Line 7,643: |
Line 7,643: |
| ==Appendices== | | ==Appendices== |
| | | |
− | ===Appendix A=== | + | ===Appendix 1. Propositional Forms and Differential Expansions=== |
| + | |
| + | ====Table A1. Propositional Forms on Two Variables==== |
| | | |
| <br> | | <br> |
Line 7,801: |
Line 7,803: |
| \end{matrix}</math> | | \end{matrix}</math> |
| |} | | |} |
| + | |
| + | <br> |
| + | |
| + | ====Table A2. Propositional Forms on Two Variables==== |
| | | |
| <br> | | <br> |
Line 8,017: |
Line 8,023: |
| | <math>1\!</math> | | | <math>1\!</math> |
| |} | | |} |
| + | |
| + | <br> |
| + | |
| + | ====Table A3. E''f'' Expanded Over Differential Features==== |
| | | |
| <br> | | <br> |
Line 8,269: |
Line 8,279: |
| | style="border-top:1px solid black; border-left:1px solid black" | <math>16\!</math> | | | style="border-top:1px solid black; border-left:1px solid black" | <math>16\!</math> |
| |} | | |} |
| + | |
| + | <br> |
| + | |
| + | ====Table A4. D''f'' Expanded Over Differential Features==== |
| | | |
| <br> | | <br> |
Line 8,443: |
Line 8,457: |
| | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> | | | style="border-top:1px solid black; border-left:1px solid black" | <math>0\!</math> |
| |} | | |} |
| + | |
| + | <br> |
| + | |
| + | ====Table A5. E''f'' Expanded Over Ordinary Features==== |
| | | |
| <br> | | <br> |
Line 8,689: |
Line 8,707: |
| | style="border-top:1px solid black; border-left:1px solid black" | <math>1\!</math> | | | style="border-top:1px solid black; border-left:1px solid black" | <math>1\!</math> |
| |} | | |} |
| + | |
| + | <br> |
| + | |
| + | ====Table A6. D''f'' Expanded Over Ordinary Features==== |
| | | |
| <br> | | <br> |
Line 8,887: |
Line 8,909: |
| <br> | | <br> |
| | | |
− | ===Appendix B=== | + | ====Table A12. Detail of Calculation for the Difference Map==== |
| | | |
| <br> | | <br> |
| | | |
| {| align="center" cellpadding="6" cellspacing="0" style="border-bottom:4px double black; border-left:4px double black; border-right:4px double black; border-top:4px double black; text-align:center; width:80%" | | {| align="center" cellpadding="6" cellspacing="0" style="border-bottom:4px double black; border-left:4px double black; border-right:4px double black; border-top:4px double black; text-align:center; width:80%" |
− | |+ style="height:30px" | <math>\text{Table B1.} ~~ \text{Detail of Calculation for}~ \mathrm{E}f + f = \mathrm{D}f\!</math> | + | |+ style="height:30px" | <math>\text{Table A12.} ~~ \text{Detail of Calculation for}~ {\mathrm{E}f + f = \mathrm{D}f}\!</math> |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
| | style="width:6%" | | | | style="width:6%" | |
Line 9,450: |
Line 9,472: |
| <br> | | <br> |
| | | |
− | ===Appendix C=== | + | ===Appendix 2. Computational Details=== |
| + | |
| + | ====Operator Maps for the Logical Disjunction ''f''(u, v)==== |
| + | |
| + | =====Computation of “εf”===== |
| + | |
| + | =====Computation of “Ef”===== |
| + | |
| + | =====Computation of “Df” (1)===== |
| + | |
| + | =====Computation of “Df” (2)===== |
| + | |
| + | =====Computation of “df”===== |
| + | |
| + | =====Computation of “rf”===== |
| + | |
| + | =====Computation Summary for Disjunction===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table 66-i.} ~~ \text{Computation Summary for}~ f(u, v) = \texttt{((} u \texttt{)(} v \texttt{))}\!</math> |
| + | | |
| + | <math>\begin{array}{c*{8}{l}} |
| + | \boldsymbol\varepsilon f |
| + | & = & u \!\cdot\! v \cdot 1 |
| + | & + & u \texttt{(} v \texttt{)} \cdot 1 |
| + | & + & \texttt{(} u \texttt{)} v \cdot 1 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 |
| + | \\[6pt] |
| + | \mathrm{E}f |
| + | & = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \cdot \mathrm{d}v \texttt{)} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} |
| + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{((} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | \\[6pt] |
| + | \mathrm{D}f |
| + | & = & u \!\cdot\! v \cdot \mathrm{d}u \cdot \mathrm{d}v |
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
| + | \\[6pt] |
| + | \mathrm{d}f |
| + | & = & u \!\cdot\! v \cdot 0 |
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | \\[6pt] |
| + | \mathrm{r}f |
| + | & = & u \!\cdot\! v \cdot \mathrm{d}u \cdot \mathrm{d}v |
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \cdot \mathrm{d}v |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ====Operator Maps for the Logical Equality ''g''(u, v)==== |
| + | |
| + | ======Computation of “εg”====== |
| + | |
| + | =====Computation of “Eg”===== |
| + | |
| + | =====Computation of “Dg” (1)===== |
| + | |
| + | =====Computation of “Dg” (2)===== |
| + | |
| + | =====Computation of “dg”===== |
| + | |
| + | =====Computation of “rg”===== |
| + | |
| + | =====Computation Summary for Equality===== |
| + | |
| + | <br> |
| + | |
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table 66-ii.} ~~ \text{Computation Summary for}~ g(u, v) = \texttt{((} u \texttt{,} v \texttt{))}\!</math> |
| + | | |
| + | <math>\begin{array}{c*{8}{l}} |
| + | \boldsymbol\varepsilon g |
| + | & = & u \!\cdot\! v \cdot 1 |
| + | & + & u \texttt{(} v \texttt{)} \cdot 0 |
| + | & + & \texttt{(} u \texttt{)} v \cdot 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 1 |
| + | \\[6pt] |
| + | \mathrm{E}g |
| + | & = & u \!\cdot\! v \cdot \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} |
| + | \\[6pt] |
| + | \mathrm{D}g |
| + | & = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | \\[6pt] |
| + | \mathrm{d}g |
| + | & = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
| + | \\[6pt] |
| + | \mathrm{r}g |
| + | & = & u \!\cdot\! v \cdot 0 |
| + | & + & u \texttt{(} v \texttt{)} \cdot 0 |
| + | & + & \texttt{(} u \texttt{)} v \cdot 0 |
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 |
| + | \end{array}</math> |
| + | |} |
| + | |
| + | <br> |
| + | |
| + | ===Appendix 3. Source Materials=== |
| | | |
− | ===Appendix D=== | + | ===Appendix 4. Various Definitions of the Tangent Vector=== |
| | | |
| ==References== | | ==References== |