Line 656:
Line 656:
We may understand the enlarged proposition <math>\mathrm{E}f\!</math> as telling us all the different ways to reach a model of the proposition <math>f\!</math> from each point of the universe <math>X.\!</math>
We may understand the enlarged proposition <math>\mathrm{E}f\!</math> as telling us all the different ways to reach a model of the proposition <math>f\!</math> from each point of the universe <math>X.\!</math>
+
+
==Propositional Forms on Two Variables==
+
+
To broaden our experience with simple examples, let us examine the sixteen functions of concrete type <math>P \times Q \to \mathbb{B}\!</math> and abstract type <math>\mathbb{B} \times \mathbb{B} \to \mathbb{B}.\!</math> A few Tables are set here that detail the actions of <math>\mathrm{E}\!</math> and <math>\mathrm{D}\!</math> on each of these functions, allowing us to view the results in several different ways.
+
+
Tables A1 and A2 show two ways of arranging the 16 boolean functions on two variables, giving equivalent expressions for each function in several different systems of notation.
+
+
<br>
+
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
+
|+ <math>\text{Table A1.}~~\text{Propositional Forms on Two Variables}\!</math>
+
|- style="background:#f0f0ff"
+
| width="15%" |
+
<p><math>\mathcal{L}_1\!</math></p>
+
<p><math>\text{Decimal}\!</math></p>
+
| width="15%" |
+
<p><math>\mathcal{L}_2\!</math></p>
+
<p><math>\text{Binary}\!</math></p>
+
| width="15%" |
+
<p><math>\mathcal{L}_3\!</math></p>
+
<p><math>\text{Vector}\!</math></p>
+
| width="15%" |
+
<p><math>\mathcal{L}_4\!</math></p>
+
<p><math>\text{Cactus}\!</math></p>
+
| width="25%" |
+
<p><math>\mathcal{L}_5\!</math></p>
+
<p><math>\text{English}\!</math></p>
+
| width="15%" |
+
<p><math>\mathcal{L}_6~\!</math></p>
+
<p><math>\text{Ordinary}\!</math></p>
+
|- style="background:#f0f0ff"
+
|
+
| align="right" | <math>p\colon\!</math>
+
| <math>1~1~0~0\!</math>
+
|
+
|
+
|
+
|- style="background:#f0f0ff"
+
|
+
| align="right" | <math>q\colon\!</math>
+
| <math>1~0~1~0\!</math>
+
|
+
|
+
|
+
|-
+
|
+
<math>\begin{matrix}
+
f_0
+
\\[4pt]
+
f_1
+
\\[4pt]
+
f_2
+
\\[4pt]
+
f_3
+
\\[4pt]
+
f_4
+
\\[4pt]
+
f_5
+
\\[4pt]
+
f_6
+
\\[4pt]
+
f_7
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
f_{0000}
+
\\[4pt]
+
f_{0001}
+
\\[4pt]
+
f_{0010}
+
\\[4pt]
+
f_{0011}
+
\\[4pt]
+
f_{0100}
+
\\[4pt]
+
f_{0101}
+
\\[4pt]
+
f_{0110}
+
\\[4pt]
+
f_{0111}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
0~0~0~0
+
\\[4pt]
+
0~0~0~1
+
\\[4pt]
+
0~0~1~0
+
\\[4pt]
+
0~0~1~1
+
\\[4pt]
+
0~1~0~0
+
\\[4pt]
+
0~1~0~1
+
\\[4pt]
+
0~1~1~0
+
\\[4pt]
+
0~1~1~1
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(~)
+
\\[4pt]
+
(p)(q)
+
\\[4pt]
+
(p)~q~
+
\\[4pt]
+
(p)[[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]])
+
\\[4pt]
+
~p~(q)
+
\\[4pt]
+
[[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]])(q)
+
\\[4pt]
+
(p,~q)
+
\\[4pt]
+
(p~~q)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\text{false}
+
\\[4pt]
+
\text{neither}~ p ~\text{nor}~ q
+
\\[4pt]
+
q ~\text{without}~ p
+
\\[4pt]
+
\text{not}~ p
+
\\[4pt]
+
p ~\text{without}~ q
+
\\[4pt]
+
\text{not}~ q
+
\\[4pt]
+
p ~\text{not equal to}~ q
+
\\[4pt]
+
\text{not both}~ p ~\text{and}~ q
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
0
+
\\[4pt]
+
\lnot p \land \lnot q
+
\\[4pt]
+
\lnot p \land q
+
\\[4pt]
+
\lnot p
+
\\[4pt]
+
p \land \lnot q
+
\\[4pt]
+
\lnot q
+
\\[4pt]
+
p \ne q
+
\\[4pt]
+
\lnot p \lor \lnot q
+
\end{matrix}\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_8
+
\\[4pt]
+
f_9
+
\\[4pt]
+
f_{10}
+
\\[4pt]
+
f_{11}
+
\\[4pt]
+
f_{12}
+
\\[4pt]
+
f_{13}
+
\\[4pt]
+
f_{14}
+
\\[4pt]
+
f_{15}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
f_{1000}
+
\\[4pt]
+
f_{1001}
+
\\[4pt]
+
f_{1010}
+
\\[4pt]
+
f_{1011}
+
\\[4pt]
+
f_{1100}
+
\\[4pt]
+
f_{1101}
+
\\[4pt]
+
f_{1110}
+
\\[4pt]
+
f_{1111}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
1~0~0~0
+
\\[4pt]
+
1~0~0~1
+
\\[4pt]
+
1~0~1~0
+
\\[4pt]
+
1~0~1~1
+
\\[4pt]
+
1~1~0~0
+
\\[4pt]
+
1~1~0~1
+
\\[4pt]
+
1~1~1~0
+
\\[4pt]
+
1~1~1~1
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~~p~~q~~
+
\\[4pt]
+
((p,~q))
+
\\[4pt]
+
18:36, 29 November 2015 (UTC)q~~
+
\\[4pt]
+
~(p~(q))
+
\\[4pt]
+
~~p18:36, 29 November 2015 (UTC)
+
\\[4pt]
+
((p)~q)~
+
\\[4pt]
+
((p)(q))
+
\\[4pt]
+
((~))
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
p ~\text{and}~ q
+
\\[4pt]
+
p ~\text{equal to}~ q
+
\\[4pt]
+
q
+
\\[4pt]
+
\text{not}~ p ~\text{without}~ q
+
\\[4pt]
+
p
+
\\[4pt]
+
\text{not}~ q ~\text{without}~ p
+
\\[4pt]
+
p ~\text{or}~ q
+
\\[4pt]
+
\text{true}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
p \land q
+
\\[4pt]
+
p = q
+
\\[4pt]
+
q
+
\\[4pt]
+
p \Rightarrow q
+
\\[4pt]
+
p
+
\\[4pt]
+
p \Leftarrow q
+
\\[4pt]
+
p \lor q
+
\\[4pt]
+
1
+
\end{matrix}\!</math>
+
|}
+
+
<br>
+
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
+
|+ <math>\text{Table A2.}~~\text{Propositional Forms on Two Variables}\!</math>
+
|- style="background:#f0f0ff"
+
| width="15%" |
+
<p><math>\mathcal{L}_1\!</math></p>
+
<p><math>\text{Decimal}\!</math></p>
+
| width="15%" |
+
<p><math>\mathcal{L}_2\!</math></p>
+
<p><math>\text{Binary}\!</math></p>
+
| width="15%" |
+
<p><math>\mathcal{L}_3\!</math></p>
+
<p><math>\text{Vector}\!</math></p>
+
| width="15%" |
+
<p><math>\mathcal{L}_4\!</math></p>
+
<p><math>\text{Cactus}\!</math></p>
+
| width="25%" |
+
<p><math>\mathcal{L}_5\!</math></p>
+
<p><math>\text{English}\!</math></p>
+
| width="15%" |
+
<p><math>\mathcal{L}_6~\!</math></p>
+
<p><math>\text{Ordinary}\!</math></p>
+
|- style="background:#f0f0ff"
+
|
+
| align="right" | <math>p\colon\!</math>
+
| <math>1~1~0~0\!</math>
+
|
+
|
+
|
+
|- style="background:#f0f0ff"
+
|
+
| align="right" | <math>q\colon\!</math>
+
| <math>1~0~1~0\!</math>
+
|
+
|
+
|
+
|-
+
| <math>f_0\!</math>
+
| <math>f_{0000}\!</math>
+
| <math>0~0~0~0\!</math>
+
| <math>(~)\!</math>
+
| <math>\text{false}\!</math>
+
| <math>0\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_1
+
\\[4pt]
+
f_2
+
\\[4pt]
+
f_4
+
\\[4pt]
+
f_8
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
f_{0001}
+
\\[4pt]
+
f_{0010}
+
\\[4pt]
+
f_{0100}
+
\\[4pt]
+
f_{1000}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
0~0~0~1
+
\\[4pt]
+
0~0~1~0
+
\\[4pt]
+
0~1~0~0
+
\\[4pt]
+
1~0~0~0
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(p)(q)
+
\\[4pt]
+
(p)~q~
+
\\[4pt]
+
~p~(q)
+
\\[4pt]
+
~p~~q~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\text{neither}~ p ~\text{nor}~ q
+
\\[4pt]
+
q ~\text{without}~ p
+
\\[4pt]
+
p ~\text{without}~ q
+
\\[4pt]
+
p ~\text{and}~ q
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\lnot p \land \lnot q
+
\\[4pt]
+
\lnot p \land q
+
\\[4pt]
+
p \land \lnot q
+
\\[4pt]
+
p \land q
+
\end{matrix}\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_3
+
\\[4pt]
+
f_{12}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
f_{0011}
+
\\[4pt]
+
f_{1100}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
0~0~1~1
+
\\[4pt]
+
1~1~0~0
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(p)
+
\\[4pt]
+
~p~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\text{not}~ p
+
\\[4pt]
+
p
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\lnot p
+
\\[4pt]
+
p
+
\end{matrix}\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_6
+
\\[4pt]
+
f_9
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
f_{0110}
+
\\[4pt]
+
f_{1001}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
0~1~1~0
+
\\[4pt]
+
1~0~0~1
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~(p,~q)~
+
\\[4pt]
+
((p,~q))
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
p ~\text{not equal to}~ q
+
\\[4pt]
+
p ~\text{equal to}~ q
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
p \ne q
+
\\[4pt]
+
p = q
+
\end{matrix}\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_5
+
\\[4pt]
+
f_{10}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
f_{0101}
+
\\[4pt]
+
f_{1010}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
0~1~0~1
+
\\[4pt]
+
1~0~1~0
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(q)
+
\\[4pt]
+
~q~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\text{not}~ q
+
\\[4pt]
+
q
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\lnot q
+
\\[4pt]
+
q
+
\end{matrix}\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_7
+
\\[4pt]
+
f_{11}
+
\\[4pt]
+
f_{13}
+
\\[4pt]
+
f_{14}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
f_{0111}
+
\\[4pt]
+
f_{1011}
+
\\[4pt]
+
f_{1101}
+
\\[4pt]
+
f_{1110}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
0~1~1~1
+
\\[4pt]
+
1~0~1~1
+
\\[4pt]
+
1~1~0~1
+
\\[4pt]
+
1~1~1~0
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~(p~~q)~
+
\\[4pt]
+
~(p~(q))
+
\\[4pt]
+
((p)~q)~
+
\\[4pt]
+
((p)(q))
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\text{not both}~ p ~\text{and}~ q
+
\\[4pt]
+
\text{not}~ p ~\text{without}~ q
+
\\[4pt]
+
\text{not}~ q ~\text{without}~ p
+
\\[4pt]
+
p ~\text{or}~ q
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\lnot p \lor \lnot q
+
\\[4pt]
+
p \Rightarrow q
+
\\[4pt]
+
p \Leftarrow q
+
\\[4pt]
+
p \lor q
+
\end{matrix}\!</math>
+
|-
+
| <math>f_{15}\!</math>
+
| <math>f_{1111}\!</math>
+
| <math>1~1~1~1\!</math>
+
| <math>((~))\!</math>
+
| <math>\text{true}\!</math>
+
| <math>1\!</math>
+
|}
+
+
<br>
+
+
===Transforms Expanded over Differential Features===
+
+
The next four Tables expand the expressions of <math>\mathrm{E}f\!</math> and <math>\mathrm{D}f~\!</math> in two different ways, for each of the sixteen functions. Notice that the functions are given in a different order, partitioned into seven natural classes by a group action.
+
+
<br>
+
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
+
|+ <math>\text{Table A3.}~~\mathrm{E}f ~\text{Expanded over Differential Features}~ \{ \mathrm{d}p, \mathrm{d}q \}\!</math>
+
|- style="background:#f0f0ff"
+
| width="10%" |
+
| width="18%" | <math>f\!</math>
+
| width="18%" |
+
<p><math>\mathrm{T}_{11} f\!</math></p>
+
<p><math>\mathrm{E}f|_{\mathrm{d}p~\mathrm{d}q}\!</math></p>
+
| width="18%" |
+
<p><math>\mathrm{T}_{10} f\!</math></p>
+
<p><math>\mathrm{E}f|_{\mathrm{d}p(\mathrm{d}q)}\!</math></p>
+
| width="18%" |
+
<p><math>\mathrm{T}_{01} f\!</math></p>
+
<p><math>\mathrm{E}f|_{(\mathrm{d}p)\mathrm{d}q}\!</math></p>
+
| width="18%" |
+
<p><math>\mathrm{T}_{00} f\!</math></p>
+
<p><math>\mathrm{E}f|_{(\mathrm{d}p)(\mathrm{d}q)}\!</math></p>
+
|-
+
| <math>f_0\!</math>
+
| <math>(~)\!</math>
+
| <math>(~)\!</math>
+
| <math>(~)\!</math>
+
| <math>(~)\!</math>
+
| <math>(~)\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_1
+
\\[4pt]
+
f_2
+
\\[4pt]
+
f_4
+
\\[4pt]
+
f_8
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(p)(q)
+
\\[4pt]
+
(p)~q~
+
\\[4pt]
+
~p~(q)
+
\\[4pt]
+
~p~~q~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~p~~q~
+
\\[4pt]
+
~p~(q)
+
\\[4pt]
+
(p)~q~
+
\\[4pt]
+
(p)(q)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~p~(q)
+
\\[4pt]
+
~p~~q~
+
\\[4pt]
+
(p)(q)
+
\\[4pt]
+
(p)~q~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(p)~q~
+
\\[4pt]
+
(p)(q)
+
\\[4pt]
+
~p~~q~
+
\\[4pt]
+
~p~(q)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(p)(q)
+
\\[4pt]
+
(p)~q~
+
\\[4pt]
+
~p~(q)
+
\\[4pt]
+
~p~~q~
+
\end{matrix}\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_3
+
\\[4pt]
+
f_{12}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(p)
+
\\[4pt]
+
~p~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~p~
+
\\[4pt]
+
(p)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~p~
+
\\[4pt]
+
(p)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(p)
+
\\[4pt]
+
~p~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(p)
+
\\[4pt]
+
~p~
+
\end{matrix}\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_6
+
\\[4pt]
+
f_9
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~(p,~q)~
+
\\[4pt]
+
((p,~q))
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~(p,~q)~
+
\\[4pt]
+
((p,~q))
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
((p,~q))
+
\\[4pt]
+
~(p,~q)~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
((p,~q))
+
\\[4pt]
+
~(p,~q)~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~(p,~q)~
+
\\[4pt]
+
((p,~q))
+
\end{matrix}\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_5
+
\\[4pt]
+
f_{10}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(q)
+
\\[4pt]
+
~q~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~q~
+
\\[4pt]
+
(q)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(q)
+
\\[4pt]
+
~q~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~q~
+
\\[4pt]
+
(q)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(q)
+
\\[4pt]
+
~q~
+
\end{matrix}\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_7
+
\\[4pt]
+
f_{11}
+
\\[4pt]
+
f_{13}
+
\\[4pt]
+
f_{14}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(~p~~q~)
+
\\[4pt]
+
(~p~(q))
+
\\[4pt]
+
((p)~q~)
+
\\[4pt]
+
((p)(q))
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
((p)(q))
+
\\[4pt]
+
((p)~q~)
+
\\[4pt]
+
(~p~(q))
+
\\[4pt]
+
(~p~~q~)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
((p)~q~)
+
\\[4pt]
+
((p)(q))
+
\\[4pt]
+
(~p~~q~)
+
\\[4pt]
+
(~p~(q))
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(~p~(q))
+
\\[4pt]
+
(~p~~q~)
+
\\[4pt]
+
((p)(q))
+
\\[4pt]
+
((p)~q~)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(~p~~q~)
+
\\[4pt]
+
(~p~(q))
+
\\[4pt]
+
((p)~q~)
+
\\[4pt]
+
((p)(q))
+
\end{matrix}\!</math>
+
|-
+
| <math>f_{15}\!</math>
+
| <math>((~))\!</math>
+
| <math>((~))\!</math>
+
| <math>((~))\!</math>
+
| <math>((~))\!</math>
+
| <math>((~))\!</math>
+
|- style="background:#f0f0ff"
+
| colspan="2" | <math>\text{Fixed Point Total}\!</math>
+
| <math>4\!</math>
+
| <math>4\!</math>
+
| <math>4\!</math>
+
| <math>16\!</math>
+
|}
+
+
<br>
+
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
+
|+ <math>\text{Table A4.}~~\mathrm{D}f ~\text{Expanded over Differential Features}~ \{ \mathrm{d}p, \mathrm{d}q \}\!</math>
+
|- style="background:#f0f0ff"
+
| width="10%" |
+
| width="18%" | <math>f\!</math>
+
| width="18%" |
+
<math>\mathrm{D}f|_{\mathrm{d}p~\mathrm{d}q}\!</math>
+
| width="18%" |
+
<math>\mathrm{D}f|_{\mathrm{d}p(\mathrm{d}q)}\!</math>
+
| width="18%" |
+
<math>\mathrm{D}f|_{(\mathrm{d}p)\mathrm{d}q}\!</math>
+
| width="18%" |
+
<math>\mathrm{D}f|_{(\mathrm{d}p)(\mathrm{d}q)}\!</math>
+
|-
+
| <math>f_0\!</math>
+
| <math>(~)\!</math>
+
| <math>(~)\!</math>
+
| <math>(~)\!</math>
+
| <math>(~)\!</math>
+
| <math>(~)\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_1
+
\\[4pt]
+
f_2
+
\\[4pt]
+
f_4
+
\\[4pt]
+
f_8
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(p)(q)
+
\\[4pt]
+
(p)~q~
+
\\[4pt]
+
~p~(q)
+
\\[4pt]
+
~p~~q~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
((p,~q))
+
\\[4pt]
+
~(p,~q)~
+
\\[4pt]
+
~(p,~q)~
+
\\[4pt]
+
((p,~q))
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(q)
+
\\[4pt]
+
~q~
+
\\[4pt]
+
(q)
+
\\[4pt]
+
~q~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(p)
+
\\[4pt]
+
(p)
+
\\[4pt]
+
~p~
+
\\[4pt]
+
~p~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(~)
+
\\[4pt]
+
(~)
+
\\[4pt]
+
(~)
+
\\[4pt]
+
(~)
+
\end{matrix}\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_3
+
\\[4pt]
+
f_{12}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(p)
+
\\[4pt]
+
~p~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
((~))
+
\\[4pt]
+
((~))
+
\end{matrix}~\!</math>
+
|
+
<math>\begin{matrix}
+
((~))
+
\\[4pt]
+
((~))
+
\end{matrix}~\!</math>
+
|
+
<math>\begin{matrix}
+
(~)
+
\\[4pt]
+
(~)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(~)
+
\\[4pt]
+
(~)
+
\end{matrix}\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_6
+
\\[4pt]
+
f_9
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~(p,~q)~
+
\\[4pt]
+
((p,~q))
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(~)
+
\\[4pt]
+
(~)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
((~))
+
\\[4pt]
+
((~))
+
\end{matrix}~\!</math>
+
|
+
<math>\begin{matrix}
+
((~))
+
\\[4pt]
+
((~))
+
\end{matrix}~\!</math>
+
|
+
<math>\begin{matrix}
+
(~)
+
\\[4pt]
+
(~)
+
\end{matrix}\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_5
+
\\[4pt]
+
f_{10}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(q)
+
\\[4pt]
+
~q~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
((~))
+
\\[4pt]
+
((~))
+
\end{matrix}~\!</math>
+
|
+
<math>\begin{matrix}
+
(~)
+
\\[4pt]
+
(~)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
((~))
+
\\[4pt]
+
((~))
+
\end{matrix}~\!</math>
+
|
+
<math>\begin{matrix}
+
(~)
+
\\[4pt]
+
(~)
+
\end{matrix}\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_7
+
\\[4pt]
+
f_{11}
+
\\[4pt]
+
f_{13}
+
\\[4pt]
+
f_{14}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~(p~~q)~
+
\\[4pt]
+
~(p~(q))
+
\\[4pt]
+
((p)~q)~
+
\\[4pt]
+
((p)(q))
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
((p,~q))
+
\\[4pt]
+
~(p,~q)~
+
\\[4pt]
+
~(p,~q)~
+
\\[4pt]
+
((p,~q))
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~q~
+
\\[4pt]
+
(q)
+
\\[4pt]
+
~q~
+
\\[4pt]
+
(q)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~p~
+
\\[4pt]
+
~p~
+
\\[4pt]
+
(p)
+
\\[4pt]
+
(p)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(~)
+
\\[4pt]
+
(~)
+
\\[4pt]
+
(~)
+
\\[4pt]
+
(~)
+
\end{matrix}\!</math>
+
|-
+
| <math>f_{15}\!</math>
+
| <math>((~))\!</math>
+
| <math>(~)\!</math>
+
| <math>(~)\!</math>
+
| <math>(~)\!</math>
+
| <math>(~)\!</math>
+
|}
+
+
<br>
+
+
===Transforms Expanded over Ordinary Features===
+
+
<br>
+
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
+
|+ <math>\text{Table A5.}~~\mathrm{E}f ~\text{Expanded over Ordinary Features}~ \{ p, q \}\!</math>
+
|- style="background:#f0f0ff"
+
| width="10%" |
+
| width="18%" | <math>f\!</math>
+
| width="18%" | <math>\mathrm{E}f|_{pq}\!</math>
+
| width="18%" | <math>\mathrm{E}f|_{p(q)}\!</math>
+
| width="18%" | <math>\mathrm{E}f|_{(p)q}\!</math>
+
| width="18%" | <math>\mathrm{E}f|_{(p)(q)}\!</math>
+
|-
+
| <math>f_0\!</math>
+
| <math>(~)\!</math>
+
| <math>(~)\!</math>
+
| <math>(~)\!</math>
+
| <math>(~)\!</math>
+
| <math>(~)\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_1
+
\\[4pt]
+
f_2
+
\\[4pt]
+
f_4
+
\\[4pt]
+
f_8
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(p)(q)
+
\\[4pt]
+
(p)~q~
+
\\[4pt]
+
~p~(q)
+
\\[4pt]
+
~p~~q~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~\mathrm{d}p~~\mathrm{d}q~
+
\\[4pt]
+
~\mathrm{d}p~(\mathrm{d}q)
+
\\[4pt]
+
(\mathrm{d}p)~\mathrm{d}q~
+
\\[4pt]
+
(\mathrm{d}p)(\mathrm{d}q)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~\mathrm{d}p~(\mathrm{d}q)
+
\\[4pt]
+
~\mathrm{d}p~~\mathrm{d}q~
+
\\[4pt]
+
(\mathrm{d}p)(\mathrm{d}q)
+
\\[4pt]
+
(\mathrm{d}p)~\mathrm{d}q~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(\mathrm{d}p)~\mathrm{d}q~
+
\\[4pt]
+
(\mathrm{d}p)(\mathrm{d}q)
+
\\[4pt]
+
~\mathrm{d}p~~\mathrm{d}q~
+
\\[4pt]
+
~\mathrm{d}p~(\mathrm{d}q)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(\mathrm{d}p)(\mathrm{d}q)
+
\\[4pt]
+
(\mathrm{d}p)~\mathrm{d}q~
+
\\[4pt]
+
~\mathrm{d}p~(\mathrm{d}q)
+
\\[4pt]
+
~\mathrm{d}p~~\mathrm{d}q~
+
\end{matrix}\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_3
+
\\[4pt]
+
f_{12}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(p)
+
\\[4pt]
+
~p~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~\mathrm{d}p~
+
\\[4pt]
+
(\mathrm{d}p)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~\mathrm{d}p~
+
\\[4pt]
+
(\mathrm{d}p)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(\mathrm{d}p)
+
\\[4pt]
+
~\mathrm{d}p~
+
\end{matrix}~\!</math>
+
|
+
<math>\begin{matrix}
+
(\mathrm{d}p)
+
\\[4pt]
+
~\mathrm{d}p~
+
\end{matrix}~\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_6
+
\\[4pt]
+
f_9
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~(p,~q)~
+
\\[4pt]
+
((p,~q))
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~(\mathrm{d}p,~\mathrm{d}q)~
+
\\[4pt]
+
((\mathrm{d}p,~\mathrm{d}q))
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
((\mathrm{d}p,~\mathrm{d}q))
+
\\[4pt]
+
~(\mathrm{d}p,~\mathrm{d}q)~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
((\mathrm{d}p,~\mathrm{d}q))
+
\\[4pt]
+
~(\mathrm{d}p,~\mathrm{d}q)~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~(\mathrm{d}p,~\mathrm{d}q)~
+
\\[4pt]
+
((\mathrm{d}p,~\mathrm{d}q))
+
\end{matrix}\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_5
+
\\[4pt]
+
f_{10}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(q)
+
\\[4pt]
+
~q~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~\mathrm{d}q~
+
\\[4pt]
+
(\mathrm{d}q)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(\mathrm{d}q)
+
\\[4pt]
+
~\mathrm{d}q~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~\mathrm{d}q~
+
\\[4pt]
+
(\mathrm{d}q)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(\mathrm{d}q)
+
\\[4pt]
+
~\mathrm{d}q~
+
\end{matrix}\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_7
+
\\[4pt]
+
f_{11}
+
\\[4pt]
+
f_{13}
+
\\[4pt]
+
f_{14}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(~p~~q~)
+
\\[4pt]
+
(~p~(q))
+
\\[4pt]
+
((p)~q~)
+
\\[4pt]
+
((p)(q))
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
((\mathrm{d}p)(\mathrm{d}q))
+
\\[4pt]
+
((\mathrm{d}p)~\mathrm{d}q~)
+
\\[4pt]
+
(~\mathrm{d}p~(\mathrm{d}q))
+
\\[4pt]
+
(~\mathrm{d}p~~\mathrm{d}q~)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
((\mathrm{d}p)~\mathrm{d}q~)
+
\\[4pt]
+
((\mathrm{d}p)(\mathrm{d}q))
+
\\[4pt]
+
(~\mathrm{d}p~~\mathrm{d}q~)
+
\\[4pt]
+
(~\mathrm{d}p~(\mathrm{d}q))
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(~\mathrm{d}p~(\mathrm{d}q))
+
\\[4pt]
+
(~\mathrm{d}p~~\mathrm{d}q~)
+
\\[4pt]
+
((\mathrm{d}p)(\mathrm{d}q))
+
\\[4pt]
+
((\mathrm{d}p)~\mathrm{d}q~)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(~\mathrm{d}p~~\mathrm{d}q~)
+
\\[4pt]
+
(~\mathrm{d}p~(\mathrm{d}q))
+
\\[4pt]
+
((\mathrm{d}p)~\mathrm{d}q~)
+
\\[4pt]
+
((\mathrm{d}p)(\mathrm{d}q))
+
\end{matrix}\!</math>
+
|-
+
| <math>f_{15}\!</math>
+
| <math>((~))\!</math>
+
| <math>((~))\!</math>
+
| <math>((~))\!</math>
+
| <math>((~))\!</math>
+
| <math>((~))\!</math>
+
|}
+
+
<br>
+
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%"
+
|+ <math>\text{Table A6.}~~\mathrm{D}f ~\text{Expanded over Ordinary Features}~ \{ p, q \}\!</math>
+
|- style="background:#f0f0ff"
+
| width="10%" |
+
| width="18%" | <math>f\!</math>
+
| width="18%" | <math>\mathrm{D}f|_{pq}\!</math>
+
| width="18%" | <math>\mathrm{D}f|_{p(q)}\!</math>
+
| width="18%" | <math>\mathrm{D}f|_{(p)q}\!</math>
+
| width="18%" | <math>\mathrm{D}f|_{(p)(q)}\!</math>
+
|-
+
| <math>f_0\!</math>
+
| <math>(~)\!</math>
+
| <math>(~)\!</math>
+
| <math>(~)\!</math>
+
| <math>(~)\!</math>
+
| <math>(~)\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_1
+
\\[4pt]
+
f_2
+
\\[4pt]
+
f_4
+
\\[4pt]
+
f_8
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(p)(q)
+
\\[4pt]
+
(p)~q~
+
\\[4pt]
+
~p~(q)
+
\\[4pt]
+
~p~~q~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~~\mathrm{d}p~~\mathrm{d}q~~
+
\\[4pt]
+
~~\mathrm{d}p~(\mathrm{d}q)~
+
\\[4pt]
+
~(\mathrm{d}p)~\mathrm{d}q~~
+
\\[4pt]
+
((\mathrm{d}p)(\mathrm{d}q))
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~~\mathrm{d}p~(\mathrm{d}q)~
+
\\[4pt]
+
~~\mathrm{d}p~~\mathrm{d}q~~
+
\\[4pt]
+
((\mathrm{d}p)(\mathrm{d}q))
+
\\[4pt]
+
~(\mathrm{d}p)~\mathrm{d}q~~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~(\mathrm{d}p)~\mathrm{d}q~~
+
\\[4pt]
+
((\mathrm{d}p)(\mathrm{d}q))
+
\\[4pt]
+
~~\mathrm{d}p~~\mathrm{d}q~~
+
\\[4pt]
+
~~\mathrm{d}p~(\mathrm{d}q)~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
((\mathrm{d}p)(\mathrm{d}q))
+
\\[4pt]
+
~(\mathrm{d}p)~\mathrm{d}q~~
+
\\[4pt]
+
~~\mathrm{d}p~(\mathrm{d}q)~
+
\\[4pt]
+
~~\mathrm{d}p~~\mathrm{d}q~~
+
\end{matrix}\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_3
+
\\[4pt]
+
f_{12}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(p)
+
\\[4pt]
+
~p~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}p
+
\\[4pt]
+
\mathrm{d}p
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}p
+
\\[4pt]
+
\mathrm{d}p
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}p
+
\\[4pt]
+
\mathrm{d}p
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}p
+
\\[4pt]
+
\mathrm{d}p
+
\end{matrix}\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_6
+
\\[4pt]
+
f_9
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~(p,~q)~
+
\\[4pt]
+
((p,~q))
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(\mathrm{d}p,~\mathrm{d}q)
+
\\[4pt]
+
(\mathrm{d}p,~\mathrm{d}q)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(\mathrm{d}p,~\mathrm{d}q)
+
\\[4pt]
+
(\mathrm{d}p,~\mathrm{d}q)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(\mathrm{d}p,~\mathrm{d}q)
+
\\[4pt]
+
(\mathrm{d}p,~\mathrm{d}q)
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(\mathrm{d}p,~\mathrm{d}q)
+
\\[4pt]
+
(\mathrm{d}p,~\mathrm{d}q)
+
\end{matrix}\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_5
+
\\[4pt]
+
f_{10}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(q)
+
\\[4pt]
+
~q~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}q
+
\\[4pt]
+
\mathrm{d}q
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}q
+
\\[4pt]
+
\mathrm{d}q
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}q
+
\\[4pt]
+
\mathrm{d}q
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
\mathrm{d}q
+
\\[4pt]
+
\mathrm{d}q
+
\end{matrix}\!</math>
+
|-
+
|
+
<math>\begin{matrix}
+
f_7
+
\\[4pt]
+
f_{11}
+
\\[4pt]
+
f_{13}
+
\\[4pt]
+
f_{14}
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
(~p~~q~)
+
\\[4pt]
+
(~p~(q))
+
\\[4pt]
+
((p)~q~)
+
\\[4pt]
+
((p)(q))
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
((\mathrm{d}p)(\mathrm{d}q))
+
\\[4pt]
+
~(\mathrm{d}p)~\mathrm{d}q~~
+
\\[4pt]
+
~~\mathrm{d}p~(\mathrm{d}q)~
+
\\[4pt]
+
~~\mathrm{d}p~~\mathrm{d}q~~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~(\mathrm{d}p)~\mathrm{d}q~~
+
\\[4pt]
+
((\mathrm{d}p)(\mathrm{d}q))
+
\\[4pt]
+
~~\mathrm{d}p~~\mathrm{d}q~~
+
\\[4pt]
+
~~\mathrm{d}p~(\mathrm{d}q)~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~~\mathrm{d}p~(\mathrm{d}q)~
+
\\[4pt]
+
~~\mathrm{d}p~~\mathrm{d}q~~
+
\\[4pt]
+
((\mathrm{d}p)(\mathrm{d}q))
+
\\[4pt]
+
~(\mathrm{d}p)~\mathrm{d}q~~
+
\end{matrix}\!</math>
+
|
+
<math>\begin{matrix}
+
~~\mathrm{d}p~~\mathrm{d}q~~
+
\\[4pt]
+
~~\mathrm{d}p~(\mathrm{d}q)~
+
\\[4pt]
+
~(\mathrm{d}p)~\mathrm{d}q~~
+
\\[4pt]
+
((\mathrm{d}p)(\mathrm{d}q))
+
\end{matrix}\!</math>
+
|-
+
| <math>f_{15}\!</math>
+
| <math>((~))\!</math>
+
| <math>((~))\!</math>
+
| <math>((~))\!</math>
+
| <math>((~))\!</math>
+
| <math>((~))\!</math>
+
|}
+
+
<br>
==Logical Cacti==
==Logical Cacti==