begin{array}{lll} |
| | [| F^\$ (p, q) |] | | [| F^\$ (p, q) |] |
| | & = & [| \underline{(}~p~,~q~\underline{)}^\$ |] | | & = & [| \underline{(}~p~,~q~\underline{)}^\$ |] |
| − | \\[6pt] | + | \\[4pt] |
| | & = & (F^\$ (p, q))^{-1} (1) | | & = & (F^\$ (p, q))^{-1} (1) |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ x \in X ~:~ F^\$ (p, q)(x) ~\} | | & = & \{~ x \in X ~:~ F^\$ (p, q)(x) ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ x \in X ~:~ \underline{(}~p~,~q~\underline{)}^\$ (x) ~\} | | & = & \{~ x \in X ~:~ \underline{(}~p~,~q~\underline{)}^\$ (x) ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ x \in X ~:~ \underline{(}~p(x)~,~q(x)~\underline{)} ~\} | | & = & \{~ x \in X ~:~ \underline{(}~p(x)~,~q(x)~\underline{)} ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ x \in X ~:~ p(x) + q(x) ~\} | | & = & \{~ x \in X ~:~ p(x) + q(x) ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ x \in X ~:~ p(x) \neq q(x) ~\} | | & = & \{~ x \in X ~:~ p(x) \neq q(x) ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ x \in X ~:~ \upharpoonleft P \upharpoonright (x) ~\neq~ \upharpoonleft Q \upharpoonright (x) ~\} | | & = & \{~ x \in X ~:~ \upharpoonleft P \upharpoonright (x) ~\neq~ \upharpoonleft Q \upharpoonright (x) ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ x \in X ~:~ x \in P ~\nLeftrightarrow~ x \in Q ~\} | | & = & \{~ x \in X ~:~ x \in P ~\nLeftrightarrow~ x \in Q ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ x \in X ~:~ x \in P\!-\!Q ~\mathrm{or}~ x \in Q\!-\!P ~\} | | & = & \{~ x \in X ~:~ x \in P\!-\!Q ~\mathrm{or}~ x \in Q\!-\!P ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ x \in X ~:~ x \in P\!-\!Q ~\cup~ Q\!-\!P ~\} | | & = & \{~ x \in X ~:~ x \in P\!-\!Q ~\cup~ Q\!-\!P ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & \{~ x \in X ~:~ x \in P + Q ~\} | | & = & \{~ x \in X ~:~ x \in P + Q ~\} |
| − | \\[6pt] | + | \\[4pt] |
| | & = & P + Q ~\subseteq~ X | | & = & P + Q ~\subseteq~ X |
| − | \\[6pt] | + | \\[4pt] |
| | & = & [|p|] + [|q|] ~\subseteq~ X | | & = & [|p|] + [|q|] ~\subseteq~ X |
| | \end{array}</math> | | \end{array}</math> |
| | |} | | |} |