Line 1:
Line 1:
<font size="3">☞</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]].
<font size="3">☞</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]].
−
A '''minimal negation operator''' <math>(\nu)~\!</math> is a logical connective that says “just one false” of its logical arguments.
+
A '''minimal negation operator''' <math>(\nu)~\!</math> is a logical connective that says “just one false” of its logical arguments. The first four cases are as follows:
−
* If the list of arguments is empty, as expressed in the form <math>\nu(),~\!</math> then it cannot be true that exactly one of the arguments is false, so <math>\nu() = \mathrm{false}.~\!</math>
+
<ol start="0">
−
* If <math>p~\!</math> is the only argument, then <math>\nu(p)~\!</math> says that <math>p~\!</math> is false, so <math>\nu(p)~\!</math> expresses the logical negation of the proposition <math>p.~\!</math> Written in several different notations, <math>\nu(p) = \mathrm{not}(p) = \lnot p = \tilde{p} = p^\prime.~\!</math>
+
<li style="padding:8px">
+
If the list of arguments is empty, as expressed in the form <math>\nu(),~\!</math> then it cannot be true that exactly one of the arguments is false, so <math>\nu() = \mathrm{false}.~\!</math></li>
−
* If <math>p~\!</math> and <math>q~\!</math> are the only two arguments, then <math>\nu(p, q)~\!</math> says that exactly one of <math>p, q~\!</math> is false, so <math>\nu(p, q)~\!</math> says the same thing as <math>p \neq q.~\!</math> Expressing <math>\nu(p, q)~\!</math> in terms of ands <math>(\cdot),~\!</math> ors <math>(\lor),~\!</math> and nots <math>(\tilde{~})~\!</math> gives the following form.
+
<li style="padding:8px">
+
If <math>p~\!</math> is the only argument, then <math>\nu(p)~\!</math> says that <math>p~\!</math> is false, so <math>\nu(p)~\!</math> expresses the logical negation of the proposition <math>p.~\!</math> Written in several different notations, <math>\nu(p) = \mathrm{not}(p) = \lnot p = \tilde{p} = p^\prime.~\!</math></li>
−
{| align="center" cellpadding="8"
+
<li style="padding:8px">
−
| <math>\nu(p, q) = \tilde{p} \cdot q ~\lor~ p \cdot \tilde{q}.~\!</math>
+
If <math>p~\!</math> and <math>q~\!</math> are the only two arguments, then <math>\nu(p, q)~\!</math> says that exactly one of <math>p, q~\!</math> is false, so <math>\nu(p, q)~\!</math> says the same thing as <math>p \neq q.~\!</math> Expressing <math>\nu(p, q)~\!</math> in terms of ands <math>(\cdot),~\!</math> ors <math>(\lor),~\!</math> and nots <math>(\tilde{~})~\!</math> gives the following form.
−
|}
+
+
<p style="padding:8px; text-align:center">
+
<math>\nu(p, q) = \tilde{p} \cdot q ~\lor~ p \cdot \tilde{q}.~\!</math></p>
−
As usual, one drops the dots <math>(\cdot)~\!</math> in contexts where they are understood, giving the following form.
+
As usual, one drops the dot <math>(\cdot)~\!</math> in contexts where it's understood, giving the following form.
−
{| align="center" cellpadding="8"
+
<p style="padding:8px; text-align:center">
−
| <math>\nu(p, q) = \tilde{p}q \lor p\tilde{q}.~\!</math>
+
<math>\nu(p, q) = \tilde{p}q \lor p\tilde{q}.~\!</math></p>
−
|}
The venn diagram for <math>\nu(p, q)~\!</math> is shown in Figure 1.
The venn diagram for <math>\nu(p, q)~\!</math> is shown in Figure 1.
Line 26:
Line 29:
<p><math>\text{Figure 1.}~~\nu(p, q)~\!</math></p>
<p><math>\text{Figure 1.}~~\nu(p, q)~\!</math></p>
|}
|}
+
</li>
+
<li style="padding:8px">
The venn diagram for <math>\nu(p, q, r)~\!</math> is shown in Figure 2.
The venn diagram for <math>\nu(p, q, r)~\!</math> is shown in Figure 2.
Line 35:
Line 40:
|}
|}
−
The center cell is the region where all three arguments <math>p, q, r~\!</math> hold true, so <math>\nu(p, q, r)~\!</math> holds true in just the three neighboring cells. In other words, <math>\nu(p, q, r) = \tilde{p}qr \lor p\tilde{q}r \lor pq\tilde{r}.~\!</math>
+
The center cell is the region where all three arguments <math>p, q, r~\!</math> hold true, so <math>\nu(p, q, r)~\!</math> holds true in just the three neighboring cells. In other words:
+
+
<p style="padding:8px; text-align:center">
+
<math>\nu(p, q, r) = \tilde{p}qr \lor p\tilde{q}r \lor pq\tilde{r}.~\!</math></p>
+
+
</li></ol>
==Initial definition==
==Initial definition==