Line 6,098: |
Line 6,098: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="4" cellspacing="0" style="text-align:left; width:90%" | + | {| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:90%" |
− | |+ '''Table 59. Synopsis of Terminology: Restrictive and Alternative Subtypes''' | + | |+ style="height:30px" | <math>\text{Table 59.} ~~ \text{Synopsis of Terminology : Restrictive and Alternative Subtypes}~\!</math> |
− | |- style="background:ghostwhite" | + | |- style="height:40px; background:ghostwhite" |
| | | | | |
− | | align="center" | '''Operator<br>or<br>Operand''' | + | | align="center" | <math>\begin{matrix}\text{Operator}\\\text{or}\\\text{Operand}\end{matrix}</math> |
− | | align="center" | '''Proposition<br>or<br>Component''' | + | | align="center" | <math>\begin{matrix}\text{Proposition}\\\text{or}\\\text{Component}\end{matrix}</math> |
− | | align="center" | '''Transformation<br>or<br>Mapping''' | + | | align="center" | <math>\begin{matrix}\text{Transformation}\\\text{or}\\\text{Map}\end{matrix}</math> |
− | |-
| |
− | | Operand
| |
− | | valign="top" |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | |
− | | ''F'' = ‹''F''<sub>1</sub>, ''F''<sub>2</sub>›
| |
− | |-
| |
− | | ''F'' = ‹''f'', ''g''› : ''U'' → ''X''
| |
− | |}
| |
− | | valign="top" |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | |
− | | ''F''<sub>''i''</sub> : 〈''u'', ''v''〉 → '''B'''
| |
− | |-
| |
− | | ''F''<sub>''i''</sub> : '''B'''<sup>''n''</sup> → '''B'''
| |
− | |}
| |
− | | valign="top" |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100" | |
− | | ''F'' : [''u'', ''v''] → [''x'', ''y'']
| |
− | |-
| |
− | | ''F'' : '''B'''<sup>''n''</sup> → '''B'''<sup>''k''</sup>
| |
− | |}
| |
| |- | | |- |
| + | | align="center" | <math>\underline\text{Operand}\!</math> |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{l} |
− | | Tacit
| + | F = (F_1, F_2) \\ |
− | |-
| + | F = (f, g) : U \!\to\! X |
− | | Extension
| + | \end{array}</math> |
− | |}
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
| + | <math>\begin{array}{l} |
− | | <math>\epsilon</math> :
| + | F_i : \langle u, v \rangle \!\to\! \mathbb{B} \\ |
− | |-
| + | F_i : \mathbb{B}^n \!\to\! \mathbb{B} |
− | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
| + | \end{array}</math> |
− | |-
| |
− | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → ''X''<sup> •</sup>)
| |
− | |}
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
| + | <math>\begin{array}{l} |
− | | <math>\epsilon</math>''F''<sub>''i''</sub> :
| + | F : [u, v] \!\to\! [x, y] \\ |
− | |-
| + | F : [\mathbb{B}^n] \!\to\! [\mathbb{B}^k] |
− | | 〈''u'', ''v'', d''u'', d''v''〉 → '''B'''
| + | \end{array}</math> |
| |- | | |- |
− | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''B''' | + | | align="center" | <math>\begin{matrix}\underline\text{Tacit}\\\text{extension}\end{matrix}</math> |
− | |}
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
| + | <math>\begin{array}{l} |
− | | <math>\epsilon</math>''F'' :
| + | \boldsymbol\varepsilon : U^\bullet \!\to\! \mathrm{E}U^\bullet,~ |
− | |-
| + | \boldsymbol\varepsilon : X^\bullet \!\to\! \mathrm{E}X^\bullet \\ |
− | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'']
| + | \boldsymbol\varepsilon : (U^\bullet \!\to\! X^\bullet) \!\to\! (\mathrm{E}U^\bullet \!\to\! X^\bullet) |
− | |-
| + | \end{array}</math> |
− | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup>]
| |
− | |}
| |
− | |-
| |
− | |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | |
− | | Trope
| |
− | |-
| |
− | | Extension
| |
− | |}
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
| + | <math>\begin{array}{l} |
− | | <math>\eta</math> :
| + | \boldsymbol\varepsilon F_i : \langle u, v, \mathrm{d}u, \mathrm{d}v \rangle \!\to\! \mathbb{B} \\ |
− | |-
| + | \boldsymbol\varepsilon F_i : \mathbb{B}^n \!\times\! \mathbb{D}^n \!\to\! \mathbb{B} |
− | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
| + | \end{array}</math> |
− | |-
| |
− | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>)
| |
− | |}
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
| + | <math>\begin{array}{l} |
− | | <math>\eta</math>''F''<sub>''i''</sub> :
| + | \boldsymbol\varepsilon F : [u, v, \mathrm{d}u, \mathrm{d}v] \!\to\! [x, y] \\ |
− | |-
| + | \boldsymbol\varepsilon F : [\mathbb{B}^n \!\times\! \mathbb{D}^n] \!\to\! [\mathbb{B}^k] |
− | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
| + | \end{array}</math> |
| |- | | |- |
− | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' | + | | align="center" | <math>\begin{matrix}\underline\text{Trope}\\\text{extension}\end{matrix}</math> |
− | |}
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
| + | <math>\begin{array}{l} |
− | | <math>\eta</math>''F'' :
| + | \eta : U^\bullet \!\to\! \mathrm{E}U^\bullet,~ |
− | |-
| + | \eta : X^\bullet \!\to\! \mathrm{E}X^\bullet \\ |
− | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y'']
| + | \eta : (U^\bullet \!\to\! X^\bullet) \!\to\! (\mathrm{E}U^\bullet \!\to\! \mathrm{d}X^\bullet) |
− | |-
| + | \end{array}</math> |
− | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>]
| |
− | |}
| |
− | |-
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{l} |
− | | Enlargement
| + | \eta F_i : \langle u, v, \mathrm{d}u, \mathrm{d}v \rangle \!\to\! \mathbb{D} \\ |
− | |-
| + | \eta F_i : \mathbb{B}^n \!\times\! \mathbb{D}^n \!\to\! \mathbb{D} |
− | | Operator
| + | \end{array}</math> |
− | |}
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{l} |
− | | E :
| + | \eta F : [u, v, \mathrm{d}u, \mathrm{d}v] \!\to\! [\mathrm{d}x, \mathrm{d}y] \\ |
− | |-
| + | \eta F : [\mathbb{B}^n \!\times\! \mathbb{D}^n] \!\to\! [\mathbb{D}^k] |
− | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
| + | \end{array}</math> |
| |- | | |- |
− | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) | + | | align="center" | <math>\begin{matrix}\underline\text{Enlargement}\\\text{operator}\end{matrix}</math> |
− | |}
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{l} |
− | | E''F''<sub>''i''</sub> :
| + | \mathrm{E} : U^\bullet \!\to\! \mathrm{E}U^\bullet,~ |
− | |-
| + | \mathrm{E} : X^\bullet \!\to\! \mathrm{E}X^\bullet \\ |
− | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
| + | \mathrm{E} : (U^\bullet \!\to\! X^\bullet) \!\to\! (\mathrm{E}U^\bullet \!\to\! \mathrm{d}X^\bullet) |
− | |-
| + | \end{array}</math> |
− | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D'''
| |
− | |}
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{l} |
− | | E''F'' :
| + | \mathrm{E}F_i : \langle u, v, \mathrm{d}u, \mathrm{d}v \rangle \!\to\! \mathbb{D} \\ |
− | |-
| + | \mathrm{E}F_i : \mathbb{B}^n \!\times\! \mathbb{D}^n \!\to\! \mathbb{D} |
− | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y'']
| + | \end{array}</math> |
− | |-
| |
− | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>]
| |
− | |}
| |
− | |-
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{l} |
− | | Difference
| + | \mathrm{E}F : [u, v, \mathrm{d}u, \mathrm{d}v] \!\to\! [\mathrm{d}x, \mathrm{d}y] \\ |
| + | \mathrm{E}F : [\mathbb{B}^n \!\times\! \mathbb{D}^n] \!\to\! [\mathbb{D}^k] |
| + | \end{array}</math> |
| |- | | |- |
− | | Operator | + | | align="center" | <math>\begin{matrix}\underline\text{Difference}\\\text{operator}\end{matrix}</math> |
− | |} | |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{l} |
− | | D :
| + | \mathrm{D} : U^\bullet \!\to\! \mathrm{E}U^\bullet,~ |
− | |-
| + | \mathrm{D} : X^\bullet \!\to\! \mathrm{E}X^\bullet \\ |
− | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
| + | \mathrm{D} : (U^\bullet \!\to\! X^\bullet) \!\to\! (\mathrm{E}U^\bullet \!\to\! \mathrm{d}X^\bullet) |
− | |-
| + | \end{array}</math> |
− | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>)
| |
− | |}
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{l} |
− | | D''F''<sub>''i''</sub> :
| + | \mathrm{D}F_i : \langle u, v, \mathrm{d}u, \mathrm{d}v \rangle \!\to\! \mathbb{D} \\ |
− | |-
| + | \mathrm{D}F_i : \mathbb{B}^n \!\times\! \mathbb{D}^n \!\to\! \mathbb{D} |
− | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
| + | \end{array}</math> |
− | |-
| |
− | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D'''
| |
− | |}
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{l} |
− | | D''F'' :
| + | \mathrm{D}F : [u, v, \mathrm{d}u, \mathrm{d}v] \!\to\! [\mathrm{d}x, \mathrm{d}y] \\ |
− | |-
| + | \mathrm{D}F : [\mathbb{B}^n \!\times\! \mathbb{D}^n] \!\to\! [\mathbb{D}^k] |
− | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y'']
| + | \end{array}</math> |
− | |-
| |
− | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>]
| |
− | |}
| |
| |- | | |- |
| + | | align="center" | <math>\begin{matrix}\underline\text{Differential}\\\text{operator}\end{matrix}</math> |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{l} |
− | | Differential
| + | \mathrm{d} : U^\bullet \!\to\! \mathrm{E}U^\bullet,~ |
− | |-
| + | \mathrm{d} : X^\bullet \!\to\! \mathrm{E}X^\bullet \\ |
− | | Operator
| + | \mathrm{d} : (U^\bullet \!\to\! X^\bullet) \!\to\! (\mathrm{E}U^\bullet \!\to\! \mathrm{d}X^\bullet) |
− | |}
| + | \end{array}</math> |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{l} |
− | | d :
| + | \mathrm{d}F_i : \langle u, v, \mathrm{d}u, \mathrm{d}v \rangle \!\to\! \mathbb{D} \\ |
− | |-
| + | \mathrm{d}F_i : \mathbb{B}^n \!\times\! \mathbb{D}^n \!\to\! \mathbb{D} |
− | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
| + | \end{array}</math> |
− | |-
| |
− | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>)
| |
− | |}
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{l} |
− | | d''F''<sub>''i''</sub> :
| + | \mathrm{d}F : [u, v, \mathrm{d}u, \mathrm{d}v] \!\to\! [\mathrm{d}x, \mathrm{d}y] \\ |
− | |-
| + | \mathrm{d}F : [\mathbb{B}^n \!\times\! \mathbb{D}^n] \!\to\! [\mathbb{D}^k] |
− | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
| + | \end{array}\!</math> |
| |- | | |- |
− | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D''' | + | | align="center" | <math>\begin{matrix}\underline\text{Remainder}\\\text{operator}\end{matrix}\!</math> |
− | |}
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{l} |
− | | d''F'' :
| + | \mathrm{r} : U^\bullet \!\to\! \mathrm{E}U^\bullet,~ |
− | |-
| + | \mathrm{r} : X^\bullet \!\to\! \mathrm{E}X^\bullet \\ |
− | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y'']
| + | \mathrm{r} : (U^\bullet \!\to\! X^\bullet) \!\to\! (\mathrm{E}U^\bullet \!\to\! \mathrm{d}X^\bullet) |
− | |-
| + | \end{array}</math> |
− | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>]
| |
− | |}
| |
− | |-
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{l} |
− | | Remainder
| + | \mathrm{r}F_i : \langle u, v, \mathrm{d}u, \mathrm{d}v \rangle \!\to\! \mathbb{D} \\ |
− | |-
| + | \mathrm{r}F_i : \mathbb{B}^n \!\times\! \mathbb{D}^n \!\to\! \mathbb{D} |
− | | Operator
| + | \end{array}</math> |
− | |}
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{l} |
− | | r :
| + | \mathrm{r}F : [u, v, \mathrm{d}u, \mathrm{d}v] \!\to\! [\mathrm{d}x, \mathrm{d}y] \\ |
− | |-
| + | \mathrm{r}F : [\mathbb{B}^n \!\times\! \mathbb{D}^n] \!\to\! [\mathbb{D}^k] |
− | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
| + | \end{array}</math> |
| |- | | |- |
− | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → d''X''<sup> •</sup>) | + | | align="center" | <math>\begin{matrix}\underline\text{Radius}\\\text{operator}\end{matrix}</math> |
− | |}
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
| + | <math>\begin{array}{l} |
− | | r''F''<sub>''i''</sub> :
| + | \mathsf{e} = (\boldsymbol\varepsilon, \eta) \\ |
− | |-
| + | \mathsf{e} : (U^\bullet \!\to\! X^\bullet) \!\to\! (\mathrm{E}U^\bullet \!\to\! \mathrm{E}X^\bullet) |
− | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
| + | \end{array}</math> |
− | |-
| |
− | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D'''
| |
− | |}
| |
− | |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | |
− | | r''F'' :
| |
− | |-
| |
− | | [''u'', ''v'', d''u'', d''v''] → [d''x'', d''y'']
| |
− | |-
| |
− | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''D'''<sup>''k''</sup>]
| |
− | |}
| |
− | |-
| |
− | |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | |
− | | Radius
| |
− | |-
| |
− | | Operator
| |
− | |}
| |
− | |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | |
− | | <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>› :
| |
− | |-
| |
− | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
| |
− | |-
| |
− | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>)
| |
− | |}
| |
− | |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
| |
| | | | | |
− | |-
| |
− | |
| |
− | |-
| |
− | |
| |
− | |}
| |
− | |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
| |
− | | <font face=georgia>'''e'''</font>''F'' :
| |
− | |-
| |
− | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y'']
| |
− | |-
| |
− | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]
| |
− | |}
| |
− | |-
| |
− | |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
| |
− | | Secant
| |
− | |-
| |
− | | Operator
| |
− | |}
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
| + | <math>\begin{array}{l} |
− | | <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E› :
| + | \mathsf{e}F : [u, v, \mathrm{d}u, \mathrm{d}v] \!\to\! [x, y, \mathrm{d}x, \mathrm{d}y] \\ |
− | |-
| + | \mathsf{e}F : [\mathbb{B}^n \!\times\! \mathbb{D}^n] \!\to\! [\mathbb{B}^k \!\times\! \mathbb{D}^k] |
− | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
| + | \end{array}</math> |
| |- | | |- |
− | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) | + | | align="center" | <math>\begin{matrix}\underline\text{Secant}\\\text{operator}\end{matrix}</math> |
− | |}
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{l} |
− | |
| + | \mathsf{E} = (\boldsymbol\varepsilon, \mathrm{E}) \\ |
− | |-
| + | \mathsf{E} : (U^\bullet \!\to\! X^\bullet) \!\to\! (\mathrm{E}U^\bullet \!\to\! \mathrm{E}X^\bullet) |
| + | \end{array}</math> |
| | | | | |
− | |-
| |
− | |
| |
− | |}
| |
− | |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
| |
− | | <font face=georgia>'''E'''</font>''F'' :
| |
− | |-
| |
− | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y'']
| |
− | |-
| |
− | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]
| |
− | |}
| |
− | |-
| |
− | |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
| |
− | | Chord
| |
− | |-
| |
− | | Operator
| |
− | |}
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
| + | <math>\begin{array}{l} |
− | | <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D› :
| + | \mathsf{E}F : [u, v, \mathrm{d}u, \mathrm{d}v] \!\to\! [x, y, \mathrm{d}x, \mathrm{d}y] \\ |
− | |-
| + | \mathsf{E}F : [\mathbb{B}^n \!\times\! \mathbb{D}^n] \!\to\! [\mathbb{B}^k \!\times\! \mathbb{D}^k] |
− | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
| + | \end{array}</math> |
| |- | | |- |
− | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>) | + | | align="center" | <math>\begin{matrix}\underline\text{Chord}\\\text{operator}\end{matrix}</math> |
− | |}
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{l} |
− | |
| + | \mathsf{D} = (\boldsymbol\varepsilon, \mathrm{D}) \\ |
− | |-
| + | \mathsf{D} : (U^\bullet \!\to\! X^\bullet) \!\to\! (\mathrm{E}U^\bullet \!\to\! \mathrm{E}X^\bullet) |
− | |
| + | \end{array}</math> |
− | |-
| |
| | | | | |
− | |}
| |
− | |
| |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
| |
− | | <font face=georgia>'''D'''</font>''F'' :
| |
− | |-
| |
− | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y'']
| |
− | |-
| |
− | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]
| |
− | |}
| |
− | |-
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{l} |
− | | Tangent
| + | \mathsf{D}F : [u, v, \mathrm{d}u, \mathrm{d}v] \!\to\! [x, y, \mathrm{d}x, \mathrm{d}y] \\ |
| + | \mathsf{D}F : [\mathbb{B}^n \!\times\! \mathbb{D}^n] \!\to\! [\mathbb{B}^k \!\times\! \mathbb{D}^k] |
| + | \end{array}</math> |
| |- | | |- |
− | | Functor | + | | align="center" | <math>\begin{matrix}\underline\text{Tangent}\\\text{functor}\end{matrix}</math> |
− | |} | |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{l} |
− | | <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d› :
| + | \mathsf{T} = (\boldsymbol\varepsilon, \mathrm{d}) \\ |
− | |-
| + | \mathsf{T} : (U^\bullet \!\to\! X^\bullet) \!\to\! (\mathrm{E}U^\bullet \!\to\! \mathrm{E}X^\bullet) |
− | | ''U''<sup> •</sup> → E''U''<sup> •</sup> , ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
| + | \end{array}</math> |
− | |-
| |
− | | (''U''<sup> •</sup> → ''X''<sup> •</sup>) → (E''U''<sup> •</sup> → E''X''<sup> •</sup>)
| |
− | |}
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{l} |
− | | d''F''<sub>''i''</sub> :
| + | \mathrm{d}F_i : \langle u, v, \mathrm{d}u, \mathrm{d}v \rangle \!\to\! \mathbb{D} \\ |
− | |-
| + | \mathrm{d}F_i : \mathbb{B}^n \!\times\! \mathbb{D}^n \!\to\! \mathbb{D} |
− | | 〈''u'', ''v'', d''u'', d''v''〉 → '''D'''
| + | \end{array}</math> |
− | |-
| |
− | | '''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup> → '''D'''
| |
− | |}
| |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%" | + | <math>\begin{array}{l} |
− | | <font face=georgia>'''T'''</font>''F'' :
| + | \mathsf{T}F : [u, v, \mathrm{d}u, \mathrm{d}v] \!\to\! [x, y, \mathrm{d}x, \mathrm{d}y] \\ |
− | |-
| + | \mathsf{T}F : [\mathbb{B}^n \!\times\! \mathbb{D}^n] \!\to\! [\mathbb{B}^k \!\times\! \mathbb{D}^k] |
− | | [''u'', ''v'', d''u'', d''v''] → [''x'', ''y'', d''x'', d''y'']
| + | \end{array}</math> |
− | |-
| |
− | | ['''B'''<sup>''n''</sup> × '''D'''<sup>''n''</sup>] → ['''B'''<sup>''k''</sup> × '''D'''<sup>''k''</sup>]
| |
| |} | | |} |
− | |}<br>
| + | |
| + | <br> |
| | | |
| ===Transformations of Type '''B'''<sup>2</sup> → '''B'''<sup>2</sup>=== | | ===Transformations of Type '''B'''<sup>2</sup> → '''B'''<sup>2</sup>=== |