Line 1: |
Line 1: |
| <font size="3">☞</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]]. | | <font size="3">☞</font> This page belongs to resource collections on [[Logic Live|Logic]] and [[Inquiry Live|Inquiry]]. |
| | | |
− | A '''minimal negation operator''' <math>(\nu)~\!</math> is a logical connective that says “just one false” of its logical arguments. | + | A '''minimal negation operator''' <math>(\nu)~\!</math> is a logical connective that says “just one false” of its logical arguments. The first four cases are as follows: |
| | | |
− | * If the list of arguments is empty, as expressed in the form <math>\nu(),~\!</math> then it cannot be true that exactly one of the arguments is false, so <math>\nu() = \mathrm{false}.~\!</math>
| + | <ol start="0"> |
| | | |
− | * If <math>p~\!</math> is the only argument, then <math>\nu(p)~\!</math> says that <math>p~\!</math> is false, so <math>\nu(p)~\!</math> expresses the logical negation of the proposition <math>p.~\!</math> Written in several different notations, <math>\nu(p) = \mathrm{not}(p) = \lnot p = \tilde{p} = p^\prime.~\!</math>
| + | <li style="padding:8px"> |
| + | If the list of arguments is empty, as expressed in the form <math>\nu(),~\!</math> then it cannot be true that exactly one of the arguments is false, so <math>\nu() = \mathrm{false}.~\!</math></li> |
| | | |
− | * If <math>p~\!</math> and <math>q~\!</math> are the only two arguments, then <math>\nu(p, q)~\!</math> says that exactly one of <math>p, q~\!</math> is false, so <math>\nu(p, q)~\!</math> says the same thing as <math>p \neq q.~\!</math> Expressing <math>\nu(p, q)~\!</math> in terms of ands <math>(\cdot),~\!</math> ors <math>(\lor),~\!</math> and nots <math>(\tilde{~})~\!</math> gives the following form.
| + | <li style="padding:8px"> |
| + | If <math>p~\!</math> is the only argument, then <math>\nu(p)~\!</math> says that <math>p~\!</math> is false, so <math>\nu(p)~\!</math> expresses the logical negation of the proposition <math>p.~\!</math> Written in several different notations, <math>\nu(p) = \mathrm{not}(p) = \lnot p = \tilde{p} = p^\prime.~\!</math></li> |
| | | |
− | {| align="center" cellpadding="8"
| + | <li style="padding:8px"> |
− | | <math>\nu(p, q) = \tilde{p} \cdot q ~\lor~ p \cdot \tilde{q}.~\!</math>
| + | If <math>p~\!</math> and <math>q~\!</math> are the only two arguments, then <math>\nu(p, q)~\!</math> says that exactly one of <math>p, q~\!</math> is false, so <math>\nu(p, q)~\!</math> says the same thing as <math>p \neq q.~\!</math> Expressing <math>\nu(p, q)~\!</math> in terms of ands <math>(\cdot),~\!</math> ors <math>(\lor),~\!</math> and nots <math>(\tilde{~})~\!</math> gives the following form. |
− | |}
| + | |
| + | <p style="padding:8px; text-align:center"> |
| + | <math>\nu(p, q) = \tilde{p} \cdot q ~\lor~ p \cdot \tilde{q}.~\!</math></p> |
| | | |
− | As usual, one drops the dots <math>(\cdot)~\!</math> in contexts where they are understood, giving the following form. | + | As usual, one drops the dot <math>(\cdot)~\!</math> in contexts where it's understood, giving the following form. |
| | | |
− | {| align="center" cellpadding="8"
| + | <p style="padding:8px; text-align:center"> |
− | | <math>\nu(p, q) = \tilde{p}q \lor p\tilde{q}.~\!</math>
| + | <math>\nu(p, q) = \tilde{p}q \lor p\tilde{q}.~\!</math></p> |
− | |}
| |
| | | |
| The venn diagram for <math>\nu(p, q)~\!</math> is shown in Figure 1. | | The venn diagram for <math>\nu(p, q)~\!</math> is shown in Figure 1. |
Line 26: |
Line 29: |
| <p><math>\text{Figure 1.}~~\nu(p, q)~\!</math></p> | | <p><math>\text{Figure 1.}~~\nu(p, q)~\!</math></p> |
| |} | | |} |
| + | </li> |
| | | |
| + | <li style="padding:8px"> |
| The venn diagram for <math>\nu(p, q, r)~\!</math> is shown in Figure 2. | | The venn diagram for <math>\nu(p, q, r)~\!</math> is shown in Figure 2. |
| | | |
Line 35: |
Line 40: |
| |} | | |} |
| | | |
− | The center cell is the region where all three arguments <math>p, q, r~\!</math> hold true, so <math>\nu(p, q, r)~\!</math> holds true in just the three neighboring cells. In other words, <math>\nu(p, q, r) = \tilde{p}qr \lor p\tilde{q}r \lor pq\tilde{r}.~\!</math> | + | The center cell is the region where all three arguments <math>p, q, r~\!</math> hold true, so <math>\nu(p, q, r)~\!</math> holds true in just the three neighboring cells. In other words: |
| + | |
| + | <p style="padding:8px; text-align:center"> |
| + | <math>\nu(p, q, r) = \tilde{p}qr \lor p\tilde{q}r \lor pq\tilde{r}.~\!</math></p> |
| + | |
| + | </li></ol> |
| | | |
| ==Initial definition== | | ==Initial definition== |