Line 6,402: |
Line 6,402: |
| <br> | | <br> |
| | | |
− | {| align="center" cellpadding="6" cellspacing="0" style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; text-align:center; width:90%" | + | {| align="center" cellpadding="6" cellspacing="0" style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; text-align:center; width:80%" |
| |+ style="height:30px" | <math>\text{Table 64.} ~~ \text{A Transformation of Positions}\!</math> | | |+ style="height:30px" | <math>\text{Table 64.} ~~ \text{A Transformation of Positions}\!</math> |
| |- style="height:40px; background:ghostwhite; width:100%" | | |- style="height:40px; background:ghostwhite; width:100%" |
− | | style="width:10%" | <math>u\!</math> | + | | style="width:8%" | <math>u\!</math> |
− | | style="width:10%" | <math>v\!</math> | + | | style="width:8%" | <math>v\!</math> |
| | style="width:12%; border-left:1px solid black" | <math>x\!</math> | | | style="width:12%; border-left:1px solid black" | <math>x\!</math> |
| | style="width:12%" | <math>y\!</math> | | | style="width:12%" | <math>y\!</math> |
Line 6,413: |
Line 6,413: |
| | style="width:10%" | <math>\texttt{(} x \texttt{)} y\!</math> | | | style="width:10%" | <math>\texttt{(} x \texttt{)} y\!</math> |
| | style="width:10%" | <math>\texttt{(} x \texttt{)(} y \texttt{)}\!</math> | | | style="width:10%" | <math>\texttt{(} x \texttt{)(} y \texttt{)}\!</math> |
− | | style="width:16%; border-left:1px solid black" | <math>X^\bullet = [x, y]\!</math> | + | | style="width:20%; border-left:1px solid black" | <math>X^\bullet = [x, y]\!</math> |
| |- | | |- |
| | style="border-top:1px solid black" | | | | style="border-top:1px solid black" | |
Line 6,523: |
Line 6,523: |
| <br> | | <br> |
| | | |
− | <font face="courier new">
| + | {| align="center" border="1" cellpadding="6" cellspacing="0" style="text-align:center; width:80%" |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="font-weight:bold; text-align:center; width:90%" | + | |+ style="height:30px" | <math>\text{Table 65-a.} ~~ \text{Induced Transformation on Propositions}\!</math> |
− | |+ '''Table 65. Induced Transformation on Propositions''' | + | |- style="height:50px; background:ghostwhite" |
| + | | style="width:20%" | <math>X^\bullet~\!</math> |
| + | | style="width:20%; border-right:none" | <math>\longleftarrow\!</math> |
| + | | style="width:20%; border-left:none; border-right:none" | <math>F = (f, g)\!</math> |
| + | | style="width:20%; border-left:none" | <math>\longleftarrow\!</math> |
| + | | style="width:20%" | <math>U^\bullet~\!</math> |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
− | | ''X''<sup> •</sup> | + | | rowspan="2" | <math>f_i (x, y)\!</math> |
− | | colspan="3" | | + | | align="right" | <math>\begin{matrix}u = \\ v =\end{matrix}</math> |
− | {| align="center" border="0" cellpadding="4" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:80%" | + | | <math>\begin{matrix}1~1~0~0\\1~0~1~0\end{matrix}</math> |
− | | ←
| + | | align="left" | <math>\begin{matrix}= u \\ = v\end{matrix}</math> |
− | | ''F'' = ‹''f'' , ''g''›
| + | | rowspan="2" style="width:20%" | <math>f_j (u, v)\!</math> |
− | | ←
| |
− | |}
| |
− | | ''U''<sup> •</sup> | |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
− | | rowspan="2" | ''f''<sub>''i''</sub>‹''x'', ''y''› | + | | align="right" | <math>\begin{matrix}x = \\ y =\end{matrix}</math> |
− | | | + | | <math>\begin{matrix}1~1~1~0\\1~0~0~1\end{matrix}</math> |
− | {| align="right" style="background:ghostwhite; text-align:right"
| + | | align="left" | <math>\begin{matrix}= f(u, v) \\ = g(u, v)\end{matrix}</math> |
− | | ''u'' =
| |
| |- | | |- |
− | | ''v'' = | + | | valign="bottom" | |
− | |} | + | <math>\begin{matrix} |
− | | | + | f_{0} |
− | {| align="center" style="background:ghostwhite; text-align:center" | + | \\[2pt] |
− | | 1 1 0 0
| + | f_{1} |
| + | \\[2pt] |
| + | f_{2} |
| + | \\[2pt] |
| + | f_{3} |
| + | \\[2pt] |
| + | f_{4} |
| + | \\[2pt] |
| + | f_{5} |
| + | \\[2pt] |
| + | f_{6} |
| + | \\[2pt] |
| + | f_{7} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \texttt{(~)} |
| + | \\[2pt] |
| + | \texttt{(} x \texttt{)(} y \texttt{)} |
| + | \\[2pt] |
| + | \texttt{(} x \texttt{)~} y \texttt{~} |
| + | \\[2pt] |
| + | \texttt{(} x \texttt{)~~~} |
| + | \\[2pt] |
| + | \texttt{~} x \texttt{~(} y \texttt{)} |
| + | \\[2pt] |
| + | \texttt{~~~(} y \texttt{)} |
| + | \\[2pt] |
| + | \texttt{(} x \texttt{,~} y \texttt{)} |
| + | \\[2pt] |
| + | \texttt{(} x \texttt{~~} y \texttt{)} |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | 0~0~0~0 |
| + | \\[2pt] |
| + | 0~0~0~1 |
| + | \\[2pt] |
| + | 0~0~1~0 |
| + | \\[2pt] |
| + | 0~0~1~1 |
| + | \\[2pt] |
| + | 0~1~0~0 |
| + | \\[2pt] |
| + | 0~1~0~1 |
| + | \\[2pt] |
| + | 0~1~1~0 |
| + | \\[2pt] |
| + | 0~1~1~1 |
| + | \end{matrix}</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | \texttt{(~)} |
| + | \\[2pt] |
| + | \texttt{(~)} |
| + | \\[2pt] |
| + | \texttt{(} u \texttt{)(} v \texttt{)} |
| + | \\[2pt] |
| + | \texttt{(} u \texttt{)(} v \texttt{)} |
| + | \\[2pt] |
| + | \texttt{(} u \texttt{,~} v \texttt{)} |
| + | \\[2pt] |
| + | \texttt{(} u \texttt{,~} v \texttt{)} |
| + | \\[2pt] |
| + | \texttt{(} u \texttt{~~} v \texttt{)} |
| + | \\[2pt] |
| + | \texttt{(} u \texttt{~~} v \texttt{)} |
| + | \end{matrix}\!</math> |
| + | | valign="bottom" | |
| + | <math>\begin{matrix} |
| + | f_{0} |
| + | \\[2pt] |
| + | f_{0} |
| + | \\[2pt] |
| + | f_{1} |
| + | \\[2pt] |
| + | f_{1} |
| + | \\[2pt] |
| + | f_{6} |
| + | \\[2pt] |
| + | f_{6} |
| + | \\[2pt] |
| + | f_{7} |
| + | \\[2pt] |
| + | f_{7} |
| + | \end{matrix}</math> |
| |- | | |- |
− | | 1 0 1 0 | + | | valign="bottom" | |
− | |}
| + | <math>\begin{matrix} |
− | |
| + | f_{8} |
− | {| align="left" style="background:ghostwhite; text-align:left"
| + | \\[2pt] |
− | | = ''u''
| + | f_{9} |
− | |-
| + | \\[2pt] |
− | | = ''v''
| + | f_{10} |
− | |} | + | \\[2pt] |
− | | rowspan="2" | ''f''<sub>''j''</sub>‹''u'', ''v''›
| + | f_{11} |
− | |- style="background:ghostwhite"
| + | \\[2pt] |
− | |
| + | f_{12} |
− | {| align="right" style="background:ghostwhite; text-align:right" | + | \\[2pt] |
− | | ''x'' =
| + | f_{13} |
− | |-
| + | \\[2pt] |
− | | ''y'' =
| + | f_{14} |
− | |}
| + | \\[2pt] |
− | |
| + | f_{15} |
− | {| align="center" style="background:ghostwhite; text-align:center" | + | \end{matrix}</math> |
− | | 1 1 1 0
| + | | valign="bottom" | |
− | |-
| + | <math>\begin{matrix} |
− | | 1 0 0 1
| + | \texttt{~~} x \texttt{~~} y \texttt{~~} |
− | |}
| + | \\[2pt] |
− | |
| + | \texttt{((} x \texttt{,~} y \texttt{))} |
− | {| align="left" style="background:ghostwhite; text-align:left" | + | \\[2pt] |
− | | = ''f''‹''u'', ''v''›
| + | \texttt{~~~~~} y \texttt{~~} |
− | |-
| + | \\[2pt] |
− | | = ''g''‹''u'', ''v''›
| + | \texttt{~(} x \texttt{~(} y \texttt{))} |
− | |}
| + | \\[2pt] |
− | |-
| + | \texttt{~~} x \texttt{~~~~~} |
− | |
| + | \\[2pt] |
− | {| cellpadding="2" | + | \texttt{((} x \texttt{)~} y \texttt{)~} |
− | | ''f''<sub>0</sub>
| + | \\[2pt] |
− | |-
| + | \texttt{((} x \texttt{)(} y \texttt{))} |
− | | ''f''<sub>1</sub>
| + | \\[2pt] |
− | |-
| + | \texttt{((~))} |
− | | ''f''<sub>2</sub>
| + | \end{matrix}</math> |
− | |-
| + | | valign="bottom" | |
− | | ''f''<sub>3</sub>
| + | <math>\begin{matrix} |
− | |-
| + | 1~0~0~0 |
− | | ''f''<sub>4</sub>
| + | \\[2pt] |
− | |-
| + | 1~0~0~1 |
− | | ''f''<sub>5</sub>
| + | \\[2pt] |
− | |-
| + | 1~0~1~0 |
− | | ''f''<sub>6</sub>
| + | \\[2pt] |
− | |-
| + | 1~0~1~1 |
− | | ''f''<sub>7</sub>
| + | \\[2pt] |
− | |}
| + | 1~1~0~0 |
− | |
| + | \\[2pt] |
− | {| cellpadding="2" | + | 1~1~0~1 |
− | | ()
| + | \\[2pt] |
− | |-
| + | 1~1~1~0 |
− | | (''x'')(''y'')
| + | \\[2pt] |
− | |-
| + | 1~1~1~1 |
− | | (''x'') ''y''
| + | \end{matrix}</math> |
− | |-
| + | | valign="bottom" | |
− | | (''x'')
| + | <math>\begin{matrix} |
− | |-
| + | \texttt{~~} u \texttt{~~} v \texttt{~~} |
− | | ''x'' (''y'')
| + | \\[2pt] |
− | |-
| + | \texttt{~~} u \texttt{~~} v \texttt{~~} |
− | | (''y'')
| + | \\[2pt] |
− | |-
| + | \texttt{((} u \texttt{,~} v \texttt{))} |
− | | (''x'', ''y'')
| + | \\[2pt] |
− | |-
| + | \texttt{((} u \texttt{,~} v \texttt{))} |
− | | (''x'' ''y'')
| + | \\[2pt] |
− | |}
| + | \texttt{((} u \texttt{)(} v \texttt{))} |
− | |
| + | \\[2pt] |
− | {| cellpadding="2" | + | \texttt{((} u \texttt{)(} v \texttt{))} |
− | | 0 0 0 0
| + | \\[2pt] |
− | |-
| + | \texttt{((~))} |
− | | 0 0 0 1
| + | \\[2pt] |
− | |-
| + | \texttt{((~))} |
− | | 0 0 1 0
| + | \end{matrix}</math> |
− | |-
| + | | valign="bottom" | |
− | | 0 0 1 1
| + | <math>\begin{matrix} |
− | |-
| + | f_{8} |
− | | 0 1 0 0
| + | \\[2pt] |
− | |-
| + | f_{8} |
− | | 0 1 0 1
| + | \\[2pt] |
− | |-
| + | f_{9} |
− | | 0 1 1 0
| + | \\[2pt] |
− | |-
| + | f_{9} |
− | | 0 1 1 1
| + | \\[2pt] |
− | |}
| + | f_{14} |
− | |
| + | \\[2pt] |
− | {| cellpadding="2" | + | f_{14} |
− | | ()
| + | \\[2pt] |
− | |-
| + | f_{15} |
− | | ()
| + | \\[2pt] |
− | |-
| + | f_{15} |
− | | (''u'')(''v'')
| + | \end{matrix}</math> |
− | |-
| |
− | | (''u'')(''v'')
| |
− | |-
| |
− | | (''u'', ''v'')
| |
− | |-
| |
− | | (''u'', ''v'')
| |
− | |-
| |
− | | (''u'' ''v'')
| |
− | |-
| |
− | | (''u'' ''v'')
| |
− | |}
| |
− | |
| |
− | {| cellpadding="2" | |
− | | ''f''<sub>0</sub>
| |
− | |-
| |
− | | ''f''<sub>0</sub>
| |
− | |-
| |
− | | ''f''<sub>1</sub>
| |
− | |-
| |
− | | ''f''<sub>1</sub>
| |
− | |-
| |
− | | ''f''<sub>6</sub>
| |
− | |-
| |
− | | ''f''<sub>6</sub>
| |
− | |-
| |
− | | ''f''<sub>7</sub>
| |
− | |- | |
− | | ''f''<sub>7</sub>
| |
− | |}
| |
− | |-
| |
− | |
| |
− | {| cellpadding="2"
| |
− | | ''f''<sub>8</sub> | |
− | |-
| |
− | | ''f''<sub>9</sub>
| |
− | |-
| |
− | | ''f''<sub>10</sub>
| |
− | |-
| |
− | | ''f''<sub>11</sub>
| |
− | |-
| |
− | | ''f''<sub>12</sub>
| |
− | |-
| |
− | | ''f''<sub>13</sub>
| |
− | |-
| |
− | | ''f''<sub>14</sub>
| |
− | |-
| |
− | | ''f''<sub>15</sub>
| |
− | |}
| |
− | |
| |
− | {| cellpadding="2" | |
− | | ''x'' ''y''
| |
− | |-
| |
− | | ((''x'', ''y''))
| |
− | |-
| |
− | | ''y''
| |
− | |-
| |
− | | (''x'' (''y''))
| |
− | |-
| |
− | | ''x''
| |
− | |-
| |
− | | ((''x'') ''y'')
| |
− | |-
| |
− | | ((''x'')(''y''))
| |
− | |-
| |
− | | (())
| |
− | |}
| |
− | | | |
− | {| cellpadding="2"
| |
− | | 1 0 0 0
| |
− | |-
| |
− | | 1 0 0 1
| |
− | |-
| |
− | | 1 0 1 0
| |
− | |-
| |
− | | 1 0 1 1
| |
− | |-
| |
− | | 1 1 0 0
| |
− | |-
| |
− | | 1 1 0 1
| |
− | |-
| |
− | | 1 1 1 0
| |
− | |-
| |
− | | 1 1 1 1
| |
− | |}
| |
− | | | |
− | {| cellpadding="2"
| |
− | | ''u'' ''v''
| |
− | |-
| |
− | | ''u'' ''v''
| |
− | |-
| |
− | | ((''u'', ''v''))
| |
− | |-
| |
− | | ((''u'', ''v''))
| |
− | |-
| |
− | | ((''u'')(''v''))
| |
− | |-
| |
− | | ((''u'')(''v''))
| |
− | |-
| |
− | | (())
| |
− | |-
| |
− | | (())
| |
− | |}
| |
− | | | |
− | {| cellpadding="2"
| |
− | | ''f''<sub>8</sub>
| |
− | |-
| |
− | | ''f''<sub>8</sub>
| |
− | |-
| |
− | | ''f''<sub>9</sub>
| |
− | |-
| |
− | | ''f''<sub>9</sub>
| |
− | |-
| |
− | | ''f''<sub>14</sub>
| |
− | |-
| |
− | | ''f''<sub>14</sub>
| |
− | |-
| |
− | | ''f''<sub>15</sub>
| |
− | |-
| |
− | | ''f''<sub>15</sub>
| |
− | |}
| |
| |} | | |} |
− | </font>
| |
| | | |
| <br> | | <br> |