Line 5,134:
Line 5,134:
=====Summary of Conjunction=====
=====Summary of Conjunction=====
−
To establish a convenient reference point for further discussion, Table 49 summarizes the operator actions that have been computed for the form of conjunction, as exemplified by the proposition ''J''.
+
To establish a convenient reference point for further discussion, Table 49 summarizes the operator actions that have been computed for the form of conjunction, as exemplified by the proposition <math>J.\!</math>
−
<font face="courier new">
+
<br>
−
{| align="center" border="1" cellpadding="8" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
+
−
|+ Table 49. Computation Summary for ''J''
+
{| align="center" border="1" cellpadding="20" cellspacing="0" style="text-align:left; width:90%"
+
|+ style="height:30px" | <math>\text{Table 49.} ~~ \text{Computation Summary for}~ J~\!</math>
|
|
−
{| align="left" border="0" cellpadding="2" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
+
<math>\begin{array}{c*{8}{l}}
−
| <math>\epsilon</math>''J''
+
\boldsymbol\varepsilon J
−
| = || ''uv'' || <math>\cdot</math> || 1
+
& = & u \!\cdot\! v \cdot 1
−
| + || ''u''(''v'') || <math>\cdot</math> || 0
+
& + & u \texttt{(} v \texttt{)} \cdot 0
−
| + || (''u'')''v'' || <math>\cdot</math> || 0
+
& + & \texttt{(} u \texttt{)} v \cdot 0
−
| + || (''u'')(''v'') || <math>\cdot</math> || 0
+
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0
−
|-
+
\\[6pt]
−
| E''J''
+
\mathrm{E}J
−
| = || ''uv'' || <math>\cdot</math> || (d''u'')(d''v'')
+
& = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{)}
−
| + || ''u''(''v'') || <math>\cdot</math> || (d''u'')d''v''
+
& + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v
−
| + || (''u'')''v'' || <math>\cdot</math> || d''u''(d''v'')
+
& + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)}
−
| + || (''u'')(''v'') || <math>\cdot</math> || d''u'' d''v''
+
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v
−
|-
+
\\[6pt]
−
| D''J''
+
\mathrm{D}J
−
| = || ''uv'' || <math>\cdot</math> || ((d''u'')(d''v''))
+
& = & u \!\cdot\! v \cdot \texttt{((} \mathrm{d}u \texttt{)(} \mathrm{d}v \texttt{))}
−
| + || ''u''(''v'') || <math>\cdot</math> || (d''u'')d''v''
+
& + & u \texttt{(} v \texttt{)} \cdot \texttt{(} \mathrm{d}u \texttt{)} \mathrm{d}v
−
| + || (''u'')''v'' || <math>\cdot</math> || d''u''(d''v'')
+
& + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \texttt{(} \mathrm{d}v \texttt{)}
−
| + || (''u'')(''v'') || <math>\cdot</math> || d''u'' d''v''
+
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v
−
|-
+
\\[6pt]
−
| d''J''
+
\mathrm{d}J
−
| = || ''uv'' || <math>\cdot</math> || (d''u'', d''v'')
+
& = & u \!\cdot\! v \cdot \texttt{(} \mathrm{d}u \texttt{,} \mathrm{d}v \texttt{)}
−
| + || ''u''(''v'') || <math>\cdot</math> || d''v''
+
& + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}v
−
| + || (''u'')''v'' || <math>\cdot</math> || d''u''
+
& + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u
−
| + || (''u'')(''v'') || <math>\cdot</math> || 0
+
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot 0
−
|-
+
\\[6pt]
−
| r''J''
+
\mathrm{r}J
−
| = || ''uv'' || <math>\cdot</math> || d''u'' d''v''
+
& = & u \!\cdot\! v \cdot \mathrm{d}u \cdot \mathrm{d}v
−
| + || ''u''(''v'') || <math>\cdot</math> || d''u'' d''v''
+
& + & u \texttt{(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v
−
| + || (''u'')''v'' || <math>\cdot</math> || d''u'' d''v''
+
& + & \texttt{(} u \texttt{)} v \cdot \mathrm{d}u \cdot \mathrm{d}v
−
| + || (''u'')(''v'') || <math>\cdot</math> || d''u'' d''v''
+
& + & \texttt{(} u \texttt{)(} v \texttt{)} \cdot \mathrm{d}u \cdot \mathrm{d}v
+
\end{array}</math>
|}
|}
−
|}
+
−
</font><br>
+
<br>
====Analytic Series : Coordinate Method====
====Analytic Series : Coordinate Method====
Line 5,189:
Line 5,191:
<br>
<br>
−
{| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:70%"
+
{| align="center" cellpadding="1" cellspacing="0" style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; text-align:center; width:70%"
−
|+ Table 50. Computation of an Analytic Series in Terms of Coordinates
+
|+ style="height:30px" | <math>\text{Table 50.} ~~ \text{Computation of an Analytic Series in Terms of Coordinates}\!</math>
−
|
+
| width="50%" |
−
{| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
+
{| align="center" cellpadding="6" cellspacing="0" style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; text-align:center; width:100%"
−
|
+
|- style="height:35px; background:ghostwhite"
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
+
| style="width:16%; border-bottom:1px solid black" | <math>u\!</math>
−
| ''u''
+
| style="width:16%; border-bottom:1px solid black" | <math>v\!</math>
−
| ''v''
+
| style="width:16%; border-bottom:1px solid black; border-left:1px solid black" | <math>\mathrm{d}u\!</math>
−
|}
+
| style="width:16%; border-bottom:1px solid black" | <math>\mathrm{d}v\!</math>
−
|
+
| style="width:16%; border-bottom:1px solid black; border-left:1px solid black" | <math>u'\!</math>
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
+
| style="width:16%; border-bottom:1px solid black" | <math>v'\!</math>
−
| d''u''
−
| d''v''
−
|}
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
−
| ''u''<font face="courier new">’</font>
−
| ''v''<font face="courier new">’</font>
−
|}
−
|-
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
| 0 || 0
−
|-
−
| ||
−
|-
−
| ||
−
|-
−
| ||
−
|}
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
| 0 || 0
|-
|-
−
| 0 || 1
+
| style="vertical-align:top; border-top:1px solid black" | <math>0\!</math>
+
| style="vertical-align:top; border-top:1px solid black" | <math>0\!</math>
+
| style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" |
+
<math>\begin{matrix}0\\0\\1\\1\end{matrix}</math>
+
| style="vertical-align:top; border-top:1px solid black" |
+
<math>\begin{matrix}0\\1\\0\\1\end{matrix}</math>
+
| style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" |
+
<math>\begin{matrix}0\\0\\1\\1\end{matrix}</math>
+
| style="vertical-align:top; border-top:1px solid black" |
+
<math>\begin{matrix}0\\1\\0\\1\end{matrix}</math>
|-
|-
−
| 1 || 0
+
| style="vertical-align:top; border-top:1px solid black" | <math>0\!</math>
+
| style="vertical-align:top; border-top:1px solid black" | <math>1\!</math>
+
| style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" |
+
<math>\begin{matrix}0\\0\\1\\1\end{matrix}</math>
+
| style="vertical-align:top; border-top:1px solid black" |
+
<math>\begin{matrix}0\\1\\0\\1\end{matrix}</math>
+
| style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" |
+
<math>\begin{matrix}0\\0\\1\\1\end{matrix}</math>
+
| style="vertical-align:top; border-top:1px solid black" |
+
<math>\begin{matrix}1\\0\\1\\0\end{matrix}</math>
|-
|-
−
| 1 || 1
+
| style="vertical-align:top; border-top:1px solid black" | <math>1\!</math>
−
|}
+
| style="vertical-align:top; border-top:1px solid black" | <math>0\!</math>
−
|
+
| style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" |
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
+
<math>\begin{matrix}0\\0\\1\\1\end{matrix}</math>
−
| 0 || 0
+
| style="vertical-align:top; border-top:1px solid black" |
+
<math>\begin{matrix}0\\1\\0\\1\end{matrix}</math>
+
| style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" |
+
<math>\begin{matrix}1\\1\\0\\0\end{matrix}</math>
+
| style="vertical-align:top; border-top:1px solid black" |
+
<math>\begin{matrix}0\\1\\0\\1\end{matrix}</math>
|-
|-
−
| 0 || 1
+
| style="vertical-align:top; border-top:1px solid black" | <math>1\!</math>
−
|-
+
| style="vertical-align:top; border-top:1px solid black" | <math>1\!</math>
−
| 1 || 0
+
| style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" |
−
|-
+
<math>\begin{matrix}0\\0\\1\\1\end{matrix}</math>
−
| 1 || 1
+
| style="vertical-align:top; border-top:1px solid black" |
+
<math>\begin{matrix}0\\1\\0\\1\end{matrix}</math>
+
| style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" |
+
<math>\begin{matrix}1\\1\\0\\0\end{matrix}</math>
+
| style="vertical-align:top; border-top:1px solid black" |
+
<math>\begin{matrix}1\\0\\1\\0\end{matrix}</math>
|}
|}
+
| width="50%" |
+
{| align="center" cellpadding="6" cellspacing="0" style="border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black; border-top:1px solid black; text-align:center; width:100%"
+
|- style="height:35px; background:ghostwhite"
+
| style="width:20%; border-bottom:1px solid black" | <math>\boldsymbol\varepsilon J\!</math>
+
| style="width:20%; border-bottom:1px solid black" | <math>\mathrm{E}J\!</math>
+
| style="width:20%; border-bottom:1px solid black; border-left:1px solid black" | <math>\mathrm{D}J\!</math>
+
| style="width:20%; border-bottom:1px solid black; border-left:1px solid black" | <math>\mathrm{d}J\!</math>
+
| style="width:20%; border-bottom:1px solid black" | <math>\mathrm{d}^2\!J\!</math>
|-
|-
−
|
+
| style="vertical-align:top; border-top:1px solid black" | <math>0\!</math>
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
+
| style="vertical-align:top; border-top:1px solid black" |
−
| 0 || 1
+
<math>\begin{matrix}0\\0\\0\\1\end{matrix}</math>
+
| style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" |
+
<math>\begin{matrix}0\\0\\0\\1\end{matrix}</math>
+
| style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" |
+
<math>\begin{matrix}0\\0\\0\\0\end{matrix}</math>
+
| style="vertical-align:top; border-top:1px solid black" |
+
<math>\begin{matrix}0\\0\\0\\1\end{matrix}</math>
|-
|-
−
| ||
+
| style="vertical-align:top; border-top:1px solid black" | <math>0\!</math>
+
| style="vertical-align:top; border-top:1px solid black" |
+
<math>\begin{matrix}0\\0\\1\\0\end{matrix}</math>
+
| style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" |
+
<math>\begin{matrix}0\\0\\1\\0\end{matrix}</math>
+
| style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" |
+
<math>\begin{matrix}0\\0\\1\\1\end{matrix}</math>
+
| style="vertical-align:top; border-top:1px solid black" |
+
<math>\begin{matrix}0\\0\\0\\1\end{matrix}</math>
|-
|-
−
| ||
+
| style="vertical-align:top; border-top:1px solid black" | <math>0\!</math>
+
| style="vertical-align:top; border-top:1px solid black" |
+
<math>\begin{matrix}0\\1\\0\\0\end{matrix}</math>
+
| style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" |
+
<math>\begin{matrix}0\\1\\0\\0\end{matrix}</math>
+
| style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" |
+
<math>\begin{matrix}0\\1\\0\\1\end{matrix}</math>
+
| style="vertical-align:top; border-top:1px solid black" |
+
<math>\begin{matrix}0\\0\\0\\1\end{matrix}</math>
|-
|-
−
| ||
+
| style="vertical-align:top; border-top:1px solid black" | <math>1\!</math>
−
|}
+
| style="vertical-align:top; border-top:1px solid black" |
−
|
+
<math>\begin{matrix}1\\0\\0\\0\end{matrix}</math>
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
+
| style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" |
−
| 0 || 0
+
<math>\begin{matrix}0\\1\\1\\1\end{matrix}\!</math>
−
|-
+
| style="vertical-align:top; border-top:1px solid black; border-left:1px solid black" |
−
| 0 || 1
+
<math>\begin{matrix}0\\1\\1\\0\end{matrix}</math>
−
|-
+
| style="vertical-align:top; border-top:1px solid black" |
−
| 1 || 0
+
<math>\begin{matrix}0\\0\\0\\1\end{matrix}</math>
−
|-
−
| 1 || 1
−
|}
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
| 0 || 1
−
|-
−
| 0 || 0
−
|-
−
| 1 || 1
−
|-
−
| 1 || 0
−
|}
−
|-
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
| 1 || 0
−
|-
−
| ||
−
|-
−
| ||
−
|-
−
| ||
−
|}
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
| 0 || 0
−
|-
−
| 0 || 1
−
|-
−
| 1 || 0
−
|-
−
| 1 || 1
−
|}
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
| 1 || 0
−
|-
−
| 1 || 1
−
|-
−
| 0 || 0
−
|-
−
| 0 || 1
−
|}
−
|-
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
| 1 || 1
−
|-
−
| ||
−
|-
−
| ||
−
|-
−
| ||
−
|}
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
| 0 || 0
−
|-
−
| 0 || 1
−
|-
−
| 1 || 0
−
|-
−
| 1 || 1
−
|}
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
| 1 || 1
−
|-
−
| 1 || 0
−
|-
−
| 0 || 1
−
|-
−
| 0 || 0
−
|}
−
|}
−
|
−
{| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
−
| <math>\epsilon</math>''J''
−
| E''J''
−
|}
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
−
| D''J''
−
|}
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="background:ghostwhite; font-weight:bold; text-align:center; width:100%"
−
| d''J''
−
| d<sup>2</sup>''J''
−
|}
−
|-
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
| 0 || 0
−
|-
−
| || 0
−
|-
−
| || 0
−
|-
−
| || 1
−
|}
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
| 0
−
|-
−
| 0
−
|-
−
| 0
−
|-
−
| 1
−
|}
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
| 0 || 0
−
|-
−
| 0 || 0
−
|-
−
| 0 || 0
−
|-
−
| 0 || 1
−
|}
−
|-
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
| 0 || 0
−
|-
−
| || 0
−
|-
−
| || 1
−
|-
−
| || 0
−
|}
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
| 0
−
|-
−
| 0
−
|-
−
| 1
−
|-
−
| 0
−
|}
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
| 0 || 0
−
|-
−
| 0 || 0
−
|-
−
| 1 || 0
−
|-
−
| 1 || 1
−
|}
−
|-
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
| 0 || 0
−
|-
−
| || 1
−
|-
−
| || 0
−
|-
−
| || 0
−
|}
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
| 0
−
|-
−
| 1
−
|-
−
| 0
−
|-
−
| 0
−
|}
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
| 0 || 0
−
|-
−
| 1 || 0
−
|-
−
| 0 || 0
−
|-
−
| 1 || 1
−
|}
−
|-
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
| 1 || 1
−
|-
−
| || 0
−
|-
−
| || 0
−
|-
−
| || 0
−
|}
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
| 0
−
|-
−
| 1
−
|-
−
| 1
−
|-
−
| 1
−
|}
−
|
−
{| align="center" border="0" cellpadding="6" cellspacing="0" style="font-weight:bold; text-align:center; width:100%"
−
| 0 || 0
−
|-
−
| 1 || 0
−
|-
−
| 1 || 0
−
|-
−
| 0 || 1
−
|}
|}
|}
|}
|}
Line 5,524:
Line 5,346:
====Analytic Series : Recap====
====Analytic Series : Recap====
−
Let us now summarize the results of Table 50 by writing down for each column, and for each block of constant ‹''u'', ''v''›, a reasonably canonical symbolic expression for the function of ‹d''u'', d''v''› that appears there. The synopsis formed in this way is presented in Table 51. As one has a right to expect, it confirms the results that were obtained previously by operating solely in terms of the formal calculus.
+
Let us now summarize the results of Table 50 by writing down for each column and for each block of constant argument pairs <math>u, v\!</math> a reasonably canonical symbolic expression for the function of <math>\mathrm{d}u, \mathrm{d}v\!</math> that appears there. The synopsis formed in this way is presented in Table 51. As one has a right to expect, it confirms the results that were obtained previously by operating solely in terms of the formal calculus.
+
+
<br>
<font face="courier new">
<font face="courier new">
−
{| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:96%"
+
{| align="center" border="1" cellpadding="0" cellspacing="0" style="font-weight:bold; text-align:center; width:70%"
|+ Table 51. Computation of an Analytic Series in Symbolic Terms
|+ Table 51. Computation of an Analytic Series in Symbolic Terms
|
|
Line 5,615:
Line 5,439:
|}
|}
|}
|}
−
</font><br>
+
</font>
+
+
<br>
+
+
Figures 52 and 53 provide a quick overview of the analysis performed so far, giving the successive decompositions of <math>\mathrm{E}J = J + \mathrm{D}J\!</math> and <math>\mathrm{D}J = \mathrm{d}J + \mathrm{r}J\!</math> in two different styles of diagram.
−
Figures 52 and 53 provide a quick overview of the analysis performed so far, giving the successive decompositions of E''J'' = ''J'' + D''J'' and D''J'' = d''J'' + r''J'' in two different styles of diagram.
+
{| align="center" border="0" cellspacing="10" style="text-align:center; width:100%"
+
| [[Image:Diff Log Dyn Sys -- Figure 52 -- Decomposition of EJ.gif|center]]
+
|-
+
| height="20px" valign="top" | <math>\text{Figure 52.} ~~ \text{Decomposition of}~ \mathrm{E}J\!</math>
+
|}
<br>
<br>
−
<p>[[Image:Diff Log Dyn Sys -- Figure 52 -- Decomposition of EJ.gif|center]]</p>
−
<p><center><font size="+1">'''Figure 52. Decomposition of E''J'''''</font></center></p>
−
<br>
+
{| align="center" border="0" cellspacing="10" style="text-align:center; width:100%"
−
<p>[[Image:Diff Log Dyn Sys -- Figure 53 -- Decomposition of DJ.gif|center]]</p>
+
| [[Image:Diff Log Dyn Sys -- Figure 53 -- Decomposition of DJ.gif|center]]
−
<p><center><font size="+1">'''Figure 53. Decomposition of D''J'''''</font></center></p>
+
|-
+
| height="20px" valign="top" | <math>\text{Figure 53.} ~~ \text{Decomposition of}~ \mathrm{D}J\!</math>
+
|}
====Terminological Interlude====
====Terminological Interlude====