Line 5,478:
Line 5,478:
<br>
<br>
−
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:70%"
+
{| align="center" border="1" cellpadding="10" cellspacing="0" style="text-align:left; width:90%"
−
|+ '''Table 54. Cast of Characters: Expansive Subtypes of Objects and Operators'''
+
|+ style="height:30px" | <math>\text{Table 54.} ~~ \text{Cast of Characters : Expansive Subtypes of Objects and Operators}\!</math>
−
|- style="background:ghostwhite"
+
|- style="height:40px; background:ghostwhite"
−
! Item
+
| align="center" | <math>\text{Symbol}\!</math>
−
! Notation
+
| align="center" | <math>\text{Notation}\!</math>
−
! Description
+
| align="center" | <math>\text{Description}\!</math>
−
! Type
+
| align="center" | <math>\text{Type}\!</math>
|-
|-
−
| ''U''<sup> •</sup>
+
| align="center" | <math>U^\bullet\!</math>
−
| = [''u'', ''v'']
+
| <math>= [u, v]\!</math>
−
| Source Universe
+
| <math>\text{Source universe}\!</math>
−
| ['''B'''<sup>2</sup>]
+
| <math>[\mathbb{B}^2]\!</math>
|-
|-
−
| ''X''<sup> •</sup>
+
| align="center" | <math>X^\bullet~\!</math>
−
| = [''x'']
+
| <math>= [x]\!</math>
−
| Target Universe
+
| <math>\text{Target universe}\!</math>
−
| ['''B'''<sup>1</sup>]
+
| <math>[\mathbb{B}^1]~\!</math>
|-
|-
−
| E''U''<sup> •</sup>
+
| align="center" | <math>\mathrm{E}U^\bullet\!</math>
−
| = [''u'', ''v'', d''u'', d''v'']
+
| <math>= [u, v, \mathrm{d}u, \mathrm{d}v]\!</math>
−
| Extended Source Universe
+
| <math>\text{Extended source universe}\!</math>
−
| ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>]
+
| <math>[\mathbb{B}^2 \times \mathbb{D}^2]\!</math>
|-
|-
−
| E''X''<sup> •</sup>
+
| align="center" | <math>\mathrm{E}X^\bullet\!</math>
−
| = [''x'', d''x'']
+
| <math>= [x, \mathrm{d}x]~\!</math>
−
| Extended Target Universe
+
| <math>\text{Extended target universe}\!</math>
−
| ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>]
+
| <math>[\mathbb{B}^1 \times \mathbb{D}^1]\!</math>
|-
|-
−
| ''J''
+
| align="center" | <math>J\!</math>
−
| ''J'' : ''U'' → '''B'''
+
| <math>J : U \to \mathbb{B}\!</math>
−
| Proposition
+
| <math>\text{Proposition}\!</math>
−
| ('''B'''<sup>2</sup> → '''B''') ∈ ['''B'''<sup>2</sup>]
+
| <math>(\mathbb{B}^2 \to \mathbb{B}) \in [\mathbb{B}^2]\!</math>
|-
|-
−
| ''J''
+
| align="center" | <math>J\!</math>
−
| ''J'' : ''U''<sup> •</sup> → ''X''<sup> •</sup>
+
| <math>J : U^\bullet \to X^\bullet\!</math>
−
| Transformation, or Mapping
+
| <math>\text{Transformation or Map}\!</math>
−
| ['''B'''<sup>2</sup>] → ['''B'''<sup>1</sup>]
+
| <math>[\mathbb{B}^2] \to [\mathbb{B}^1]\!</math>
|-
|-
−
| valign="top" |
+
| align="center" |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
+
<math>\begin{matrix}
−
| W
+
\boldsymbol\varepsilon
−
|}
+
\\
−
| valign="top" |
+
\eta
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
+
\\
−
| W :
+
\mathrm{E}
−
|-
+
\\
−
| ''U''<sup> •</sup> → E''U''<sup> •</sup> ,
+
\mathrm{D}
−
|-
+
\\
−
| ''X''<sup> •</sup> → E''X''<sup> •</sup> ,
+
\mathrm{d}
−
|-
+
\end{matrix}</math>
−
| (''U''<sup> •</sup> → ''X''<sup> •</sup>)
+
|
−
|-
+
<math>\begin{array}{l}
−
| →
+
\mathrm{W} : U^\bullet \to \mathrm{E}U^\bullet,
−
|-
+
\\
−
| (E''U''<sup> •</sup> → E''X''<sup> •</sup>) ,
+
\mathrm{W} : X^\bullet \to \mathrm{E}X^\bullet,
−
|-
+
\\\\
−
| for each W in the set:
+
\mathrm{W} : (U^\bullet \to X^\bullet) \to (\mathrm{E}U^\bullet \to \mathrm{E}X^\bullet)
−
|-
+
\\
−
| {<math>\epsilon</math>, <math>\eta</math>, E, D, d}
+
\text{for}~ \mathrm{W} = \boldsymbol\varepsilon, \eta, \mathrm{E}, \mathrm{D}, \mathrm{d}
−
|}
+
\end{array}</math>
−
| valign="top" |
+
|
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
+
<math>\begin{array}{ll}
−
| Operator
+
\text{Tacit extension operator} & \boldsymbol\varepsilon
−
|}
+
\\
−
| valign="top" |
+
\text{Trope extension operator} & \eta
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100"
+
\\
−
|
+
\text{Enlargement operator} & \mathrm{E}
−
|-
+
\\
−
| ['''B'''<sup>2</sup>] → ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] ,
+
\text{Difference operator} & \mathrm{D}
−
|-
+
\\
−
| ['''B'''<sup>1</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>] ,
+
\text{Differential operator} & \mathrm{d}
−
|-
+
\end{array}</math>
−
| (['''B'''<sup>2</sup>] → ['''B'''<sup>1</sup>])
+
|
−
|-
+
<math>\begin{array}{l}
−
| →
+
{[\mathbb{B}^2] \to [\mathbb{B}^2 \times \mathbb{D}^2]},
−
|-
+
\\
−
| (['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>])
+
{[\mathbb{B}^1] \to [\mathbb{B}^1 \times \mathbb{D}^1]},
−
|-
+
\\\\
−
|
+
([\mathbb{B}^2] \to [\mathbb{B}^1]) \to
−
|-
+
\\
−
|
+
([\mathbb{B}^2 \times \mathbb{D}^2] \to [\mathbb{B}^1 \times \mathbb{D}^1])
−
|}
+
\end{array}</math>
|-
|-
+
| align="center" |
+
<math>\begin{matrix}
+
\mathsf{e}
+
\\
+
\mathsf{E}
+
\\
+
\mathsf{D}
+
\\
+
\mathsf{T}
+
\end{matrix}</math>
+
|
+
<math>\begin{array}{l}
+
\mathsf{W} : U^\bullet \to \mathsf{T}U^\bullet = \mathrm{E}U^\bullet,
+
\\
+
\mathsf{W} : X^\bullet \to \mathsf{T}X^\bullet = \mathrm{E}X^\bullet,
+
\\\\
+
\mathsf{W} : (U^\bullet \to X^\bullet) \to (\mathsf{T}U^\bullet \to \mathsf{T}X^\bullet)
+
\\
+
\text{for}~ \mathsf{W} = \mathsf{e}, \mathsf{E}, \mathsf{D}, \mathsf{T}
+
\end{array}</math>
|
|
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
+
<math>\begin{array}{llll}
−
| <math>\epsilon</math>
+
\text{Radius operator} & \mathsf{e} & = & (\boldsymbol\varepsilon, \eta)
−
|-
+
\\
−
| <math>\eta</math>
+
\text{Secant operator} & \mathsf{E} & = & (\boldsymbol\varepsilon, \mathrm{E})
−
|-
+
\\
−
| E
+
\text{Chord operator} & \mathsf{D} & = & (\boldsymbol\varepsilon, \mathrm{D})
−
|-
+
\\
−
| D
+
\text{Tangent functor} & \mathsf{T} & = & (\boldsymbol\varepsilon, \mathrm{d})
−
|-
+
\end{array}</math>
−
| d
−
|}
−
| valign="top" |
−
| colspan="2" |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:60%"
−
| Tacit Extension Operator || <math>\epsilon</math>
−
|-
−
| Trope Extension Operator || <math>\eta</math>
−
|-
−
| Enlargement Operator || E
−
|-
−
| Difference Operator || D
−
|-
−
| Differential Operator || d
−
|}
−
|-
−
| valign="top" |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
−
| <font face=georgia>'''W'''</font>
−
|}
−
| valign="top" |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
−
| <font face=georgia>'''W'''</font> :
−
|-
−
| ''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''U''<sup> •</sup> = E''U''<sup> •</sup> ,
−
|-
−
| ''X''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup> = E''X''<sup> •</sup> ,
−
|-
−
| (''U''<sup> •</sup> → ''X''<sup> •</sup>)
−
|-
−
| →
−
|-
−
| (<font face=georgia>'''T'''</font>''U''<sup> •</sup> → <font face=georgia>'''T'''</font>''X''<sup> •</sup>) ,
−
|-
−
| for each <font face=georgia>'''W'''</font> in the set:
−
|-
−
| {<font face=georgia>'''e'''</font>, <font face=georgia>'''E'''</font>, <font face=georgia>'''D'''</font>, <font face=georgia>'''T'''</font>}
−
|}
−
| valign="top" |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
−
| Operator
−
|}
−
| valign="top" |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100"
−
|
−
|-
−
| ['''B'''<sup>2</sup>] → ['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] ,
−
|-
−
| ['''B'''<sup>1</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>] ,
−
|-
−
| (['''B'''<sup>2</sup>] → ['''B'''<sup>1</sup>])
−
|-
−
| →
−
|-
−
| (['''B'''<sup>2</sup> × '''D'''<sup>2</sup>] → ['''B'''<sup>1</sup> × '''D'''<sup>1</sup>])
−
|-
−
|
−
|-
−
|
−
|}
−
|-
|
|
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:100%"
+
<math>\begin{array}{l}
−
| <font face=georgia>'''e'''</font>
+
{[\mathbb{B}^2] \to [\mathbb{B}^2 \times \mathbb{D}^2]},
−
|-
+
\\
−
| <font face=georgia>'''E'''</font>
+
{[\mathbb{B}^1] \to [\mathbb{B}^1 \times \mathbb{D}^1]},
−
|-
+
\\\\
−
| <font face=georgia>'''D'''</font>
+
([\mathbb{B}^2] \to [\mathbb{B}^1]) \to
−
|-
+
\\
−
| <font face=georgia>'''T'''</font>
+
([\mathbb{B}^2 \times \mathbb{D}^2] \to [\mathbb{B}^1 \times \mathbb{D}^1])
−
|}
+
\end{array}</math>
−
| valign="top" |
−
| colspan="2" |
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="text-align:left; width:60%"
−
| Radius Operator || <font face=georgia>'''e'''</font> = ‹<math>\epsilon</math>, <math>\eta</math>›
−
|-
−
| Secant Operator || <font face=georgia>'''E'''</font> = ‹<math>\epsilon</math>, E›
−
|-
−
| Chord Operator || <font face=georgia>'''D'''</font> = ‹<math>\epsilon</math>, D›
−
|-
−
| Tangent Functor || <font face=georgia>'''T'''</font> = ‹<math>\epsilon</math>, d›
−
|}
|}
|}
Line 5,661:
Line 5,609:
<br>
<br>
−
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:70%"
+
{| align="center" border="1" cellpadding="8" cellspacing="0" style="text-align:left; width:90%"
−
|+ '''Table 55. Synopsis of Terminology: Restrictive and Alternative Subtypes'''
+
|+ '''Table 55. Synopsis of Terminology : Restrictive and Alternative Subtypes'''
|- style="background:ghostwhite"
|- style="background:ghostwhite"
!
!