Changes

MyWikiBiz, Author Your Legacy — Thursday November 07, 2024
Jump to navigationJump to search
Line 2,314: Line 2,314:  
|-
 
|-
 
|
 
|
<math>\begin{matrix}
+
<math>\begin{array}{c}
f_1
+
f_{1}
 
\\[4pt]
 
\\[4pt]
 
f_2
 
f_2
Line 2,322: Line 2,322:  
\\[4pt]
 
\\[4pt]
 
f_8
 
f_8
\end{matrix}\!</math>
+
\end{array}\!</math>
 
|
 
|
 
<math>\begin{matrix}
 
<math>\begin{matrix}
Line 2,900: Line 2,900:     
Recognizing that <math>a\!:\!a + b\!:\!b + c\!:\!c\!</math> is the identity transformation otherwise known as <math>\mathit{1},\!</math> the 2-adic relative term <math>m = {}^{\backprime\backprime}\, \text{marker for}\, \underline{~ ~ ~}\, {}^{\prime\prime}~\!</math> can be parsed as an element <math>\mathit{1} + a\!:\!b + b\!:\!c + c\!:\!a\!</math> of the so-called ''group ring'', all of which makes this element just a special sort of linear transformation.
 
Recognizing that <math>a\!:\!a + b\!:\!b + c\!:\!c\!</math> is the identity transformation otherwise known as <math>\mathit{1},\!</math> the 2-adic relative term <math>m = {}^{\backprime\backprime}\, \text{marker for}\, \underline{~ ~ ~}\, {}^{\prime\prime}~\!</math> can be parsed as an element <math>\mathit{1} + a\!:\!b + b\!:\!c + c\!:\!a\!</math> of the so-called ''group ring'', all of which makes this element just a special sort of linear transformation.
 +
 +
Up to this point, we are still reading the elementary relatives of the form <math>i\!:\!j</math> in the way that Peirce read them in logical contexts:
    
==Logical Cacti==
 
==Logical Cacti==
12,080

edits

Navigation menu