Line 5,134: |
Line 5,134: |
| =====Summary of Conjunction===== | | =====Summary of Conjunction===== |
| | | |
− | To establish a convenient reference point for further discussion, Table 49 summarizes the operator actions that have been computed for the form of conjunction, as exemplified by the proposition ''J''. | + | To establish a convenient reference point for further discussion, Table 49 summarizes the operator actions that have been computed for the form of conjunction, as exemplified by the proposition <math>J.\!</math> |
| | | |
− | <font face="courier new"> | + | <br> |
− | {| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | + | |
− | |+ Table 49. Computation Summary for ''J'' | + | {| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%" |
| + | |+ style="height:30px" | <math>\text{Table 49.} ~~ \text{Computation Summary for}~ J~\!</math> |
| | | | | |
− | {| align="left" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| + | <math>\begin{array}{c*{8}{l}} |
− | | <math>\epsilon</math>''J''
| + | \boldsymbol\varepsilon J |
− | | = || ''uv'' || <math>\cdot</math> || 1
| + | & = & u \!\cdot\! v \cdot 1 |
− | | + || ''u''(''v'') || <math>\cdot</math> || 0
| + | & + & u \texttt{(} v \texttt{)} \cdot 0 |
− | | + || (''u'')''v'' || <math>\cdot</math> || 0
| + | & + & \texttt{(} u \texttt{)} v \cdot 0 |
− | | + || (''u'')(''v'') || <math>\cdot</math> || 0
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 |
− | |-
| + | \\[6pt] |
− | | E''J''
| + | \mathrm{E}J |
− | | = || ''uv'' || <math>\cdot</math> || (d''u'')(d''v'')
| + | & = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)} |
− | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'')d''v''
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
− | | + || (''u'')''v'' || <math>\cdot</math> || d''u''(d''v'')
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
− | | + || (''u'')(''v'') || <math>\cdot</math> || d''u'' d''v''
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v |
− | |-
| + | \\[6pt] |
− | | D''J''
| + | \mathrm{D}J |
− | | = || ''uv'' || <math>\cdot</math> || ((d''u'')(d''v''))
| + | & = & u \!\cdot\! v \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))} |
− | | + || ''u''(''v'') || <math>\cdot</math> || (d''u'')d''v''
| + | & + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v |
− | | + || (''u'')''v'' || <math>\cdot</math> || d''u''(d''v'')
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)} |
− | | + || (''u'')(''v'') || <math>\cdot</math> || d''u'' d''v''
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v |
− | |-
| + | \\[6pt] |
− | | d''J''
| + | \mathrm{d}J |
− | | = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'')
| + | & = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)} |
− | | + || ''u''(''v'') || <math>\cdot</math> || d''v''
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}v |
− | | + || (''u'')''v'' || <math>\cdot</math> || d''u''
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u |
− | | + || (''u'')(''v'') || <math>\cdot</math> || 0
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0 |
− | |-
| + | \\[6pt] |
− | | r''J''
| + | \mathrm{r}J |
− | | = || ''uv'' || <math>\cdot</math> || d''u'' d''v''
| + | & = & u \!\cdot\! v \cdot \mathrm{d}u \cdot \mathrm{d}v |
− | | + || ''u''(''v'') || <math>\cdot</math> || d''u'' d''v''
| + | & + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v |
− | | + || (''u'')''v'' || <math>\cdot</math> || d''u'' d''v''
| + | & + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \cdot \mathrm{d}v |
− | | + || (''u'')(''v'') || <math>\cdot</math> || d''u'' d''v''
| + | & + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v |
| + | \end{array}</math> |
| |} | | |} |
− | |}
| + | |
− | </font><br>
| + | <br> |
| | | |
| ====Analytic Series : Coordinate Method==== | | ====Analytic Series : Coordinate Method==== |
Line 5,189: |
Line 5,191: |
| <br> | | <br> |
| | | |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:70%" | + | {| align="center" cellpadding="1" cellspacing="0" style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; text-align:center; width:70%" |
− | |+ Table 50. Computation of an Analytic Series in Terms of Coordinates | + | |+ style="height:30px" | <math>\text{Table 50.} ~~ \text{Computation of an Analytic Series in Terms of Coordinates}\!</math> |
− | | | + | | width="50%" | |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" | + | {| align="center" cellpadding="6" cellspacing="0" style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; text-align:center; width:100%" |
− | |
| + | |- style="height:35px; background:ghostwhite" |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
| + | | style="width:16%; border-bottom:1px solid black" | <math>u\!</math> |
− | | ''u'' | + | | style="width:16%; border-bottom:1px solid black" | <math>v\!</math> |
− | | ''v''
| + | | style="width:16%; border-bottom:1px solid black; border-left:1px solid black" | <math>\mathrm{d}u\!</math> |
− | |}
| + | | style="width:16%; border-bottom:1px solid black" | <math>\mathrm{d}v\!</math> |
− | |
| + | | style="width:16%; border-bottom:1px solid black; border-left:1px solid black" | <math>u'\!</math> |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
| + | | style="width:16%; border-bottom:1px solid black" | <math>v'\!</math> |
− | | d''u'' | |
− | | d''v'' | |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
| |
− | | ''u''<font face="courier new">’</font> | |
− | | ''v''<font face="courier new">’</font> | |
− | |} | |
− | |-
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0 | |
− | |-
| |
− | | || | |
− | |-
| |
− | | ||
| |
− | |-
| |
− | | ||
| |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0 | |
| |- | | |- |
− | | 0 || 1 | + | | style="vertical-align:top; border-top:1px solid black" | <math>0\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | <math>0\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\1\\1\end{matrix}</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\0\\1\end{matrix}</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\1\\1\end{matrix}</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\0\\1\end{matrix}</math> |
| |- | | |- |
− | | 1 || 0 | + | | style="vertical-align:top; border-top:1px solid black" | <math>0\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | <math>1\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\1\\1\end{matrix}</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\0\\1\end{matrix}</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\1\\1\end{matrix}</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}1\\0\\1\\0\end{matrix}</math> |
| |- | | |- |
− | | 1 || 1 | + | | style="vertical-align:top; border-top:1px solid black" | <math>1\!</math> |
− | |} | + | | style="vertical-align:top; border-top:1px solid black" | <math>0\!</math> |
− | | | + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| + | <math>\begin{matrix}0\\0\\1\\1\end{matrix}</math> |
− | | 0 || 0
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\0\\1\end{matrix}</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}1\\1\\0\\0\end{matrix}</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\0\\1\end{matrix}</math> |
| |- | | |- |
− | | 0 || 1 | + | | style="vertical-align:top; border-top:1px solid black" | <math>1\!</math> |
− | |- | + | | style="vertical-align:top; border-top:1px solid black" | <math>1\!</math> |
− | | 1 || 0
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
− | |- | + | <math>\begin{matrix}0\\0\\1\\1\end{matrix}</math> |
− | | 1 || 1
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\0\\1\end{matrix}</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}1\\1\\0\\0\end{matrix}</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}1\\0\\1\\0\end{matrix}</math> |
| |} | | |} |
| + | | width="50%" | |
| + | {| align="center" cellpadding="6" cellspacing="0" style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; text-align:center; width:100%" |
| + | |- style="height:35px; background:ghostwhite" |
| + | | style="width:20%; border-bottom:1px solid black" | <math>\boldsymbol\varepsilon J\!</math> |
| + | | style="width:20%; border-bottom:1px solid black" | <math>\mathrm{E}J\!</math> |
| + | | style="width:20%; border-bottom:1px solid black; border-left:1px solid black" | <math>\mathrm{D}J\!</math> |
| + | | style="width:20%; border-bottom:1px solid black; border-left:1px solid black" | <math>\mathrm{d}J\!</math> |
| + | | style="width:20%; border-bottom:1px solid black" | <math>\mathrm{d}^2\!J\!</math> |
| |- | | |- |
− | | | + | | style="vertical-align:top; border-top:1px solid black" | <math>0\!</math> |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| + | | style="vertical-align:top; border-top:1px solid black" | |
− | | 0 || 1
| + | <math>\begin{matrix}0\\0\\0\\1\end{matrix}</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\0\\1\end{matrix}</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\0\\0\end{matrix}</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\0\\1\end{matrix}</math> |
| |- | | |- |
− | | || | + | | style="vertical-align:top; border-top:1px solid black" | <math>0\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\1\\0\end{matrix}</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\1\\0\end{matrix}</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\1\\1\end{matrix}</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\0\\1\end{matrix}</math> |
| |- | | |- |
− | | || | + | | style="vertical-align:top; border-top:1px solid black" | <math>0\!</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\0\\0\end{matrix}</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\0\\0\end{matrix}</math> |
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
| + | <math>\begin{matrix}0\\1\\0\\1\end{matrix}</math> |
| + | | style="vertical-align:top; border-top:1px solid black" | |
| + | <math>\begin{matrix}0\\0\\0\\1\end{matrix}</math> |
| |- | | |- |
− | | || | + | | style="vertical-align:top; border-top:1px solid black" | <math>1\!</math> |
− | |}
| + | | style="vertical-align:top; border-top:1px solid black" | |
− | |
| + | <math>\begin{matrix}1\\0\\0\\0\end{matrix}</math> |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
− | | 0 || 0
| + | <math>\begin{matrix}0\\1\\1\\1\end{matrix}\!</math> |
− | |-
| + | | style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" | |
− | | 0 || 1
| + | <math>\begin{matrix}0\\1\\1\\0\end{matrix}</math> |
− | |-
| + | | style="vertical-align:top; border-top:1px solid black" | |
− | | 1 || 0
| + | <math>\begin{matrix}0\\0\\0\\1\end{matrix}</math> |
− | |-
| |
− | | 1 || 1
| |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 1
| |
− | |- | |
− | | 0 || 0
| |
− | |-
| |
− | | 1 || 1
| |
− | |-
| |
− | | 1 || 0
| |
− | |}
| |
− | |-
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 1 || 0
| |
− | |-
| |
− | | ||
| |
− | |-
| |
− | | ||
| |
− | |-
| |
− | | ||
| |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0 | |
− | |-
| |
− | | 0 || 1
| |
− | |-
| |
− | | 1 || 0
| |
− | |-
| |
− | | 1 || 1
| |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 1 || 0
| |
− | |-
| |
− | | 1 || 1
| |
− | |-
| |
− | | 0 || 0
| |
− | |-
| |
− | | 0 || 1
| |
− | |}
| |
− | |- | |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 1 || 1
| |
− | |-
| |
− | | ||
| |
− | |-
| |
− | | ||
| |
− | |-
| |
− | | ||
| |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0 | |
− | |-
| |
− | | 0 || 1
| |
− | |-
| |
− | | 1 || 0
| |
− | |-
| |
− | | 1 || 1
| |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" | |
− | | 1 || 1
| |
− | |-
| |
− | | 1 || 0
| |
− | |-
| |
− | | 0 || 1
| |
− | |-
| |
− | | 0 || 0
| |
− | |}
| |
− | |}
| |
− | |
| |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
| |
− | | <math>\epsilon</math>''J''
| |
− | | E''J''
| |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
| |
− | | D''J''
| |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
| |
− | | d''J'' | |
− | | d<sup>2</sup>''J''
| |
− | |}
| |
− | |-
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" | |
− | | 0 || 0
| |
− | |-
| |
− | | || 0
| |
− | |-
| |
− | | || 0
| |
− | |-
| |
− | | || 1
| |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0
| |
− | |-
| |
− | | 0
| |
− | |-
| |
− | | 0
| |
− | |-
| |
− | | 1
| |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0
| |
− | |-
| |
− | | 0 || 0
| |
− | |-
| |
− | | 0 || 0
| |
− | |-
| |
− | | 0 || 1
| |
− | |}
| |
− | |-
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0
| |
− | |-
| |
− | | || 0
| |
− | |-
| |
− | | || 1
| |
− | |-
| |
− | | || 0
| |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" | |
− | | 0
| |
− | |-
| |
− | | 0
| |
− | |-
| |
− | | 1
| |
− | |-
| |
− | | 0
| |
− | |}
| |
− | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0
| |
− | |-
| |
− | | 0 || 0
| |
− | |-
| |
− | | 1 || 0
| |
− | |-
| |
− | | 1 || 1
| |
− | |}
| |
− | |-
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0
| |
− | |-
| |
− | | || 1
| |
− | |-
| |
− | | || 0
| |
− | |-
| |
− | | || 0
| |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0
| |
− | |-
| |
− | | 1
| |
− | |-
| |
− | | 0
| |
− | |-
| |
− | | 0
| |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0 || 0
| |
− | |-
| |
− | | 1 || 0
| |
− | |-
| |
− | | 0 || 0
| |
− | |-
| |
− | | 1 || 1
| |
− | |}
| |
− | |-
| |
− | | | |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" | |
− | | 1 || 1
| |
− | |-
| |
− | | || 0
| |
− | |-
| |
− | | || 0
| |
− | |-
| |
− | | || 0
| |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
| |
− | | 0
| |
− | |-
| |
− | | 1
| |
− | |-
| |
− | | 1
| |
− | |-
| |
− | | 1
| |
− | |}
| |
− | |
| |
− | {| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%" | |
− | | 0 || 0
| |
− | |-
| |
− | | 1 || 0
| |
− | |-
| |
− | | 1 || 0
| |
− | |-
| |
− | | 0 || 1
| |
− | |}
| |
| |} | | |} |
| |} | | |} |
Line 5,524: |
Line 5,346: |
| ====Analytic Series : Recap==== | | ====Analytic Series : Recap==== |
| | | |
− | Let us now summarize the results of Table 50 by writing down for each column, and for each block of constant ‹''u'', ''v''›, a reasonably canonical symbolic expression for the function of ‹d''u'', d''v''› that appears there. The synopsis formed in this way is presented in Table 51. As one has a right to expect, it confirms the results that were obtained previously by operating solely in terms of the formal calculus. | + | Let us now summarize the results of Table 50 by writing down for each column and for each block of constant argument pairs <math>u, v\!</math> a reasonably canonical symbolic expression for the function of <math>\mathrm{d}u, \mathrm{d}v\!</math> that appears there. The synopsis formed in this way is presented in Table 51. As one has a right to expect, it confirms the results that were obtained previously by operating solely in terms of the formal calculus. |
| + | |
| + | <br> |
| | | |
| <font face="courier new"> | | <font face="courier new"> |
− | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%" | + | {| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:70%" |
| |+ Table 51. Computation of an Analytic Series in Symbolic Terms | | |+ Table 51. Computation of an Analytic Series in Symbolic Terms |
| | | | | |
Line 5,615: |
Line 5,439: |
| |} | | |} |
| |} | | |} |
− | </font><br> | + | </font> |
| + | |
| + | <br> |
| + | |
| + | Figures 52 and 53 provide a quick overview of the analysis performed so far, giving the successive decompositions of <math>\mathrm{E}J = J + \mathrm{D}J\!</math> and <math>\mathrm{D}J = \mathrm{d}J + \mathrm{r}J\!</math> in two different styles of diagram. |
| | | |
− | Figures 52 and 53 provide a quick overview of the analysis performed so far, giving the successive decompositions of E''J'' = ''J'' + D''J'' and D''J'' = d''J'' + r''J'' in two different styles of diagram.
| + | {| align="center" border="0" cellspacing="10" style="text-align:center; width:100%" |
| + | | [[Image:Diff Log Dyn Sys -- Figure 52 -- Decomposition of EJ.gif|center]] |
| + | |- |
| + | | height="20px" valign="top" | <math>\text{Figure 52.} ~~ \text{Decomposition of}~ \mathrm{E}J\!</math> |
| + | |} |
| | | |
| <br> | | <br> |
− | <p>[[Image:Diff Log Dyn Sys -- Figure 52 -- Decomposition of EJ.gif|center]]</p>
| |
− | <p><center><font size="+1">'''Figure 52. Decomposition of E''J'''''</font></center></p>
| |
| | | |
− | <br>
| + | {| align="center" border="0" cellspacing="10" style="text-align:center; width:100%" |
− | <p>[[Image:Diff Log Dyn Sys -- Figure 53 -- Decomposition of DJ.gif|center]]</p>
| + | | [[Image:Diff Log Dyn Sys -- Figure 53 -- Decomposition of DJ.gif|center]] |
− | <p><center><font size="+1">'''Figure 53. Decomposition of D''J'''''</font></center></p>
| + | |- |
| + | | height="20px" valign="top" | <math>\text{Figure 53.} ~~ \text{Decomposition of}~ \mathrm{D}J\!</math> |
| + | |} |
| | | |
| ====Terminological Interlude==== | | ====Terminological Interlude==== |