Changes

MyWikiBiz, Author Your Legacy — Sunday November 24, 2024
Jump to navigationJump to search
update
Line 1: Line 1:  
<font size="3">&#9758;</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]].
 
<font size="3">&#9758;</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]].
   −
A '''minimal negation operator''' <math>(\nu)~\!</math> is a logical connective that says &ldquo;just one false&rdquo; of its logical arguments.  
+
A '''minimal negation operator''' <math>(\nu)~\!</math> is a logical connective that says &ldquo;just one false&rdquo; of its logical arguments.&nbsp; The first four cases are as follows:
   −
* If the list of arguments is empty, as expressed in the form <math>\nu(),~\!</math> then it cannot be true that exactly one of the arguments is false, so <math>\nu() = \mathrm{false}.~\!</math>
+
<ol start="0">
   −
* If <math>p~\!</math> is the only argument, then <math>\nu(p)~\!</math> says that <math>p~\!</math> is false, so <math>\nu(p)~\!</math> expresses the logical negation of the proposition <math>p.~\!</math>  Written in several different notations, <math>\nu(p) = \mathrm{not}(p) = \lnot p = \tilde{p} = p^\prime.~\!</math>
+
<li style="padding:8px">
 +
If the list of arguments is empty, as expressed in the form <math>\nu(),~\!</math> then it cannot be true that exactly one of the arguments is false, so <math>\nu() = \mathrm{false}.~\!</math></li>
   −
* If <math>p~\!</math> and <math>q~\!</math> are the only two arguments, then <math>\nu(p, q)~\!</math> says that exactly one of <math>p, q~\!</math> is false, so <math>\nu(p, q)~\!</math> says the same thing as <math>p \neq q.~\!</math>  Expressing <math>\nu(p, q)~\!</math> in terms of ands <math>(\cdot),~\!</math> ors <math>(\lor),~\!</math> and nots <math>(\tilde{~})~\!</math> gives the following form.
+
<li style="padding:8px">
 +
If <math>p~\!</math> is the only argument, then <math>\nu(p)~\!</math> says that <math>p~\!</math> is false, so <math>\nu(p)~\!</math> expresses the logical negation of the proposition <math>p.~\!</math>  Written in several different notations, <math>\nu(p) = \mathrm{not}(p) = \lnot p = \tilde{p} = p^\prime.~\!</math></li>
   −
{| align="center" cellpadding="8"
+
<li style="padding:8px">
| <math>\nu(p, q) = \tilde{p} \cdot q ~\lor~ p \cdot \tilde{q}.~\!</math>
+
If <math>p~\!</math> and <math>q~\!</math> are the only two arguments, then <math>\nu(p, q)~\!</math> says that exactly one of <math>p, q~\!</math> is false, so <math>\nu(p, q)~\!</math> says the same thing as <math>p \neq q.~\!</math>  Expressing <math>\nu(p, q)~\!</math> in terms of ands <math>(\cdot),~\!</math> ors <math>(\lor),~\!</math> and nots <math>(\tilde{~})~\!</math> gives the following form.
|}
+
 
 +
<p style="padding:8px; text-align:center">
 +
<math>\nu(p, q) = \tilde{p} \cdot q ~\lor~ p \cdot \tilde{q}.~\!</math></p>
   −
As usual, one drops the dots <math>(\cdot)~\!</math> in contexts where they are understood, giving the following form.
+
As usual, one drops the dot <math>(\cdot)~\!</math> in contexts where it's understood, giving the following form.
   −
{| align="center" cellpadding="8"
+
<p style="padding:8px; text-align:center">
| <math>\nu(p, q) = \tilde{p}q \lor p\tilde{q}.~\!</math>
+
<math>\nu(p, q) = \tilde{p}q \lor p\tilde{q}.~\!</math></p>
|}
      
The venn diagram for <math>\nu(p, q)~\!</math> is shown in Figure&nbsp;1.
 
The venn diagram for <math>\nu(p, q)~\!</math> is shown in Figure&nbsp;1.
Line 26: Line 29:  
<p><math>\text{Figure 1.}~~\nu(p, q)~\!</math></p>
 
<p><math>\text{Figure 1.}~~\nu(p, q)~\!</math></p>
 
|}
 
|}
 +
</li>
    +
<li style="padding:8px">
 
The venn diagram for <math>\nu(p, q, r)~\!</math> is shown in Figure&nbsp;2.
 
The venn diagram for <math>\nu(p, q, r)~\!</math> is shown in Figure&nbsp;2.
   Line 35: Line 40:  
|}
 
|}
   −
The center cell is the region where all three arguments <math>p, q, r~\!</math> hold true, so <math>\nu(p, q, r)~\!</math> holds true in just the three neighboring cells.  In other words, <math>\nu(p, q, r) = \tilde{p}qr \lor p\tilde{q}r \lor pq\tilde{r}.~\!</math>
+
The center cell is the region where all three arguments <math>p, q, r~\!</math> hold true, so <math>\nu(p, q, r)~\!</math> holds true in just the three neighboring cells.  In other words:
 +
 
 +
<p style="padding:8px; text-align:center">
 +
<math>\nu(p, q, r) = \tilde{p}qr \lor p\tilde{q}r \lor pq\tilde{r}.~\!</math></p>
 +
 
 +
</li></ol>
    
==Initial definition==
 
==Initial definition==
12,080

edits

Navigation menu