Line 834: |
Line 834: |
| | | |
| ===Fourier Transforms of Boolean Functions=== | | ===Fourier Transforms of Boolean Functions=== |
| + | |
| + | <pre> |
| + | Re: <a href="http://rjlipton.wordpress.com/2013/05/21/twin-primes-are-useful/" target="_blank">Another Problem</a> |
| + | |
| + | <div style="margin-left:30px;"> |
| + | |
| + | <p>The problem is concretely about Boolean functions $latex {f}$ of $latex {k}$ variables, and seems not to involve prime numbers at all. For any subset $latex {S}$ of the coordinates, the corresponding Fourier coefficient is given by:</p> |
| + | |
| + | <p align="center"> |
| + | $latex \displaystyle \hat{f}(S) = \frac{1}{2^k} \sum_{x \in \mathbb{Z}_2^k} f(x)\chi_S(x)$</p> |
| + | |
| + | <p>where $latex {\chi_S(x)}$ is $latex {-1}$ if $latex {\sum_{i \in S} x_i}$ is odd, and $latex {+1}$ otherwise.</p> |
| + | |
| + | </div> |
| + | |
| + | <b>Note to Self.</b> I need to play around with this concept a while. |
| + | |
| + | Begin with a survey of concrete examples, perhaps in tabular form. |
| + | |
| + | $latex {k = 1}$ |
| + | |
| + | … |
| + | |
| + | $latex {k = 2}$ |
| + | |
| + | For ease of reading formulas, let $latex {x = (x_1, x_2) = (u, v)}.$ |
| + | |
| + | <p align="center"> |
| + | $latex |
| + | \begin{tabular}{|c||*{4}{c}|} |
| + | \multicolumn{5}{c}{Table 2.1. Values of \( \chi_S(x) \) for \( f : \mathbb{B}^2 \to \mathbb{B} \)} \\[4pt] |
| + | \hline |
| + | \( S \backslash (u, v) \) & |
| + | \( (1, 1) \) & |
| + | \( (1, 0) \) & |
| + | \( (0, 1) \) & |
| + | \( (0, 0) \) |
| + | \\ |
| + | \hline\hline |
| + | \( \varnothing \) & \( +1 \) & \( +1 \) & \( +1 \) & \( +1 \) \\ |
| + | \( \{ u \} \) & \( -1 \) & \( -1 \) & \( +1 \) & \( +1 \) \\ |
| + | \( \{ v \} \) & \( -1 \) & \( +1 \) & \( -1 \) & \( +1 \) \\ |
| + | \( \{ u, v \} \) & \( +1 \) & \( -1 \) & \( -1 \) & \( +1 \) \\ |
| + | \hline |
| + | \end{tabular} |
| + | &fg=000000$ |
| + | </p> |
| + | |
| + | <p align="center"> |
| + | $latex |
| + | \begin{tabular}{|*{5}{c|}*{4}{r|}} |
| + | \multicolumn{9}{c}{Table 2.2. Fourier Coefficients of Boolean Functions on Two Variables} \\[4pt] |
| + | \hline |
| + | ~&~&~&~&~&~&~&~&~\\ |
| + | \( L_1 \)& |
| + | \( L_2 \)&& |
| + | \( L_3 \)& |
| + | \( L_4 \)& |
| + | \( \hat{f}(\varnothing) \)& |
| + | \( \hat{f}(\{u\}) \)& |
| + | \( \hat{f}(\{v\}) \)& |
| + | \( \hat{f}(\{u,v\}) \) |
| + | \\ |
| + | ~&~&~&~&~&~&~&~&~\\ |
| + | \hline |
| + | && \(u =\)& 1 1 0 0&&&&& \\ |
| + | && \(v =\)& 1 0 1 0&&&&& \\ |
| + | \hline |
| + | \(f_{0}\)& |
| + | \(f_{0000}\)&& |
| + | 0 0 0 0& |
| + | \((~)\)& |
| + | \(0\)& |
| + | \(0\)& |
| + | \(0\)& |
| + | \(0\) |
| + | \\ |
| + | \(f_{1}\)& |
| + | \(f_{0001}\)&& |
| + | 0 0 0 1& |
| + | \((u)(v)\)& |
| + | \(1/4\)& |
| + | \(1/4\)& |
| + | \(1/4\)& |
| + | \(1/4\) |
| + | \\ |
| + | \(f_{2}\)& |
| + | \(f_{0010}\)&& |
| + | 0 0 1 0& |
| + | \((u)~v~\)& |
| + | \( 1/4\)& |
| + | \( 1/4\)& |
| + | \(-1/4\)& |
| + | \(-1/4\) |
| + | \\ |
| + | \(f_{3}\)& |
| + | \(f_{0011}\)&& |
| + | 0 0 1 1& |
| + | \((u)\)& |
| + | \(1/2\)& |
| + | \(1/2\)& |
| + | \( 0 \)& |
| + | \( 0 \) |
| + | \\ |
| + | \(f_{4}\)& |
| + | \(f_{0100}\)&& |
| + | 0 1 0 0& |
| + | \(~u~(v)\)& |
| + | \( 1/4\)& |
| + | \(-1/4\)& |
| + | \( 1/4\)& |
| + | \(-1/4\) |
| + | \\ |
| + | \(f_{5}\)& |
| + | \(f_{0101}\)&& |
| + | 0 1 0 1& |
| + | \((v)\)& |
| + | \(1/2\)& |
| + | \( 0 \)& |
| + | \(1/2\)& |
| + | \( 0 \) |
| + | \\ |
| + | \(f_{6}\)& |
| + | \(f_{0110}\)&& |
| + | 0 1 1 0& |
| + | \((u,~v)\)& |
| + | \( 1/2\)& |
| + | \( 0 \)& |
| + | \( 0 \)& |
| + | \(-1/2\) |
| + | \\ |
| + | \(f_{7}\)& |
| + | \(f_{0111}\)&& |
| + | 0 1 1 1& |
| + | \((u~~v)\)& |
| + | \( 3/4\)& |
| + | \( 1/4\)& |
| + | \( 1/4\)& |
| + | \(-1/4\) |
| + | \\ |
| + | \hline |
| + | \(f_{8}\)& |
| + | \(f_{1000}\)&& |
| + | 1 0 0 0& |
| + | \(~u~~v~\)& |
| + | \( 1/4\)& |
| + | \(-1/4\)& |
| + | \(-1/4\)& |
| + | \( 1/4\) |
| + | \\ |
| + | \(f_{9}\)& |
| + | \(f_{1001}\)&& |
| + | 1 0 0 1& |
| + | \(((u,~v))\)& |
| + | \(1/2\)& |
| + | \( 0 \)& |
| + | \( 0 \)& |
| + | \(1/2\) |
| + | \\ |
| + | \(f_{10}\)& |
| + | \(f_{1010}\)&& |
| + | 1 0 1 0& |
| + | \(v\)& |
| + | \( 1/2\)& |
| + | \( 0 \)& |
| + | \(-1/2\)& |
| + | \( 0 \) |
| + | \\ |
| + | \(f_{11}\)& |
| + | \(f_{1011}\)&& |
| + | 1 0 1 1& |
| + | \((~u~(v))\)& |
| + | \( 3/4\)& |
| + | \( 1/4\)& |
| + | \(-1/4\)& |
| + | \( 1/4\) |
| + | \\ |
| + | \(f_{12}\)& |
| + | \(f_{1100}\)&& |
| + | 1 1 0 0& |
| + | \(u\)& |
| + | \( 1/2\)& |
| + | \(-1/2\)& |
| + | \( 0 \)& |
| + | \( 0 \) |
| + | \\ |
| + | \(f_{13}\)& |
| + | \(f_{1101}\)&& |
| + | 1 1 0 1& |
| + | \(((u)~v~)\)& |
| + | \( 3/4\)& |
| + | \(-1/4\)& |
| + | \( 1/4\)& |
| + | \( 1/4\) |
| + | \\ |
| + | \(f_{14}\)& |
| + | \(f_{1110}\)&& |
| + | 1 1 1 0& |
| + | \(((u)(v))\)& |
| + | \( 3/4\)& |
| + | \(-1/4\)& |
| + | \(-1/4\)& |
| + | \(-1/4\) |
| + | \\ |
| + | \(f_{15}\)& |
| + | \(f_{1111}\)&& |
| + | 1 1 1 1& |
| + | \(((~))\)& |
| + | \(1\)& |
| + | \(0\)& |
| + | \(0\)& |
| + | \(0\) |
| + | \\ |
| + | \hline |
| + | \end{tabular}&fg=000000$ |
| + | </p> |
| + | |
| + | <i>To be continued …</i> |
| + | |
| + | <h3>Notes</h3> |
| + | |
| + | <ul><li><a href="http://inquiryintoinquiry.com/2013/05/31/special-classes-of-propositions/" target="_blank">Special Classes of Propositions</a></li></ul> |
| + | |
| + | <h3>References</h3> |
| + | |
| + | <table border="0" style="border-width:0;"> |
| + | |
| + | <tr> |
| + | <td style="border-top:1px solid white;">21 May 2013</td> |
| + | <td style="border-top:1px solid white;"><a href="http://rjlipton.wordpress.com/2013/05/21/twin-primes-are-useful/" target="_blank">Twin Primes Are Useful</a></td></tr> |
| + | |
| + | <tr> |
| + | <td style="border-top:1px solid white;">08 Nov 2012</td> |
| + | <td style="border-top:1px solid white;"><a href="http://rjlipton.wordpress.com/2012/11/08/the-power-of-guessing/" target="_blank">The Power Of Guessing</a></td></tr> |
| + | |
| + | <tr> |
| + | <td style="border-top:1px solid white;">05 Jan 2011</td> |
| + | <td style="border-top:1px solid white;"><a href="http://rjlipton.wordpress.com/2011/01/05/fourier-complexity-of-cirtemmys-boolean-functions/" target="_blank">Fourier Complexity Of Symmetric Boolean Functions</a></td></tr> |
| + | |
| + | <tr> |
| + | <td style="border-top:1px solid white;">19 Nov 2010</td> |
| + | <td style="border-top:1px solid white;"><a href="http://rjlipton.wordpress.com/2010/11/19/is-complexity-theory-on-the-brink/" target="_blank">Is Complexity Theory On The Brink?</a></td></tr> |
| + | |
| + | <tr> |
| + | <td style="border-top:1px solid white;">18 Sep 2009</td> |
| + | <td style="border-top:1px solid white;"><a href="http://rjlipton.wordpress.com/2009/09/18/why-believe-that-pnp-is-impossible/" target="_blank">Why Believe That P=NP Is Impossible?</a></td></tr> |
| + | |
| + | <tr> |
| + | <td style="border-top:1px solid white;">04 Jun 2009</td> |
| + | <td style="border-top:1px solid white;"><a href="http://rjlipton.wordpress.com/2009/06/04/the-junta-problem/" target="_blank">The Junta Problem</a></td></tr> |
| + | |
| + | </table> |
| + | </pre> |
| | | |
| ==Work 2== | | ==Work 2== |