Line 6,845: |
Line 6,845: |
| <br> | | <br> |
| | | |
− | <font face="courier new">
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | + | |+ style="height:30px" | <math>\text{Table 66-i.} ~~ \text{Computation Summary for}~ f(u, v) = \texttt{((} u \texttt{)(} v \texttt{))}\!</math> |
− | |+ '''Table 66-i. Computation Summary for ''f''‹''u'', ''v''› = ((''u'')(''v''))''' | |
| | | | | |
− | {| align="left" border="0" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| + | <math>\begin{array}{c*{8}{l}} |
− | | <math>\epsilon</math>''f''
| + | \boldsymbol\varepsilon f |
− | | = || ''uv'' || <math>\cdot</math> || 1
| + | & = & u \!\cdot\! v \cdot 1 |
− | | + || ''u''(''v'') || <math>\cdot</math> || 1
| + | & + & u \texttt{(} v \texttt{)} \cdot 1 |
− | | + || (''u'')''v'' || <math>\cdot</math> || 1
| + | & + & \texttt{(} u \texttt{)} v \cdot 1 |
− | | + || (''u'')(''v'') || <math>\cdot</math> || 0
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 |
− | |-
| + | \\[6pt] |
− | | E''f''
| + | \mathrm{E}f |
− | | = || ''uv'' || <math>\cdot</math> || (d''u'' d''v'')
| + | & = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \cdot \mathrm{d}v \texttt{)} |
− | | + || ''u''(''v'') || <math>\cdot</math> || (d''u (d''v''))
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{))} |
− | | + || (''u'')''v'' || <math>\cdot</math> || ((d''u'') d''v'')
| + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{((} \mathrm{d}u \texttt{)} \mathrm{d}v \texttt{)} |
− | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v''))
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
− | |-
| + | \\[6pt] |
− | | D''f''
| + | \mathrm{D}J |
− | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v''
| + | & = & u \!\cdot\! v \cdot \mathrm{d}u \cdot \mathrm{d}v |
− | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' (d''v'')
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
− | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'') d''v''
| + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
− | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'')(d''v''))
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
− | |-
| + | \\[6pt] |
− | | d''f''
| + | \mathrm{d}J |
− | | = || ''uv'' || <math>\cdot</math> || 0
| + | & = & u \!\cdot\! v \cdot 0 |
− | | + || ''u''(''v'') || <math>\cdot</math> || d''u''
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u |
− | | + || (''u'')''v'' || <math>\cdot</math> || d''v''
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}v |
− | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
− | |-
| + | \\[6pt] |
− | | r''f''
| + | \mathrm{r}J |
− | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v''
| + | & = & u \!\cdot\! v \cdot \mathrm{d}u \cdot \mathrm{d}v |
− | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' d''v''
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v |
− | | + || (''u'')''v'' || <math>\cdot</math> || d''u'' d''v''
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \cdot \mathrm{d}v |
− | | + || (''u'')(''v'') || <math>\cdot</math> || d''u'' d''v''
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v |
| + | \end{array}</math> |
| |} | | |} |
− | |}
| |
− | </font>
| |
| | | |
| <br> | | <br> |
| | | |
− | <font face="courier new">
| + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | + | |+ style="height:30px" | <math>\text{Table 66-ii.} ~~ \text{Computation Summary for}~ g(u, v) = \texttt{((} u \texttt{,} v \texttt{))}\!</math> |
− | |+ '''Table 66-ii. Computation Summary for g‹''u'', ''v''› = ((''u'', ''v''))''' | |
| | | | | |
− | {| align="left" border="0" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| + | <math>\begin{array}{c*{8}{l}} |
− | | <math>\epsilon</math>''g''
| + | \boldsymbol\varepsilon g |
− | | = || ''uv'' || <math>\cdot</math> || 1
| + | & = & u \!\cdot\! v \cdot 1 |
− | | + || ''u''(''v'') || <math>\cdot</math> || 0
| + | & + & u \texttt{(} v \texttt{)} \cdot 0 |
− | | + || (''u'')''v'' || <math>\cdot</math> || 0
| + | & + & \texttt{(} u \texttt{)} v \cdot 0 |
− | | + || (''u'')(''v'') || <math>\cdot</math> || 1
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 1 |
− | |-
| + | \\[6pt] |
− | | E''g''
| + | \mathrm{E}f |
− | | = || ''uv'' || <math>\cdot</math> || ((d''u'', d''v''))
| + | & = & u \!\cdot\! v \cdot \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} |
− | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
− | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'')
| + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
− | | + || (''u'')(''v'') || <math>\cdot</math> || ((d''u'', d''v''))
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{((} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{))} |
− | |-
| + | \\[6pt] |
− | | D''g''
| + | \mathrm{D}J |
− | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'')
| + | & = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
− | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
− | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'')
| + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
− | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
− | |-
| + | \\[6pt] |
− | | d''g''
| + | \mathrm{d}J |
− | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'')
| + | & = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
− | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
− | | + || (''u'')''v'' || <math>\cdot</math> || (d''u'', d''v'')
| + | & + & \texttt{(} u \texttt{)} v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
− | | + || (''u'')(''v'') || <math>\cdot</math> || (d''u'', d''v'')
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
− | |-
| + | \\[6pt] |
− | | r''g''
| + | \mathrm{r}J |
− | | = || ''uv'' || <math>\cdot</math> || 0
| + | & = & u \!\cdot\! v \cdot 0 |
− | | + || ''u''(''v'') || <math>\cdot</math> || 0
| + | & + & u \texttt{(} v \texttt{)} \cdot 0 |
− | | + || (''u'')''v'' || <math>\cdot</math> || 0
| + | & + & \texttt{(} u \texttt{)} v \cdot 0 |
− | | + || (''u'')(''v'') || <math>\cdot</math> || 0
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 |
| + | \end{array}</math> |
| |} | | |} |
− | |}
| |
− | </font>
| |
| | | |
| <br> | | <br> |
Line 6,929: |
Line 6,925: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:90%" |
| |+ '''Table 67. Computation of an Analytic Series in Terms of Coordinates''' | | |+ '''Table 67. Computation of an Analytic Series in Terms of Coordinates''' |
| | | | | |
Line 7,261: |
Line 7,257: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:90%" |
| |+ '''Table 68. Computation of an Analytic Series in Symbolic Terms''' | | |+ '''Table 68. Computation of an Analytic Series in Symbolic Terms''' |
| |- style="background:ghostwhite" | | |- style="background:ghostwhite" |
Line 7,362: |
Line 7,358: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:90%" |
| | | | | |
| {| align="left" border="0" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" | | {| align="left" border="0" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |
Line 7,401: |
Line 7,397: |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:90%" |
| | | | | |
| {| align="left" border="0" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" | | {| align="left" border="0" cellpadding="1" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" |