Line 656: |
Line 656: |
| | | |
| We may understand the enlarged proposition <math>\mathrm{E}f\!</math> as telling us all the different ways to reach a model of the proposition <math>f\!</math> from each point of the universe <math>X.\!</math> | | We may understand the enlarged proposition <math>\mathrm{E}f\!</math> as telling us all the different ways to reach a model of the proposition <math>f\!</math> from each point of the universe <math>X.\!</math> |
| + | |
| + | ==Propositional Forms on Two Variables== |
| + | |
| + | To broaden our experience with simple examples, let us examine the sixteen functions of concrete type <math>P \times Q \to \mathbb{B}\!</math> and abstract type <math>\mathbb{B} \times \mathbb{B} \to \mathbb{B}.\!</math> A few Tables are set here that detail the actions of <math>\mathrm{E}\!</math> and <math>\mathrm{D}\!</math> on each of these functions, allowing us to view the results in several different ways. |
| + | |
| + | Tables A1 and A2 show two ways of arranging the 16 boolean functions on two variables, giving equivalent expressions for each function in several different systems of notation. |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ <math>\text{Table A1.}~~\text{Propositional Forms on Two Variables}\!</math> |
| + | |- style="background:#f0f0ff" |
| + | | width="15%" | |
| + | <p><math>\mathcal{L}_1\!</math></p> |
| + | <p><math>\text{Decimal}\!</math></p> |
| + | | width="15%" | |
| + | <p><math>\mathcal{L}_2\!</math></p> |
| + | <p><math>\text{Binary}\!</math></p> |
| + | | width="15%" | |
| + | <p><math>\mathcal{L}_3\!</math></p> |
| + | <p><math>\text{Vector}\!</math></p> |
| + | | width="15%" | |
| + | <p><math>\mathcal{L}_4\!</math></p> |
| + | <p><math>\text{Cactus}\!</math></p> |
| + | | width="25%" | |
| + | <p><math>\mathcal{L}_5\!</math></p> |
| + | <p><math>\text{English}\!</math></p> |
| + | | width="15%" | |
| + | <p><math>\mathcal{L}_6~\!</math></p> |
| + | <p><math>\text{Ordinary}\!</math></p> |
| + | |- style="background:#f0f0ff" |
| + | | |
| + | | align="right" | <math>p\colon\!</math> |
| + | | <math>1~1~0~0\!</math> |
| + | | |
| + | | |
| + | | |
| + | |- style="background:#f0f0ff" |
| + | | |
| + | | align="right" | <math>q\colon\!</math> |
| + | | <math>1~0~1~0\!</math> |
| + | | |
| + | | |
| + | | |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_0 |
| + | \\[4pt] |
| + | f_1 |
| + | \\[4pt] |
| + | f_2 |
| + | \\[4pt] |
| + | f_3 |
| + | \\[4pt] |
| + | f_4 |
| + | \\[4pt] |
| + | f_5 |
| + | \\[4pt] |
| + | f_6 |
| + | \\[4pt] |
| + | f_7 |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | f_{0000} |
| + | \\[4pt] |
| + | f_{0001} |
| + | \\[4pt] |
| + | f_{0010} |
| + | \\[4pt] |
| + | f_{0011} |
| + | \\[4pt] |
| + | f_{0100} |
| + | \\[4pt] |
| + | f_{0101} |
| + | \\[4pt] |
| + | f_{0110} |
| + | \\[4pt] |
| + | f_{0111} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 0~0~0~0 |
| + | \\[4pt] |
| + | 0~0~0~1 |
| + | \\[4pt] |
| + | 0~0~1~0 |
| + | \\[4pt] |
| + | 0~0~1~1 |
| + | \\[4pt] |
| + | 0~1~0~0 |
| + | \\[4pt] |
| + | 0~1~0~1 |
| + | \\[4pt] |
| + | 0~1~1~0 |
| + | \\[4pt] |
| + | 0~1~1~1 |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~) |
| + | \\[4pt] |
| + | (p)(q) |
| + | \\[4pt] |
| + | (p)~q~ |
| + | \\[4pt] |
| + | (p)[[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]]) |
| + | \\[4pt] |
| + | ~p~(q) |
| + | \\[4pt] |
| + | [[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]])(q) |
| + | \\[4pt] |
| + | (p,~q) |
| + | \\[4pt] |
| + | (p~~q) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \text{false} |
| + | \\[4pt] |
| + | \text{neither}~ p ~\text{nor}~ q |
| + | \\[4pt] |
| + | q ~\text{without}~ p |
| + | \\[4pt] |
| + | \text{not}~ p |
| + | \\[4pt] |
| + | p ~\text{without}~ q |
| + | \\[4pt] |
| + | \text{not}~ q |
| + | \\[4pt] |
| + | p ~\text{not equal to}~ q |
| + | \\[4pt] |
| + | \text{not both}~ p ~\text{and}~ q |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 0 |
| + | \\[4pt] |
| + | \lnot p \land \lnot q |
| + | \\[4pt] |
| + | \lnot p \land q |
| + | \\[4pt] |
| + | \lnot p |
| + | \\[4pt] |
| + | p \land \lnot q |
| + | \\[4pt] |
| + | \lnot q |
| + | \\[4pt] |
| + | p \ne q |
| + | \\[4pt] |
| + | \lnot p \lor \lnot q |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_8 |
| + | \\[4pt] |
| + | f_9 |
| + | \\[4pt] |
| + | f_{10} |
| + | \\[4pt] |
| + | f_{11} |
| + | \\[4pt] |
| + | f_{12} |
| + | \\[4pt] |
| + | f_{13} |
| + | \\[4pt] |
| + | f_{14} |
| + | \\[4pt] |
| + | f_{15} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | f_{1000} |
| + | \\[4pt] |
| + | f_{1001} |
| + | \\[4pt] |
| + | f_{1010} |
| + | \\[4pt] |
| + | f_{1011} |
| + | \\[4pt] |
| + | f_{1100} |
| + | \\[4pt] |
| + | f_{1101} |
| + | \\[4pt] |
| + | f_{1110} |
| + | \\[4pt] |
| + | f_{1111} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 1~0~0~0 |
| + | \\[4pt] |
| + | 1~0~0~1 |
| + | \\[4pt] |
| + | 1~0~1~0 |
| + | \\[4pt] |
| + | 1~0~1~1 |
| + | \\[4pt] |
| + | 1~1~0~0 |
| + | \\[4pt] |
| + | 1~1~0~1 |
| + | \\[4pt] |
| + | 1~1~1~0 |
| + | \\[4pt] |
| + | 1~1~1~1 |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~~p~~q~~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \\[4pt] |
| + | 18:36, 29 November 2015 (UTC)q~~ |
| + | \\[4pt] |
| + | ~(p~(q)) |
| + | \\[4pt] |
| + | ~~p18:36, 29 November 2015 (UTC) |
| + | \\[4pt] |
| + | ((p)~q)~ |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \\[4pt] |
| + | ((~)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | p ~\text{and}~ q |
| + | \\[4pt] |
| + | p ~\text{equal to}~ q |
| + | \\[4pt] |
| + | q |
| + | \\[4pt] |
| + | \text{not}~ p ~\text{without}~ q |
| + | \\[4pt] |
| + | p |
| + | \\[4pt] |
| + | \text{not}~ q ~\text{without}~ p |
| + | \\[4pt] |
| + | p ~\text{or}~ q |
| + | \\[4pt] |
| + | \text{true} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | p \land q |
| + | \\[4pt] |
| + | p = q |
| + | \\[4pt] |
| + | q |
| + | \\[4pt] |
| + | p \Rightarrow q |
| + | \\[4pt] |
| + | p |
| + | \\[4pt] |
| + | p \Leftarrow q |
| + | \\[4pt] |
| + | p \lor q |
| + | \\[4pt] |
| + | 1 |
| + | \end{matrix}\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ <math>\text{Table A2.}~~\text{Propositional Forms on Two Variables}\!</math> |
| + | |- style="background:#f0f0ff" |
| + | | width="15%" | |
| + | <p><math>\mathcal{L}_1\!</math></p> |
| + | <p><math>\text{Decimal}\!</math></p> |
| + | | width="15%" | |
| + | <p><math>\mathcal{L}_2\!</math></p> |
| + | <p><math>\text{Binary}\!</math></p> |
| + | | width="15%" | |
| + | <p><math>\mathcal{L}_3\!</math></p> |
| + | <p><math>\text{Vector}\!</math></p> |
| + | | width="15%" | |
| + | <p><math>\mathcal{L}_4\!</math></p> |
| + | <p><math>\text{Cactus}\!</math></p> |
| + | | width="25%" | |
| + | <p><math>\mathcal{L}_5\!</math></p> |
| + | <p><math>\text{English}\!</math></p> |
| + | | width="15%" | |
| + | <p><math>\mathcal{L}_6~\!</math></p> |
| + | <p><math>\text{Ordinary}\!</math></p> |
| + | |- style="background:#f0f0ff" |
| + | | |
| + | | align="right" | <math>p\colon\!</math> |
| + | | <math>1~1~0~0\!</math> |
| + | | |
| + | | |
| + | | |
| + | |- style="background:#f0f0ff" |
| + | | |
| + | | align="right" | <math>q\colon\!</math> |
| + | | <math>1~0~1~0\!</math> |
| + | | |
| + | | |
| + | | |
| + | |- |
| + | | <math>f_0\!</math> |
| + | | <math>f_{0000}\!</math> |
| + | | <math>0~0~0~0\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>\text{false}\!</math> |
| + | | <math>0\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_1 |
| + | \\[4pt] |
| + | f_2 |
| + | \\[4pt] |
| + | f_4 |
| + | \\[4pt] |
| + | f_8 |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | f_{0001} |
| + | \\[4pt] |
| + | f_{0010} |
| + | \\[4pt] |
| + | f_{0100} |
| + | \\[4pt] |
| + | f_{1000} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 0~0~0~1 |
| + | \\[4pt] |
| + | 0~0~1~0 |
| + | \\[4pt] |
| + | 0~1~0~0 |
| + | \\[4pt] |
| + | 1~0~0~0 |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p)(q) |
| + | \\[4pt] |
| + | (p)~q~ |
| + | \\[4pt] |
| + | ~p~(q) |
| + | \\[4pt] |
| + | ~p~~q~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \text{neither}~ p ~\text{nor}~ q |
| + | \\[4pt] |
| + | q ~\text{without}~ p |
| + | \\[4pt] |
| + | p ~\text{without}~ q |
| + | \\[4pt] |
| + | p ~\text{and}~ q |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \lnot p \land \lnot q |
| + | \\[4pt] |
| + | \lnot p \land q |
| + | \\[4pt] |
| + | p \land \lnot q |
| + | \\[4pt] |
| + | p \land q |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_3 |
| + | \\[4pt] |
| + | f_{12} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | f_{0011} |
| + | \\[4pt] |
| + | f_{1100} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 0~0~1~1 |
| + | \\[4pt] |
| + | 1~1~0~0 |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p) |
| + | \\[4pt] |
| + | ~p~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \text{not}~ p |
| + | \\[4pt] |
| + | p |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \lnot p |
| + | \\[4pt] |
| + | p |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_6 |
| + | \\[4pt] |
| + | f_9 |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | f_{0110} |
| + | \\[4pt] |
| + | f_{1001} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 0~1~1~0 |
| + | \\[4pt] |
| + | 1~0~0~1 |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | p ~\text{not equal to}~ q |
| + | \\[4pt] |
| + | p ~\text{equal to}~ q |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | p \ne q |
| + | \\[4pt] |
| + | p = q |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_5 |
| + | \\[4pt] |
| + | f_{10} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | f_{0101} |
| + | \\[4pt] |
| + | f_{1010} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 0~1~0~1 |
| + | \\[4pt] |
| + | 1~0~1~0 |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \text{not}~ q |
| + | \\[4pt] |
| + | q |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \lnot q |
| + | \\[4pt] |
| + | q |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_7 |
| + | \\[4pt] |
| + | f_{11} |
| + | \\[4pt] |
| + | f_{13} |
| + | \\[4pt] |
| + | f_{14} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | f_{0111} |
| + | \\[4pt] |
| + | f_{1011} |
| + | \\[4pt] |
| + | f_{1101} |
| + | \\[4pt] |
| + | f_{1110} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | 0~1~1~1 |
| + | \\[4pt] |
| + | 1~0~1~1 |
| + | \\[4pt] |
| + | 1~1~0~1 |
| + | \\[4pt] |
| + | 1~1~1~0 |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(p~~q)~ |
| + | \\[4pt] |
| + | ~(p~(q)) |
| + | \\[4pt] |
| + | ((p)~q)~ |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \text{not both}~ p ~\text{and}~ q |
| + | \\[4pt] |
| + | \text{not}~ p ~\text{without}~ q |
| + | \\[4pt] |
| + | \text{not}~ q ~\text{without}~ p |
| + | \\[4pt] |
| + | p ~\text{or}~ q |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \lnot p \lor \lnot q |
| + | \\[4pt] |
| + | p \Rightarrow q |
| + | \\[4pt] |
| + | p \Leftarrow q |
| + | \\[4pt] |
| + | p \lor q |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | <math>f_{15}\!</math> |
| + | | <math>f_{1111}\!</math> |
| + | | <math>1~1~1~1\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>\text{true}\!</math> |
| + | | <math>1\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ===Transforms Expanded over Differential Features=== |
| + | |
| + | The next four Tables expand the expressions of <math>\mathrm{E}f\!</math> and <math>\mathrm{D}f~\!</math> in two different ways, for each of the sixteen functions. Notice that the functions are given in a different order, partitioned into seven natural classes by a group action. |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ <math>\text{Table A3.}~~\mathrm{E}f ~\text{Expanded over Differential Features}~ \{ \mathrm{d}p, \mathrm{d}q \}\!</math> |
| + | |- style="background:#f0f0ff" |
| + | | width="10%" | |
| + | | width="18%" | <math>f\!</math> |
| + | | width="18%" | |
| + | <p><math>\mathrm{T}_{11} f\!</math></p> |
| + | <p><math>\mathrm{E}f|_{\mathrm{d}p~\mathrm{d}q}\!</math></p> |
| + | | width="18%" | |
| + | <p><math>\mathrm{T}_{10} f\!</math></p> |
| + | <p><math>\mathrm{E}f|_{\mathrm{d}p(\mathrm{d}q)}\!</math></p> |
| + | | width="18%" | |
| + | <p><math>\mathrm{T}_{01} f\!</math></p> |
| + | <p><math>\mathrm{E}f|_{(\mathrm{d}p)\mathrm{d}q}\!</math></p> |
| + | | width="18%" | |
| + | <p><math>\mathrm{T}_{00} f\!</math></p> |
| + | <p><math>\mathrm{E}f|_{(\mathrm{d}p)(\mathrm{d}q)}\!</math></p> |
| + | |- |
| + | | <math>f_0\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_1 |
| + | \\[4pt] |
| + | f_2 |
| + | \\[4pt] |
| + | f_4 |
| + | \\[4pt] |
| + | f_8 |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p)(q) |
| + | \\[4pt] |
| + | (p)~q~ |
| + | \\[4pt] |
| + | ~p~(q) |
| + | \\[4pt] |
| + | ~p~~q~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~p~~q~ |
| + | \\[4pt] |
| + | ~p~(q) |
| + | \\[4pt] |
| + | (p)~q~ |
| + | \\[4pt] |
| + | (p)(q) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~p~(q) |
| + | \\[4pt] |
| + | ~p~~q~ |
| + | \\[4pt] |
| + | (p)(q) |
| + | \\[4pt] |
| + | (p)~q~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p)~q~ |
| + | \\[4pt] |
| + | (p)(q) |
| + | \\[4pt] |
| + | ~p~~q~ |
| + | \\[4pt] |
| + | ~p~(q) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p)(q) |
| + | \\[4pt] |
| + | (p)~q~ |
| + | \\[4pt] |
| + | ~p~(q) |
| + | \\[4pt] |
| + | ~p~~q~ |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_3 |
| + | \\[4pt] |
| + | f_{12} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p) |
| + | \\[4pt] |
| + | ~p~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~p~ |
| + | \\[4pt] |
| + | (p) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~p~ |
| + | \\[4pt] |
| + | (p) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p) |
| + | \\[4pt] |
| + | ~p~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p) |
| + | \\[4pt] |
| + | ~p~ |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_6 |
| + | \\[4pt] |
| + | f_9 |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((p,~q)) |
| + | \\[4pt] |
| + | ~(p,~q)~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((p,~q)) |
| + | \\[4pt] |
| + | ~(p,~q)~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_5 |
| + | \\[4pt] |
| + | f_{10} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~q~ |
| + | \\[4pt] |
| + | (q) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~q~ |
| + | \\[4pt] |
| + | (q) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_7 |
| + | \\[4pt] |
| + | f_{11} |
| + | \\[4pt] |
| + | f_{13} |
| + | \\[4pt] |
| + | f_{14} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~p~~q~) |
| + | \\[4pt] |
| + | (~p~(q)) |
| + | \\[4pt] |
| + | ((p)~q~) |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((p)(q)) |
| + | \\[4pt] |
| + | ((p)~q~) |
| + | \\[4pt] |
| + | (~p~(q)) |
| + | \\[4pt] |
| + | (~p~~q~) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((p)~q~) |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \\[4pt] |
| + | (~p~~q~) |
| + | \\[4pt] |
| + | (~p~(q)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~p~(q)) |
| + | \\[4pt] |
| + | (~p~~q~) |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \\[4pt] |
| + | ((p)~q~) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~p~~q~) |
| + | \\[4pt] |
| + | (~p~(q)) |
| + | \\[4pt] |
| + | ((p)~q~) |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | <math>f_{15}\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | |- style="background:#f0f0ff" |
| + | | colspan="2" | <math>\text{Fixed Point Total}\!</math> |
| + | | <math>4\!</math> |
| + | | <math>4\!</math> |
| + | | <math>4\!</math> |
| + | | <math>16\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ <math>\text{Table A4.}~~\mathrm{D}f ~\text{Expanded over Differential Features}~ \{ \mathrm{d}p, \mathrm{d}q \}\!</math> |
| + | |- style="background:#f0f0ff" |
| + | | width="10%" | |
| + | | width="18%" | <math>f\!</math> |
| + | | width="18%" | |
| + | <math>\mathrm{D}f|_{\mathrm{d}p~\mathrm{d}q}\!</math> |
| + | | width="18%" | |
| + | <math>\mathrm{D}f|_{\mathrm{d}p(\mathrm{d}q)}\!</math> |
| + | | width="18%" | |
| + | <math>\mathrm{D}f|_{(\mathrm{d}p)\mathrm{d}q}\!</math> |
| + | | width="18%" | |
| + | <math>\mathrm{D}f|_{(\mathrm{d}p)(\mathrm{d}q)}\!</math> |
| + | |- |
| + | | <math>f_0\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_1 |
| + | \\[4pt] |
| + | f_2 |
| + | \\[4pt] |
| + | f_4 |
| + | \\[4pt] |
| + | f_8 |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p)(q) |
| + | \\[4pt] |
| + | (p)~q~ |
| + | \\[4pt] |
| + | ~p~(q) |
| + | \\[4pt] |
| + | ~p~~q~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((p,~q)) |
| + | \\[4pt] |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \\[4pt] |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p) |
| + | \\[4pt] |
| + | (p) |
| + | \\[4pt] |
| + | ~p~ |
| + | \\[4pt] |
| + | ~p~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_3 |
| + | \\[4pt] |
| + | f_{12} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p) |
| + | \\[4pt] |
| + | ~p~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((~)) |
| + | \\[4pt] |
| + | ((~)) |
| + | \end{matrix}~\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((~)) |
| + | \\[4pt] |
| + | ((~)) |
| + | \end{matrix}~\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_6 |
| + | \\[4pt] |
| + | f_9 |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((~)) |
| + | \\[4pt] |
| + | ((~)) |
| + | \end{matrix}~\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((~)) |
| + | \\[4pt] |
| + | ((~)) |
| + | \end{matrix}~\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_5 |
| + | \\[4pt] |
| + | f_{10} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((~)) |
| + | \\[4pt] |
| + | ((~)) |
| + | \end{matrix}~\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((~)) |
| + | \\[4pt] |
| + | ((~)) |
| + | \end{matrix}~\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_7 |
| + | \\[4pt] |
| + | f_{11} |
| + | \\[4pt] |
| + | f_{13} |
| + | \\[4pt] |
| + | f_{14} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(p~~q)~ |
| + | \\[4pt] |
| + | ~(p~(q)) |
| + | \\[4pt] |
| + | ((p)~q)~ |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((p,~q)) |
| + | \\[4pt] |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~q~ |
| + | \\[4pt] |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \\[4pt] |
| + | (q) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~p~ |
| + | \\[4pt] |
| + | ~p~ |
| + | \\[4pt] |
| + | (p) |
| + | \\[4pt] |
| + | (p) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \\[4pt] |
| + | (~) |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | <math>f_{15}\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ===Transforms Expanded over Ordinary Features=== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ <math>\text{Table A5.}~~\mathrm{E}f ~\text{Expanded over Ordinary Features}~ \{ p, q \}\!</math> |
| + | |- style="background:#f0f0ff" |
| + | | width="10%" | |
| + | | width="18%" | <math>f\!</math> |
| + | | width="18%" | <math>\mathrm{E}f|_{pq}\!</math> |
| + | | width="18%" | <math>\mathrm{E}f|_{p(q)}\!</math> |
| + | | width="18%" | <math>\mathrm{E}f|_{(p)q}\!</math> |
| + | | width="18%" | <math>\mathrm{E}f|_{(p)(q)}\!</math> |
| + | |- |
| + | | <math>f_0\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_1 |
| + | \\[4pt] |
| + | f_2 |
| + | \\[4pt] |
| + | f_4 |
| + | \\[4pt] |
| + | f_8 |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p)(q) |
| + | \\[4pt] |
| + | (p)~q~ |
| + | \\[4pt] |
| + | ~p~(q) |
| + | \\[4pt] |
| + | ~p~~q~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~\mathrm{d}p~~\mathrm{d}q~ |
| + | \\[4pt] |
| + | ~\mathrm{d}p~(\mathrm{d}q) |
| + | \\[4pt] |
| + | (\mathrm{d}p)~\mathrm{d}q~ |
| + | \\[4pt] |
| + | (\mathrm{d}p)(\mathrm{d}q) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~\mathrm{d}p~(\mathrm{d}q) |
| + | \\[4pt] |
| + | ~\mathrm{d}p~~\mathrm{d}q~ |
| + | \\[4pt] |
| + | (\mathrm{d}p)(\mathrm{d}q) |
| + | \\[4pt] |
| + | (\mathrm{d}p)~\mathrm{d}q~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\mathrm{d}p)~\mathrm{d}q~ |
| + | \\[4pt] |
| + | (\mathrm{d}p)(\mathrm{d}q) |
| + | \\[4pt] |
| + | ~\mathrm{d}p~~\mathrm{d}q~ |
| + | \\[4pt] |
| + | ~\mathrm{d}p~(\mathrm{d}q) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\mathrm{d}p)(\mathrm{d}q) |
| + | \\[4pt] |
| + | (\mathrm{d}p)~\mathrm{d}q~ |
| + | \\[4pt] |
| + | ~\mathrm{d}p~(\mathrm{d}q) |
| + | \\[4pt] |
| + | ~\mathrm{d}p~~\mathrm{d}q~ |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_3 |
| + | \\[4pt] |
| + | f_{12} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p) |
| + | \\[4pt] |
| + | ~p~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~\mathrm{d}p~ |
| + | \\[4pt] |
| + | (\mathrm{d}p) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~\mathrm{d}p~ |
| + | \\[4pt] |
| + | (\mathrm{d}p) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\mathrm{d}p) |
| + | \\[4pt] |
| + | ~\mathrm{d}p~ |
| + | \end{matrix}~\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\mathrm{d}p) |
| + | \\[4pt] |
| + | ~\mathrm{d}p~ |
| + | \end{matrix}~\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_6 |
| + | \\[4pt] |
| + | f_9 |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(\mathrm{d}p,~\mathrm{d}q)~ |
| + | \\[4pt] |
| + | ((\mathrm{d}p,~\mathrm{d}q)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((\mathrm{d}p,~\mathrm{d}q)) |
| + | \\[4pt] |
| + | ~(\mathrm{d}p,~\mathrm{d}q)~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((\mathrm{d}p,~\mathrm{d}q)) |
| + | \\[4pt] |
| + | ~(\mathrm{d}p,~\mathrm{d}q)~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(\mathrm{d}p,~\mathrm{d}q)~ |
| + | \\[4pt] |
| + | ((\mathrm{d}p,~\mathrm{d}q)) |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_5 |
| + | \\[4pt] |
| + | f_{10} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~\mathrm{d}q~ |
| + | \\[4pt] |
| + | (\mathrm{d}q) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\mathrm{d}q) |
| + | \\[4pt] |
| + | ~\mathrm{d}q~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~\mathrm{d}q~ |
| + | \\[4pt] |
| + | (\mathrm{d}q) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\mathrm{d}q) |
| + | \\[4pt] |
| + | ~\mathrm{d}q~ |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_7 |
| + | \\[4pt] |
| + | f_{11} |
| + | \\[4pt] |
| + | f_{13} |
| + | \\[4pt] |
| + | f_{14} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~p~~q~) |
| + | \\[4pt] |
| + | (~p~(q)) |
| + | \\[4pt] |
| + | ((p)~q~) |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((\mathrm{d}p)(\mathrm{d}q)) |
| + | \\[4pt] |
| + | ((\mathrm{d}p)~\mathrm{d}q~) |
| + | \\[4pt] |
| + | (~\mathrm{d}p~(\mathrm{d}q)) |
| + | \\[4pt] |
| + | (~\mathrm{d}p~~\mathrm{d}q~) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((\mathrm{d}p)~\mathrm{d}q~) |
| + | \\[4pt] |
| + | ((\mathrm{d}p)(\mathrm{d}q)) |
| + | \\[4pt] |
| + | (~\mathrm{d}p~~\mathrm{d}q~) |
| + | \\[4pt] |
| + | (~\mathrm{d}p~(\mathrm{d}q)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~\mathrm{d}p~(\mathrm{d}q)) |
| + | \\[4pt] |
| + | (~\mathrm{d}p~~\mathrm{d}q~) |
| + | \\[4pt] |
| + | ((\mathrm{d}p)(\mathrm{d}q)) |
| + | \\[4pt] |
| + | ((\mathrm{d}p)~\mathrm{d}q~) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~\mathrm{d}p~~\mathrm{d}q~) |
| + | \\[4pt] |
| + | (~\mathrm{d}p~(\mathrm{d}q)) |
| + | \\[4pt] |
| + | ((\mathrm{d}p)~\mathrm{d}q~) |
| + | \\[4pt] |
| + | ((\mathrm{d}p)(\mathrm{d}q)) |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | <math>f_{15}\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:center; width:90%" |
| + | |+ <math>\text{Table A6.}~~\mathrm{D}f ~\text{Expanded over Ordinary Features}~ \{ p, q \}\!</math> |
| + | |- style="background:#f0f0ff" |
| + | | width="10%" | |
| + | | width="18%" | <math>f\!</math> |
| + | | width="18%" | <math>\mathrm{D}f|_{pq}\!</math> |
| + | | width="18%" | <math>\mathrm{D}f|_{p(q)}\!</math> |
| + | | width="18%" | <math>\mathrm{D}f|_{(p)q}\!</math> |
| + | | width="18%" | <math>\mathrm{D}f|_{(p)(q)}\!</math> |
| + | |- |
| + | | <math>f_0\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | | <math>(~)\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_1 |
| + | \\[4pt] |
| + | f_2 |
| + | \\[4pt] |
| + | f_4 |
| + | \\[4pt] |
| + | f_8 |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p)(q) |
| + | \\[4pt] |
| + | (p)~q~ |
| + | \\[4pt] |
| + | ~p~(q) |
| + | \\[4pt] |
| + | ~p~~q~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~~\mathrm{d}p~~\mathrm{d}q~~ |
| + | \\[4pt] |
| + | ~~\mathrm{d}p~(\mathrm{d}q)~ |
| + | \\[4pt] |
| + | ~(\mathrm{d}p)~\mathrm{d}q~~ |
| + | \\[4pt] |
| + | ((\mathrm{d}p)(\mathrm{d}q)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~~\mathrm{d}p~(\mathrm{d}q)~ |
| + | \\[4pt] |
| + | ~~\mathrm{d}p~~\mathrm{d}q~~ |
| + | \\[4pt] |
| + | ((\mathrm{d}p)(\mathrm{d}q)) |
| + | \\[4pt] |
| + | ~(\mathrm{d}p)~\mathrm{d}q~~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(\mathrm{d}p)~\mathrm{d}q~~ |
| + | \\[4pt] |
| + | ((\mathrm{d}p)(\mathrm{d}q)) |
| + | \\[4pt] |
| + | ~~\mathrm{d}p~~\mathrm{d}q~~ |
| + | \\[4pt] |
| + | ~~\mathrm{d}p~(\mathrm{d}q)~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((\mathrm{d}p)(\mathrm{d}q)) |
| + | \\[4pt] |
| + | ~(\mathrm{d}p)~\mathrm{d}q~~ |
| + | \\[4pt] |
| + | ~~\mathrm{d}p~(\mathrm{d}q)~ |
| + | \\[4pt] |
| + | ~~\mathrm{d}p~~\mathrm{d}q~~ |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_3 |
| + | \\[4pt] |
| + | f_{12} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (p) |
| + | \\[4pt] |
| + | ~p~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}p |
| + | \\[4pt] |
| + | \mathrm{d}p |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}p |
| + | \\[4pt] |
| + | \mathrm{d}p |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}p |
| + | \\[4pt] |
| + | \mathrm{d}p |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}p |
| + | \\[4pt] |
| + | \mathrm{d}p |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_6 |
| + | \\[4pt] |
| + | f_9 |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(p,~q)~ |
| + | \\[4pt] |
| + | ((p,~q)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\mathrm{d}p,~\mathrm{d}q) |
| + | \\[4pt] |
| + | (\mathrm{d}p,~\mathrm{d}q) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\mathrm{d}p,~\mathrm{d}q) |
| + | \\[4pt] |
| + | (\mathrm{d}p,~\mathrm{d}q) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\mathrm{d}p,~\mathrm{d}q) |
| + | \\[4pt] |
| + | (\mathrm{d}p,~\mathrm{d}q) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (\mathrm{d}p,~\mathrm{d}q) |
| + | \\[4pt] |
| + | (\mathrm{d}p,~\mathrm{d}q) |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_5 |
| + | \\[4pt] |
| + | f_{10} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (q) |
| + | \\[4pt] |
| + | ~q~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}q |
| + | \\[4pt] |
| + | \mathrm{d}q |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}q |
| + | \\[4pt] |
| + | \mathrm{d}q |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}q |
| + | \\[4pt] |
| + | \mathrm{d}q |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | \mathrm{d}q |
| + | \\[4pt] |
| + | \mathrm{d}q |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | |
| + | <math>\begin{matrix} |
| + | f_7 |
| + | \\[4pt] |
| + | f_{11} |
| + | \\[4pt] |
| + | f_{13} |
| + | \\[4pt] |
| + | f_{14} |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | (~p~~q~) |
| + | \\[4pt] |
| + | (~p~(q)) |
| + | \\[4pt] |
| + | ((p)~q~) |
| + | \\[4pt] |
| + | ((p)(q)) |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ((\mathrm{d}p)(\mathrm{d}q)) |
| + | \\[4pt] |
| + | ~(\mathrm{d}p)~\mathrm{d}q~~ |
| + | \\[4pt] |
| + | ~~\mathrm{d}p~(\mathrm{d}q)~ |
| + | \\[4pt] |
| + | ~~\mathrm{d}p~~\mathrm{d}q~~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~(\mathrm{d}p)~\mathrm{d}q~~ |
| + | \\[4pt] |
| + | ((\mathrm{d}p)(\mathrm{d}q)) |
| + | \\[4pt] |
| + | ~~\mathrm{d}p~~\mathrm{d}q~~ |
| + | \\[4pt] |
| + | ~~\mathrm{d}p~(\mathrm{d}q)~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~~\mathrm{d}p~(\mathrm{d}q)~ |
| + | \\[4pt] |
| + | ~~\mathrm{d}p~~\mathrm{d}q~~ |
| + | \\[4pt] |
| + | ((\mathrm{d}p)(\mathrm{d}q)) |
| + | \\[4pt] |
| + | ~(\mathrm{d}p)~\mathrm{d}q~~ |
| + | \end{matrix}\!</math> |
| + | | |
| + | <math>\begin{matrix} |
| + | ~~\mathrm{d}p~~\mathrm{d}q~~ |
| + | \\[4pt] |
| + | ~~\mathrm{d}p~(\mathrm{d}q)~ |
| + | \\[4pt] |
| + | ~(\mathrm{d}p)~\mathrm{d}q~~ |
| + | \\[4pt] |
| + | ((\mathrm{d}p)(\mathrm{d}q)) |
| + | \end{matrix}\!</math> |
| + | |- |
| + | | <math>f_{15}\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | | <math>((~))\!</math> |
| + | |} |
| + | |
| + | <br> |
| | | |
| ==Logical Cacti== | | ==Logical Cacti== |