Line 61: |
Line 61: |
| |} | | |} |
| | | |
− | Back to the proposition <math>xy.\!</math> Imagine yourself standing | + | Back to the proposition <math>xy.~\!</math> Imagine yourself standing in a fixed cell of the corresponding venn diagram, say, the cell where the proposition <math>xy\!</math> is true, as shown here: |
− | in a fixed cell of the corresponding venn diagram, say, the cell where the proposition <math>xy\!</math> is true, as shown here: | |
| | | |
| {| align="center" cellpadding="10" | | {| align="center" cellpadding="10" |
Line 564: |
Line 563: |
| ==Note 4== | | ==Note 4== |
| | | |
− | We have been studying the action of the difference operator <math>\operatorname{D},</math> also known as the ''localization operator'', on the proposition <math>f : X \times Y \to \mathbb{B}</math> that is commonly known as the conjunction <math>x \cdot y.</math> We described <math>\operatorname{D}f</math> as a (first order) differential proposition, that is, a proposition of the type <math>\operatorname{D}f : X \times Y \times \operatorname{d}X \times \operatorname{d}Y \to \mathbb{B}.</math> Abstracting from the augmented venn diagram that illustrates how the ''models'' or ''satisfying interpretations'' of <math>\operatorname{D}f</math> distribute within the extended universe <math>\operatorname{E}U = X \times Y \times \operatorname{d}X \times \operatorname{d}Y,</math> we can depict <math>\operatorname{D}f</math> in the form of a ''digraph'' or ''directed graph'', one whose points are labeled with the elements of <math>U = X \times Y</math> and whose arrows are labeled with the elements of <math>\operatorname{d}U = \operatorname{d}X \times \operatorname{d}Y.</math> | + | We have been studying the action of the difference operator <math>\operatorname{D},</math> also known as the ''localization operator'', on the proposition <math>f : X \times Y \to \mathbb{B}</math> that is commonly known as the conjunction <math>x \cdot y.</math> We described <math>\operatorname{D}f</math> as a (first order) differential proposition, that is, a proposition of the type <math>\operatorname{D}f : X \times Y \times \operatorname{d}X \times \operatorname{d}Y \to \mathbb{B}.</math> Abstracting from the augmented venn diagram that illustrates how the ''models'' or ''satisfying interpretations'' of <math>\operatorname{D}f</math> distribute within the extended universe <math>\operatorname{E}U = X \times Y \times \operatorname{d}X \times \operatorname{d}Y,</math> we can depict <math>\operatorname{D}f</math> in the form of a ''digraph'' or ''directed graph'', one whose points are labeled with the elements of <math>U = X \times Y</math> and whose arrows are labeled with the elements of <math>\operatorname{d}U = \operatorname{d}X \times \operatorname{d}Y.\!</math> |
| | | |
| {| align="center" cellpadding="10" | | {| align="center" cellpadding="10" |
Line 753: |
Line 752: |
| ==Note 6== | | ==Note 6== |
| | | |
− | To broaden our experience with simple examples, let us examine the sixteen functions of concrete type <math>X \times Y \to \mathbb{B}</math> and abstract type <math>\mathbb{B} \times \mathbb{B} \to \mathbb{B}.</math> A few Tables are set here that detail the actions of <math>\operatorname{E}</math> and <math>\operatorname{D}</math> on each of these functions, allowing us to view the results in several different ways. | + | To broaden our experience with simple examples, let us examine the sixteen functions of concrete type <math>X \times Y \to \mathbb{B}</math> and abstract type <math>\mathbb{B} \times \mathbb{B} \to \mathbb{B}.\!</math> A few Tables are set here that detail the actions of <math>\operatorname{E}</math> and <math>\operatorname{D}</math> on each of these functions, allowing us to view the results in several different ways. |
| | | |
| Tables A1 and A2 show two ways of arranging the 16 boolean functions on two variables, giving equivalent expressions for each function in several different systems of notation. | | Tables A1 and A2 show two ways of arranging the 16 boolean functions on two variables, giving equivalent expressions for each function in several different systems of notation. |
Line 857: |
Line 856: |
| (x)~y~ | | (x)~y~ |
| \\[4pt] | | \\[4pt] |
− | (x)~~~ | + | (x)[[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]]) |
| \\[4pt] | | \\[4pt] |
| ~x~(y) | | ~x~(y) |
| \\[4pt] | | \\[4pt] |
− | ~~~(y)
| + | [[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]])(y) |
| \\[4pt] | | \\[4pt] |
| (x,~y) | | (x,~y) |
Line 964: |
Line 963: |
| ((x,~y)) | | ((x,~y)) |
| \\[4pt] | | \\[4pt] |
− | ~~~~~y~~
| + | 21:56, 7 December 2014 (UTC)y~~ |
| \\[4pt] | | \\[4pt] |
| ~(x~(y)) | | ~(x~(y)) |
| \\[4pt] | | \\[4pt] |
− | ~~x~~~~~ | + | ~~x21:56, 7 December 2014 (UTC) |
| \\[4pt] | | \\[4pt] |
| ((x)~y)~ | | ((x)~y)~ |
Line 3,091: |
Line 3,090: |
| |} | | |} |
| | | |
− | So, for example, let us suppose that we have the small universe <math>\{ \mathrm{A}, \mathrm{B}, \mathrm{C} \},\!</math> and the 2-adic relation <math>\mathit{m} = {}^{\backprime\backprime}\, \text{mover of}\, \underline{~~~~}\, {}^{\prime\prime}</math> that is represented by the following matrix: | + | So, for example, let us suppose that we have the small universe <math>\{ \mathrm{A}, \mathrm{B}, \mathrm{C} \},\!</math> and the 2-adic relation <math>\mathit{m} = {}^{\backprime\backprime}\, \text{mover of}\, \underline{[[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]]) 21:56, 7 December 2014 (UTC)}\, {}^{\prime\prime}</math> that is represented by the following matrix: |
| | | |
| {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
Line 3,229: |
Line 3,228: |
| Back to our current subinstance, the example in support of our first example. I will try to reconstruct it in a less confusing way. | | Back to our current subinstance, the example in support of our first example. I will try to reconstruct it in a less confusing way. |
| | | |
− | Consider the universe of discourse <math>\mathbf{1} = \mathrm{A} + \mathrm{B} + \mathrm{C}</math> and the 2-adic relation <math>\mathit{n} = {}^{\backprime\backprime}\, \text{noder of}\, \underline{~~~~}\, {}^{\prime\prime},</math> as when "<math>X\!</math> is a data record that contains a pointer to <math>Y\!</math>". That interpretation is not important, it's just for the sake of intuition. In general terms, the 2-adic relation <math>n\!</math> can be represented by this matrix: | + | Consider the universe of discourse <math>\mathbf{1} = \mathrm{A} + \mathrm{B} + \mathrm{C}</math> and the 2-adic relation <math>\mathit{n} = {}^{\backprime\backprime}\, \text{noder of}\, \underline{[[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]]) 21:56, 7 December 2014 (UTC)}\, {}^{\prime\prime},</math> as when "<math>X\!</math> is a data record that contains a pointer to <math>Y\!</math>". That interpretation is not important, it's just for the sake of intuition. In general terms, the 2-adic relation <math>n\!</math> can be represented by this matrix: |
| | | |
| {| align="center" cellpadding="6" width="90%" | | {| align="center" cellpadding="6" width="90%" |
Line 3,308: |
Line 3,307: |
| |} | | |} |
| | | |
− | Recognizing <math>\mathit{1} = \mathrm{A}\!:\!\mathrm{A} + \mathrm{B}\!:\!\mathrm{B} + \mathrm{C}\!:\!\mathrm{C}</math> to be the identity transformation, the 2-adic relation <math>\mathit{n} = {}^{\backprime\backprime}\, \text{noder of}\, \underline{~~~~}\, {}^{\prime\prime}</math> may be represented by an element <math>\mathit{1} + \mathrm{A}\!:\!\mathrm{B} + \mathrm{B}\!:\!\mathrm{C} + \mathrm{C}\!:\!\mathrm{A}</math> of the so-called ''group ring'', all of which just makes this element a special sort of linear transformation. | + | Recognizing <math>\mathit{1} = \mathrm{A}\!:\!\mathrm{A} + \mathrm{B}\!:\!\mathrm{B} + \mathrm{C}\!:\!\mathrm{C}</math> to be the identity transformation, the 2-adic relation <math>\mathit{n} = {}^{\backprime\backprime}\, \text{noder of}\, \underline{[[User:Jon Awbrey|Jon Awbrey]] ([[User talk:Jon Awbrey|talk]]) 21:56, 7 December 2014 (UTC)}\, {}^{\prime\prime}</math> may be represented by an element <math>\mathit{1} + \mathrm{A}\!:\!\mathrm{B} + \mathrm{B}\!:\!\mathrm{C} + \mathrm{C}\!:\!\mathrm{A}</math> of the so-called ''group ring'', all of which just makes this element a special sort of linear transformation. |
| | | |
| Up to this point, we're still reading the elementary relatives of the form <math>I:J\!</math> in the way that Peirce reads them in logical contexts: <math>I\!</math> is the relate, <math>J\!</math> is the correlate, and in our current example we read <math>I:J,\!</math> or more exactly, <math>\mathit{n}_{ij} = 1,\!</math> to say that <math>I\!</math> is a noder of <math>J.\!</math> This is the mode of reading that we call ''multiplying on the left''. | | Up to this point, we're still reading the elementary relatives of the form <math>I:J\!</math> in the way that Peirce reads them in logical contexts: <math>I\!</math> is the relate, <math>J\!</math> is the correlate, and in our current example we read <math>I:J,\!</math> or more exactly, <math>\mathit{n}_{ij} = 1,\!</math> to say that <math>I\!</math> is a noder of <math>J.\!</math> This is the mode of reading that we call ''multiplying on the left''. |
Line 4,255: |
Line 4,254: |
| ===Ontology List (Apr–Jul 2002)=== | | ===Ontology List (Apr–Jul 2002)=== |
| | | |
− | * http://suo.ieee.org/ontology/thrd28.html#04040 | + | * http://web.archive.org/web/20110612002240/http://suo.ieee.org/ontology/thrd28.html#04040 |
− | # http://suo.ieee.org/ontology/msg04040.html | + | # http://web.archive.org/web/20140406040004/http://suo.ieee.org/ontology/msg04040.html |
− | # http://suo.ieee.org/ontology/msg04041.html | + | # http://web.archive.org/web/20110612001949/http://suo.ieee.org/ontology/msg04041.html |
− | # http://suo.ieee.org/ontology/msg04045.html | + | # http://web.archive.org/web/20110612010502/http://suo.ieee.org/ontology/msg04045.html |
− | # http://suo.ieee.org/ontology/msg04046.html | + | # http://web.archive.org/web/20110612005212/http://suo.ieee.org/ontology/msg04046.html |
− | # http://suo.ieee.org/ontology/msg04047.html | + | # http://web.archive.org/web/20110612001954/http://suo.ieee.org/ontology/msg04047.html |
− | # http://suo.ieee.org/ontology/msg04048.html | + | # http://web.archive.org/web/20110612010620/http://suo.ieee.org/ontology/msg04048.html |
− | # http://suo.ieee.org/ontology/msg04052.html | + | # http://web.archive.org/web/20110612010550/http://suo.ieee.org/ontology/msg04052.html |
− | # http://suo.ieee.org/ontology/msg04054.html | + | # http://web.archive.org/web/20110612010724/http://suo.ieee.org/ontology/msg04054.html |
− | # http://suo.ieee.org/ontology/msg04055.html | + | # http://web.archive.org/web/20110612000847/http://suo.ieee.org/ontology/msg04055.html |
− | # http://suo.ieee.org/ontology/msg04067.html | + | # http://web.archive.org/web/20110612001959/http://suo.ieee.org/ontology/msg04067.html |
− | # http://suo.ieee.org/ontology/msg04068.html | + | # http://web.archive.org/web/20110612010507/http://suo.ieee.org/ontology/msg04068.html |
− | # http://suo.ieee.org/ontology/msg04069.html | + | # http://web.archive.org/web/20110612002014/http://suo.ieee.org/ontology/msg04069.html |
− | # http://suo.ieee.org/ontology/msg04070.html | + | # http://web.archive.org/web/20110612010701/http://suo.ieee.org/ontology/msg04070.html |
− | # http://suo.ieee.org/ontology/msg04072.html | + | # http://web.archive.org/web/20110612003540/http://suo.ieee.org/ontology/msg04072.html |
− | # http://suo.ieee.org/ontology/msg04073.html | + | # http://web.archive.org/web/20110612005229/http://suo.ieee.org/ontology/msg04073.html |
− | # http://suo.ieee.org/ontology/msg04074.html | + | # http://web.archive.org/web/20110610153117/http://suo.ieee.org/ontology/msg04074.html |
− | # http://suo.ieee.org/ontology/msg04077.html | + | # http://web.archive.org/web/20110612010555/http://suo.ieee.org/ontology/msg04077.html |
− | # http://suo.ieee.org/ontology/msg04079.html | + | # http://web.archive.org/web/20110612001918/http://suo.ieee.org/ontology/msg04079.html |
− | # http://suo.ieee.org/ontology/msg04080.html | + | # http://web.archive.org/web/20110612005244/http://suo.ieee.org/ontology/msg04080.html |
− | # http://suo.ieee.org/ontology/msg04268.html | + | # http://web.archive.org/web/20110612005249/http://suo.ieee.org/ontology/msg04268.html |
− | # http://suo.ieee.org/ontology/msg04269.html | + | # http://web.archive.org/web/20110612010626/http://suo.ieee.org/ontology/msg04269.html |
− | # http://suo.ieee.org/ontology/msg04272.html | + | # http://web.archive.org/web/20110612000853/http://suo.ieee.org/ontology/msg04272.html |
− | # http://suo.ieee.org/ontology/msg04273.html | + | # http://web.archive.org/web/20110612010514/http://suo.ieee.org/ontology/msg04273.html |
− | # http://suo.ieee.org/ontology/msg04290.html | + | # http://web.archive.org/web/20110612002235/http://suo.ieee.org/ontology/msg04290.html |
| | | |
− | ===Inquiry List (May & Jul 2004)=== | + | ===Inquiry List (May–Jul 2004)=== |
| | | |
| * http://stderr.org/pipermail/inquiry/2004-May/thread.html#1400 | | * http://stderr.org/pipermail/inquiry/2004-May/thread.html#1400 |
| * http://stderr.org/pipermail/inquiry/2004-July/thread.html#1685 | | * http://stderr.org/pipermail/inquiry/2004-July/thread.html#1685 |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001400.html |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001401.html |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001402.html |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001403.html |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001404.html |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001405.html |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001406.html |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001407.html |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001408.html |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001410.html |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001411.html |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001412.html |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001413.html |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001415.html |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001416.html |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001418.html |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001419.html |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001420.html |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001421.html |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001422.html |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001423.html |
| + | # http://stderr.org/pipermail/inquiry/2004-May/001424.html |
| + | # http://stderr.org/pipermail/inquiry/2004-July/001685.html |
| + | # http://stderr.org/pipermail/inquiry/2004-July/001686.html |
| + | # http://stderr.org/pipermail/inquiry/2004-July/001687.html |
| + | # http://stderr.org/pipermail/inquiry/2004-July/001688.html |
| | | |
− | ===NKS Forum (May & Jul 2004)=== | + | ===NKS Forum (May–Jul 2004)=== |
| | | |
− | * http://forum.wolframscience.com/archive/topic/420-1.html | + | * http://forum.wolframscience.com/archive/topic/420.html |
| * http://forum.wolframscience.com/printthread.php?threadid=420 | | * http://forum.wolframscience.com/printthread.php?threadid=420 |
| * http://forum.wolframscience.com/showthread.php?threadid=420 | | * http://forum.wolframscience.com/showthread.php?threadid=420 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1282#post1282 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1285#post1285 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1289#post1289 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1292#post1292 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1293#post1293 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1294#post1294 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1296#post1296 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1299#post1299 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1301#post1301 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1304#post1304 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1307#post1307 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1309#post1309 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1311#post1311 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1314#post1314 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1315#post1315 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1318#post1318 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1321#post1321 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1323#post1323 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1326#post1326 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1327#post1327 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1330#post1330 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1331#post1331 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1598#post1598 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1601#post1601 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1602#post1602 |
| + | # http://forum.wolframscience.com/showthread.php?postid=1603#post1603 |